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RADON-NIKODYM DENSITIES AND JACOBIANS

MITSURU NAKAI

A Dirichlet mapping between regions in Euclidean space
is a homeomorphism preserving the finiteness of Dirichlet
integrals of admissible functions and plays an important role
in the potential theory. Two dimensional Dirichlet mappings
are known to be characterized geometrically as being quasi-
conformal mappings. In this paper, higher dimensional Diri-
chlet mappings will be characterized geometrically as being
quasi-isometries. In order to carry out the reasoning it is
necessary to study the relation between the Radon-Nikodym
density R and the Jacobian J of an arbitrary homeomorph-
ism for which only existences of R and J almost everywhere
are assured. It will be proven that R < |J|, almost every-
where, which is the main result of this paper.

The change of variables is one of the important subjects in the
theory of integrals. Suppose ¥ = y(x) maps an open set D, homeo-
morphically noto an open set D, in the m-dimensional Euclidean space
E™(m = 1). Define the outer measure y(X) of a subset X of D, by

(1) v(X):infgn-g Ay« dy™

()

where the infimum is taken with respect to open sets U in D, con-
taining X, and denote by B,(D, the field of v-measurable sets in
L(D)), the field of Lebesgue measurable subsets of D,. The problem
of the change of variables is to study the structure of the measure
space (v, B,(D,), D;). Among contributions in this direction the follow-
ing theorem of Rademacher [6] is frequently made use of (see also a
comprehensive alternative proof of Tsuji [10]):
Suppose y = y(z) is almost Lipshitzian in the sense that

(2) lirr)}j)up!hl‘Lly(x+h)~y(w)l<<>°
for almost every « in D,. Then
(3) B.(D) = L(D)) = {X| Xe L(D), y(X) e L(Dy)}

and the Jacobian
| o
(4) J,(@) = det (2Lia)

of y = y(») exists for almost every « in D, and
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(5) v(w)=§--~g T, @) | da - -+ da
pe

for every X in B,(D,) = L(D,).

The mapping ¥ = y(x) with the property (8) is called inwverse-
measurable. This property is equivalent to y(X) having Lebesgue
measure zero along with X. For such a mapping v = y(x) there ex-
ists a Radon-Nikodym density R,(x) associated with y = y(x) charac-
terized as follows: R, (z) = 0, R,(x) is Lebesgue measurable on D, and

(6) U(X) = S SXRy(x)dx‘ coedam

for every X in B,(D,) = L(D,). The Rademacher theorem can be re-
stated as follows: if a homeomorphism y = y(x) is almost Lipshitzian,
then its Radon-Nikodym density R,(x) and Jacobian J,(z) exist almost
everywhere and are identical in absolute value. However it frequently
occurs that only the existence of R,(x) and J,(x) almost everywhere
is assured. In such a case what can be said about the relation be-
tween R,(x) and J,(®)? The purpose of our paper is to study this
question.

Our main result is that if R,(z) and J,(») exist almost everywhere,
then inequality R, (x) < |J,(®)]| is valid almost everywhere (Theorem 5).
As a consequence, if, in addition to the existence of R,(x) and J,(x) almost
everywhere, the inverse mapping = = x(y) of v = y(x) also has R.(y)
and J,(y) almost everywhere, and if J,(x)-J,(y(x)) = 1 almost every-
where, then R, (x) = |J,(®)| (Theorem 10).

As an application we shall show that a homeomorphism between
open sets in E™(m = 3) is a Dirichlet mapping, a mapping preserving
the finiteness of Dirichlet integrals of admissible functions, if and only
if it is a quasi-isometry (Theorem 14).

ASYMPTOTICAL DIFFERENTIABILITY

1. We denote by E™ the m-dimensional real Euclidean space

whose points x are nm-tuples x = (', +--, ™) of real numbers (m = 1).
It is an additive vector space over the real number field B. The dis-
tance between two points x = (2!, +--,2™) and y = (¢!, ++-, y™) is

denoted by |o — y| = L, |2° — ¥ )"

For an open set D in E™ we denote by L(D) the family of all
Lebesgue measurable sets in D and by p the Lebesgue measure on
L(E™. Let X be a bounded set in L(E™). The number

- MX)
(7) r(X) = sup D)
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is called the parameter of regularity for X where the supremum is
taken with respect to m-dimensional cubes ID>X. A sequence {X,}
of bounded closed sets in E™ is said to be a regular sequence con-
verging to a point x,e E™ if 2,¢e X, (n =1, 2, -++) and there exists a
positive number « > 0 such that

(8) "X.) = a (n=1,2--+)

and the diameters of X, tend to zero as » tends to infinity.
Fix a set Xe L(E™) and consider a regular sequence {X,} con-
verging to x e E™ such that

{X,} = lim X0 X,)
e H(X)

exists. Denote by 0.(x) (resp. d.(x)) the supremum (resp. infimum)
of the set of all possible a{X,}. If 6,(x) = d4(x), then the common
value is denoted by d(x) and called the demsity (or more precisely
the Lebesgue density) of X at x. If 6,(x) exists, then

0 () — Tim £X0 X)
) @ =T

for every regular sequence {X,} converging to .

The well-known Lebesgue density theorem claims that d,(z) =1
almost everywhere on X and 6,(x) = 0 almost everywhere on E™ —
X. This is the special case of the Lebesgue differentiability theorem:
if f(x) is integrable on E™, then, for almost every x,e E™,

(10) lim (X, | f@)dp@) = flw)
for every regular sequence {X,} converging to «,.

2. Let f(x) be a real-valued function on a measurable set X.
The function f is said to be asymptotically differentiable at xz,e X if
there exist real numbers a;(x,) (: =1, -+, m) and a measurable sub-
set S(x,) of X containing x, such that

(1) @) = fla) + X a@)@ — o) + 2w w)
with
(12) lim _MT®) g

ze Sixzg),z—2 |x — xO]

and
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(13) Bs(xo)(wo) =1.

The set S(x,) is referred to as an asymptotic set of f at =z, for its
asymptotical differentiability.

The following theorem of Stepanoff [9] plays an important role
in our reasoning:

Suppose f(x) is measurable on an open set D E™ and (0f/0x")(x)
(=1, <+, m) exist for almost every xe D. Then f(x) is asymptoti-
cally differentiable at almost every point x,€ D and a;(x,) in (11) is
given by

(14) aiiy) = jg.(mo) (G=1-m).

For a proof we refer Stepanoff [9; 523-524] or the monograph of
Saks [7; 800-303]. In the latter reference, however, the asymptotical
difierentiability is replaced by the approximate differentiability which
is defined by (11)—(18), with the Lebesgue density replaced by the
Saks strong density which is simply called the density in the book.
The proof there can be easily modified to fit the present situation.
It should also be remarked that proofs given in both references are
for the case m = 2, but their generalizations to higher dimensions
are, as they claim, straightforward.

3. Let y = y(x) be a mapping of a measurable set X E™ into
E™, We call y(x) asymptotically differentiable at x, e X if there exists
a matrix A(x,) of (m, m)-type and a measurable set S(x,) © X con-
taining #, such that

(15) Y(@) = y(@) + (@ — 2o)A@) + A(; @)

where A(x; ) = (N'(x; o), + =+, N™(x; ) € E™,

(16) lim A@@] _ o,
se§lag),amny | & — Xy

and

17) 5S(a:0)(xo) =1.

The set S(x,) is again referred to as an asymptotic set of y(x) at =z,
for its asymptotical differentiability.
The Stepanoff theorem cited in 2 may be restated as follows:

Suppose y(x) is a mapping of an open set D E™ into E™, the
components y'(x) (¢ =1, «++, m) of y(x) are measurable in D, and the
©yi/ox?)(x) (4,7 =1, «+-, m) exist for almost every x in D. Then y(x)
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is asymptotically differentiable at almost every point x, in D, and
A(x,) in (15) is given by

oy’ Lo
P () e ()
(18) Aw) =| - :
oy' y"
(@) +++ 5m (@)
To see this take E;c D for each 7 =1, ---, m such that y(x) is

asymptotically differentiable at each point xe E; and pu(D — E;) = 0.
Set E = N, E;. Then (D — E) =0 and every y'(x) (1 =1, +-+, m)
is asymptotically differentiable at each point z, in E. Let S;(x,) be
an asymptotic set of y'(x) at x, for its asymptotical differentiability
(t=1,-.--,m) and put S(x,) = N, Si(x,). Then (15) and (16) with
(18) are valid. We have only to prove (17).

Let {X,} be an arbitrary regular sequence converging to z,. Since
0s,wp(®) = 1, we infer that

lim Z(E™ = Si@)NX,) _
imseo 1(X,)

for every 4 =1, ---m. Observe that

pE” = S) N Xy) o 5 E” = Silw) 0 X,)

(19)

b

/“(Xn) T #(Xn)
and therefore (19) implies
: E™ — S(@y) N X,)
(20 lim £ ( =90.
) nmee #(Xn)

In view of p(S(x,) N X,) + p((E™ — S(,)) N X,) = p(X,), we conclude that

im £8(X) 0 X,) _

Since (21) is true for every regular sequence {X,} converging to x,,
we obtain (17).

THE MAIN INEQUALITY

4. Hereafter we assume that y = y(x) is a homeomorphism of
an open set D, onto an open set D, in E™(m = 1). In terms of com-
ponents, y = y(x) is expressed by the system of functions on D;:

¥ =y =y, ..., a")
(22) e .
y" = y"(x) = y"(@', +--, 3"
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The mapping y = y(x) is said to be inverse-measurable if X e L(D,)
implies y(X)e€ L(D,), or what amounts to the same, if #(X)=0
(X< D,) implies #(y(X)) = 0. In this case the nonnegative set funec-
tion ¥(X) on L(D,) defined by

(23) v(X) = my(X))

is p-absolutely continuous and we have the existence of the Radon-
Nikodym density R,(x) of y = y(x), characterized by the properties
R, (x) =0 on D,, R,(x) is Lebesgue measurable on D,, and

(24) 2(X) = | R@du@)  (XeLD)) .

We call the mapping y = y(x) partially differentiable at xe D,
if the partial derivatives (dy*/ox?)(x) (1,5 =1, ---, m) exist at x. In
this case the Jacobian J,(x) of y = y(x) at x exists:

P () aﬂc,,,(96)

(25) Jy@) =| : :
Y” sy ... 9Y"
oxt @) awm(x)

Here we append a remark: if 0y’/dx’ exists almost everywhere on
D,, then it is Lebesgue measurable (cf. Saks [7; p. 299]). Thus if
J,(x) exists almost everywhere on D,, then J,(x) is Lebesgue measur-
able on D,.

5. The general conclusion we can make on the relation between
R, (x) and J,(x) is the following which is the main result of the paper:

THEOREM. Let y = y(x) be a homeomorphism of an open set D,
onto an open set D, in E™(m = 1) which is inverse-measurable on D,
and partially differentiable at almost every point in D,. Then the
Radon-Nikodym density R, (x) and the Jacobian J,(x) of y = y(x) satisfy
the following inequality almost everywhere on D;:

(26) R,@) = |J,(@)] .

The proof will be given in 6-9.

6. By the Lebesgue differentiability theorem we can find a set
Ec D, such that ¢(D, — E) = 0 and

(@) lim (X)| | R(@)dpe@) = B
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for every regular sequence {X,} converging to any point z,¢ E.
By the Stepanoff theorem in 3 we can also find a set F'c D, with
(D, — F) = 0 such that y = y(x) is asymptotically differentiable at

every point z,€ F. Set G = ENF. We have (D, — G) = 0.
Fix an arbitrary point x,€ G and represent y = y(x) by

(28) Y=o+ S —a) + V@ie) (G =100, m)

with y, = y(x,) and a;, = @y//ox*)(x,) (4, k=1, -+, m). We also set
m . 1/2

(29) dmzm—xwﬁémmmmﬁ.

Let S = S(x,) be an asymptotic set of y = y(x) at z, for its asymp-
totical differentiability. Recall that

(30) ds(x) = 1.

From this and (16) we obtain

(31) lim () =0.
z €S,z

As an approximation to (28) we consider a linear transformation
2z = 2z(x) given by

(32) d= g+ St — o) (=1 m).

Let K(r) = {x| |2 — @,| = r} and set &(®) = sup,.snxm ¢(®). Then (31)
implies that

(33) lime(r) = 0 .

r—0

Observe that if e SN K(a), then, by (28), (29), and (32),
@) — #e) = 3 9@ — @)
= 3 (V@i 2)) = (o — o @),

and therefore

(34 ly(@) — 2(@)| < e(r)-r (e SN K@) .

7. For short we will set S(») = SN K(r). By (30) and (9) we
obtain

35 i M:l
39 o UE(r)
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Take a closed subset S(r) of S(r) such that x,eS(r) and
#(S@) = (1 — r)S@) ,
(36) |5 B = @ = n|  R@due) .

S(

Then by (35), lim,_, 4(S(r))/t(K(r)) = 1, which shows that for any
strietly decreasing sequence {r,} converging to zero, {S(r,)} is a regular
sequence converging to x,. Therefore by (27)

lim (S|, Ru(@)dpta) = Ry, -
This with (35) and (36) gives

im £2@E8) _
o TR

In view of this, it will suffice to prove that

im LWS(r)))
(38) lim W(K() = [Jy@) |-

8. To establish (38) we will distinguish the cases J,(x,) = 0 and
J, (%) == 0. First suppose J,(x,) = 0. Then the mapping z = z(x) in
(82) is degenerate and therefore z(S(r)) lies on a hyperplane P which
may be identified with E™', the (m — 1)-demensional Euclidean space.
By (32)
Se—glsa e —all, o= (3 an),
J=1 7=1 g k=1

and a fortiori

Paa@(S(r)) < T (14 LY gomvin(gryns
2
where p,,_, is the (m — 1)-dimensional Lebesgue measure on P = E™%,
By virtue of (34), y(S(r)) is contained in a cylindrical region with the
base congruent to z(S(r(1 + &(r)))), and of heigh 2-¢(r)-r. Hence

pS) = 2{ r(1 T 1)"‘n<m—wz).am—wmema +e(r)t .

Since p(K(r)) = I'A + m/2)~'z™*r™, (33) implies that

lim 1y(S(r)) _ 0
o p(K(r))

and (38) is trivially true with the equality.

)



RADON-NIKODYM DENSITIES AND JACOBIANS 383

9. Next we treat the case |J, (%) | > 0. Let (b;;) be the inverse
matrix of (a;;), the existence of which is assured by det (a;;) = J,(x,) =
0. The inverse transformation of (32) is then given by

(39) o = ol + 3 bl — o) (=1, m).

Denote by ‘(b;;) the transposed matrix of (b;,); let (B;;) = “(b:))-(b:));
then consider the strictly positive definite bilinear form

B¢, 7] :‘Ji:;:lBjkfjﬁk
for & = (61’ B Em) and N = (771’ ety 7]’”) in E™; set

BIE| = Bl&, &l = 3. Byug's*

Let
H(r) = {£e E™ | BI¢ — y,] < 7%} .

This set is a closed ellipsoid with center y,. Since (89) implies that

Blz — ul = 5 (S04 — 9)) = & @ — ai),

=1 =1

the image of H(r) under (39) is K(r), and therefore z(K(r)) = H(r).
Hence

HEE) = 1K) = | |70 | deta) -
The Jacobian J,(x) of the mapping 2z = z(x) in (32) is given by
J.(x) = det (a;;) = J, ()

and we obtain

(40) L(H(r)) = | J() | (K(7)) .
Let 2eS(r) = SN K(r). Since B[:]'* is a norm on E™,
(41) Bly(x) — yo]'* < Bly() — 2(x)]'* + Blz(2) — o] .

Observe that xe S(r) c K(r) implies z(x) € 2(K(r)) = H(r), which in
turn gives

(42) Blz(x) — yo] = 7.

In view of (34) we also conclude that
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(43 Bly(@) — 2(@)] = b | y() — 2(x) [ < b(e(r)-7)°
with b = O 74, 0%)"%. From (41)—(43), it follows that
Bly(x) — vl = (r(L + be(r)))?
for x in S(») and therefore
y(S(r))  H(r(L + be(r))) .
Thus (40) can be used to conclude that

My(S(r) = p(H(r(l + be(r))))
= [ Ju(@o) | #(K(r))(A + be(r))™ .

Again by (33), we now have

i HU(S0D)
iy =

i.e., (38) is proved.
The proof of Theorem 5 is herewith complete.

INTEGRATION BY CHANGE OF VARIABLES

10. As a direct consequence of the main inequality (26) we obtain
the following result on integration by change of variables:

THEOREM. Let y = y(x) be a homeomorphism of an open set D,
onto an open set D, in E™ and let x = x(y) be the inverse mapping
of y = y(x). Suppose both y = y(x) and x = x(y) are tnverse-measur-
able and also partially differentiable almost everywhere. Moreover
suppose the Jacobians J,(x) and J(y) of y = y(x) and x = x(y) satisfy

(44) Jy(@)J(y(@) = 1

almost everywhere on D,. Then f(y) is Lebesgue measurable on D, if
and only if fly®)) is Lebesgue measurable on D,, and if f(y) is
Lebesgue integrable on D,, then f(y(x))J,(x) is Lebesgue integrable on
D, and

@) [ fopay -eayr = f@)n@lde - don

11. For the proof take the Radon-Nikodym densities E,(x) and
R.(y) of ¥y = y(x) and & = x(y), and observe that
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[ do) = dpe

z(y (X))

N Sme“(y)dﬂ(y) = S“,Rz(y(x))Ry(x)dy(x)

for every Xe L(D,). Then
(46) R,(2)-R.(y(») = 1

almost everywhere on D,.

Then main inequality (26) applied to # = z(y) yields R,(y) < | J.(%) |
almost everywhere on D,, and since x(y) is inverse-measurable, we
obtain

(47) R.(y(x) = | J.(y(x)) |
almost everywhere on D,. By (44), (46), and (47), we infer that
(48) R,(z) = | J,(2) |

almost everywhere on D,. Again by the main inequality (26), R,(z) <
| J(x)| almost everywhere on D,, and this with (48) implies that
R,(x) = |J,(x)| almost everywhere on D, i.e.,

(49) | dew) =120 du@)

for every Y e L(D,).

Since X e L(D,) if and only if y(X) € L(D.), f(y) is Lebesgue measur-
able on D, if and only if f(y(x)) is on D,, and in this case f(y(x))J,(x)
is Lebesgue measurable on D,. Thus by the definition of integrals and
by (49), (45) is shown to be valid first for bounded nonnegative measur-
able f, and then, by the Lebesgue convergence theorem, for nonnega-
tive integrable f, and finally, by decomposing f into positive and
negative parts, for general integrable f.

DIRICHLET MAPPINGS

12. In the remainder of this paper we deduce an application of
the theorems given thus far. Especially the main inequality (26) in
Theorem 5 will play a crucial role.

Let D be an open set in E™(m = 2). We denote simply by W(D)
the Sobolev space WD), the space of real-valued functions @ on D
such that @ and their distribution derivatives [0p/0x ]y, (2 = 1, «--, m)
are square integrable functions on D. Since the (0p/0x’) (t=1, ---, m)
exist almost everywhere on D and are square integrable, we can
define the Dirichlet integral D(@) of @ by
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S (0P A »
(50) D) = g S —,(x)>dx codam
pi=1 \ogt
We also write D,(®) if it is necessary to indicate the dependence on
the integrating domain D. For Sobolev spaces, see e.g., Yosida [11].

13. Let y = y(x) be a homeomorphism of an open set D, onto
an open set D, in E™, of dimension m = 2.

DEFINITION. The homeomorphism y = y(x) is said to be a Diri-
chlet mapping of D, onto D, if o(y)e W(D,) is equivalent to
P(y(x)) € W(D,).

The notion of Dirichlet mapping was introduced in Nakai-Sario
[5], where the following additional requirement was imposed; there
exists a finite constant K = 1 such that

(51) K™'Dp(P) = Dp (Poy) = KD, ()

for every @ in W(D,). However it is known that (51) is a conse-
quence of the very definition of Dirichlet mapping (see Nakai [4]).

As is well-known the solution of the variational problem min D,(®)
among functions @ with a fixed boundary condition is harmonic.
Therefore W(D) is, in a sense, characteristic of the potential-theoretic
structure of D, and thus Dirichlet mappings may be viewed as mappings
which preserve, again in a sense, potential-theoretic structures of open
sets. In view of this it is important to characterize Dirichlet mappings
geometrically. For m = 2 it is known that a mapping is a Dirichlet
mapping if and only if it is quasiconformal (see Nakai [3] and Sario-
Nakai [8]). For quasiconformal mappings, see e.g., the monograph
of Kiinzi [2] and also Gehring [1], among others.

Our object is, in contrast, to characterize Dirichlet mappings
geometrically for m = 3. Hereafter we always assume that m = 3.

14. Let D be a region, i.e., connected open set in E™. For two
points @, and #,, we denote by [, ,] the line segment connecting x,
and x,:

[z, @] ={c|lc=ar, + 1 - @), 0 = x < 1}.

For two points #, and 2 in D, the Riemannian flat metric 0,(x,, )
is defined by

(52) Polwn, @) = inf 3} |2, — ;|

where the infimum is taken with respect to every finite sequence
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{x;}7-, such that z, = « and [z;,_,2,JcD (=1, +--,n). Clearly o,
is a metric on D, and, provided [z, ] = D, we have

(53) Op(%, ) = |, — x| .

DEFINITION. A homeomorphism 4 = y(x) of a region D, onto a
region D, in E™ is a quasi-isometry if there exists a finite constant
K =1 such that for any two points z, and z, in D,

(54) K™0p,(2, 22) = 05,(y(,), ¥(2:)) = Kop, (2, 22)

In view of (63) and (52), the condition (54) is equivalent to the
following:

(55) Ko — 2] = |y@) — y@) | = K|z, — 2]
for any two points x, and «, such that

{x||x_x1| élxz_xll}CDli

(56)
Wlily —y@)| = |y@) —y@)}cD;.

15. A complete geometric characterization of Dirichlet mappings

for m = 8 is given as follows:

THEOREM. A homeomorphism y = y(x) of a region D, onto a region
D, in E™(m = 3) is a Dirichlet mapping if and only if it is a quasi-
isometry of D, onto D;.

It is not difficult to generalize the concepts of Dirichlet mapping
and quasi-isometry and also the above theorem to the case where D,
and D, are Riemannian manifolds.

To prove the theorem we have a rather long way to go: 16-23.
An application of Theorem 5 will appear in 21, which is one of the
crucial steps in our proof.

16. First we suppose ¥y = y(x) is a quasi-isometry of D, onto D,,
and shall prove it is a Dirichlet mapping. A somewhat indirect
proof for this was already given in Nakai-Sario [5], but we furnish
here a more direct proof for the sake of completeness. Observe that

(57) lim ly(@ + k) — y(@) | <K,
S T

and by the Rademacher theorem mentioned in the introduction, (3)
and (5) are valid for the present y(x). In particular, (57) assures
the uniform boundedness of partial derivatives of the components of
y(x) in the essential supremum norm, and the same is true of the
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inverse x(y) of y(x).
Therefore there exists a finite constant K, = 1 such that

(58) KDy (P) < Dp (Poy) = KDy (P)
for every @ ¢ W(D,) N C=(D,). Here @oye W(D,) is obviously true.

17. We pause here to insert the following remark. Consider
the norms

1= [ ee | @ P dat e dom
1£ llop = es5-sup | /)|

for fe W(D). By the standard mollifier method (or the regularization
method (cf. e.g., Yosida [11; p. 29, 58]), see also 23 below), we can
see easily that W(D) N C=(D) is dense in W(D) with respect to the
combined norm

A Mo =1 lleo + (Do(S)

and also that W(D) N C=(D) is dense in W(D) N C(D) with respect
to the combined norm

1o =11 fllen + (Do(F)2.

Here, as usual, C= stands for infinitely continuously differentiable,
and C for continuous.

18. Fix an arbitrary @ € W(D,) and choose {®,} € W(D,) N C=(D,)
such that |||® — @,|||, tends to zero as n tends to infinity. Since
J,(®) is essentially bounded by K? say, we see that

H PuoY — ¢n+p°y HZ,DI § K2|| P — ¢n+p H2,D2

and by (58) we can find a constant K, such that

| Puot — Puiro¥ llln, = Killl Pu — Prtn Il

for every n,p=1,2, -... Since W(D,) is complete with respect to
[l « Il (cf. Yosida [11; p. 55]) and a suitable subsequence of {®,} con-
verges to @ almost everywhere on D, and y(x) is inverse-measurable,
we conclude that @oye W(D,). We remark in passing that (58) is
valid for the present @. Similarly ¢ W(D,) implies that oz e X(D,).
Thus we have seen that y(x) is a Dirichlet mapping.

19. The main part of the proof is to conclude that y = y(x) is
a quasi-isometry of D, onto D, under the assumption that y = y(z) is
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a Dirichlet mapping of D, onto D,. Needless to say the inverse
mapping & = 2(y) of D, onto D, of y = y(x) is also a Dirichlet mapping.

Take an arbitrary relatively compact region D] in D,. Let
@ e C=(D,) such that @ has a compact sopport in D, and ¢ |y(D;) = 1.
For each 7 =1, -+, m, 9(y)-y' € W(D,) and hence @(y(x))y'(x) € W(D,).
Since @(y(x))yi(x) = y'(x) for xe D], we conclude that y'(x) e W(D;)
(1=1, .-, m) for every relatively compact region D] in D,. The
same is true of 2'(y) 1 =1, +--, m).

Since the partial derivatives of the y‘(x) exist almost everywhere
and are measurable on D,,

m a 1 2
(59) M) = 35 (2L@)
i,J=1 s
is defined almost everywhere on D, and measurable. We shall first
prove that
(60) Mzx) >0
almost everywhere on D,.
For this purpose we consider the set

E={reD M) =0},

which is clearly measurable. Take arbitrary relatively compact open
sets U, and V, such that U,c V,c V,c D,, and set U, = y(U,) and
V.= y(V). Also choose an open set V. with V,c V/c V!c D,.
Since 2'(y)e W(V)yNnC(V)) (=1, ---, m), we can find sequences
{xi(y)} < W(V;) N C=(V,)) such that

(61) lim [ @i(+) — @) [}y, = 0 G=1, - m)

(cf. 17). Let he C=(D,) such that A|U,=1 and h|(D,— V,) = 0.
Set

) = 1) W), Py) = h(w) 3550 -

These functions can be considered to be in W(D,) N C=(D,). In view
of (61) we have

(62) lim Dy, (P — @,) = 0.

We also write u(x) = @(y(x)) and w,(x) = @,(y(®)). They are in
W(D,). Observe that if xe U, then wu(xr)= 3" 2" and u,(») =
~, @, (y(x)). Using (51) we infer
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Dy, _p(u — w,) = Dy, (u — u,) = Dp(Poy — Puoy)
= KDp,(P — Pu)
and by (62) we conclude that

(63) lim Dy _,(v — w,) = lim Dy (u — u,) = 0.

In particular

(63") Dy, g(u) = lim Dy,_x(u,), Dy (u) = lim Dy (u,) .
Since 2i(y)e C=(U,)) (1 =1, -+, m), we see that

”() s

i=

-, (Y ()

J

80_!

0

Il
Ms
Mz

o
il
-
&
1l

1

?/
for xe U, N E, i.e.,

5 (2%@) =0

=1\ ow?
for xe U, N E. Therefore
Dy, x(u,) = Dy, (u,)
and by (63) we conclude that
(64) Dy, _x(u) = Dy, (u) .

However for « in U,

Y () = a.ﬁ‘,xi:l
oxd i=1

390’

and (61) takes on the form

SUl_Em dp() = L m dp(@)

(y(x)) (w) =0 (=1, .-

) m)

Since this is true for every relatively compact open set U, in D,, we

must have y(E) = 0 and (60) is herewith established.

20. For each &= (¢, ---,&™) e E™ with |&| = 1 we consider

(65) Ne(w) = ( ) (w) £,

which is defined almost everywhere on D,. Fix an arbitrary point
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2,€ D, and an arbitrary positive number ¢ > 0. Let
V.= Ve(yo):{ylly"‘yo[<8}, yoz'y(xo)°

Choose the function A(y) € C(D,) characterized by & | V.=1, h|(D,— V..) =
0, and

My) =1 — (2™ — &™) (ly — ™" — &)

for ye V,, — V., i.e., b is the harmonic function on V,, — V. with
boundary values 1 at the interior boundary and 0 at the exterior
boundary. Consider

Py) = h(y) 2",
which is clearly in W(D,). By (51), we see that

D,y »(Poy) < Dy (Poy) = KDy (P) = KDy, (P)

and therefore

(66) |, M@du@ = K (| de) + Dr,s.9))
At each ye V,. — V., we have
5 (220 2005 (o) +

and an integration of both sides gives

Dy, () < 8- I'(L + m/2)~ T (m — 22" — D)en + 2.p(Vi, — 7)) .
Therefore, putting K, = K + 8(m — 2)(2™* — 1) + 22" — 1), we con-
clude that

(67 L M@due = Kuv) .

If we choose & = (6%, ---,6") (2 =1, ---, m) and add (67) with these
choices of & we obtain, on setting mK, = K;,

(68) S @) < (V) -

This is true for every V. = V.(x,) C D..

Let Y be an arbitrary set in D, with ¢#(Y) = 0. For each n =
1,2, ... we can find suitable balls V,; = V. (y.;) © D, such that
Yc Uz Veand 32, (V,) < 1/m. Let B,=Uz, V.. and B=7., B,.
Since x(B) = Ny, 2(B,) = Ni-, (U=, 2(V,:) is a Gs-set, x(B) is Lebesgue
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measurable and

PRCIZCERRICIZO
zg AM@)dp(o)
for each n =1,2, -+ . In view of (68)

IRCLICES S W UAES o

for every n =1,2, ---, and we conclude that S Mx)dp(x) = 0. By
(B

(60), we must have p(x(B)) =0. Since x(B)Dx(Y), we see that
wx(Y)) =0, ie.,, @ = x(y) is inverse-measurable. The same should
be true of ¥ = y(x) and we can consider the Radon-Nikodym density
R,(x) of y = y(x).

21. Take an arbitrary set Xe L(D,). Since y(X)e L(D,), we
can find balls V,; = V. (¥..) C D, such that y(X)c B, = Uz, V.; and

wB, —yX) =L, SV =B+ L.
n n

Set B=N3-, B,. Then p(B — y(X)) =0 and thus y(@(B) — X) = 0.
Therefore

| M) = | @i < | v
§§§ Ne@)dp(a)
for every n. An application of (67) to the right-hand terms gives
| M) < K 50V = K (1B, + L)
2
< K, (o) + 2).

On letting n — <o, we obtain

(69 | M@du@ < K. | R

for every Xe L(D,) and every £ E™ with [&]| = 1.
Now we are in a position to use (26) in Theorem 5: R, (x) < J,(%).
From (69) it follows that
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(70) RCZCEEANEACIEE)

for every Xe L(D,) and every e E™ with [&| =1. Let {&} be a
countable dense subset of {¢c E™||&| = 1}. Since (70) is true for
& = & and every X e L(D,), there exists a set F; C D, such that p(F;) =
0 and

(1) Aey(@) = K[ Jy(®)|  (weD, — F)).

Put F=Ug, F;cD,. Then p(F)=0 and (71) is true for each
xeD, — F and every 1 =1,2, +---., Since {§} is dense in |&| =1,
we finally conclude that

(72) Me(w) < K, |J,(2)|  (@eD, — F, ((F) = 0)

for every &e E™ with |&| = 1.
If we write

M, (x) = (g%) and E = (6%) ,

1 indicating the row and j the column, then (72) takes on the following
form in the matrix inequality:
§-M(x)-'M,(x)-"¢ < &-K,|J ()| E-* .

Since this is true for every &e E™, or rather, for every (1, m)-matrix,
we conclude that

My(x)'tMy(x) =K, in(iE) l E.

The relation is preserved if we take determinants of both sides, and
we obtain

[ J,(@) [P < K™ [ J() |
and a fortiori
(73) |J,(®) | = K,

almost everywhere on D,, where K, = K ™/=?_ At this point the
assumption m = 3 is made essential use of. The same argument can
be applied to J,(y) to yield

(74) [ J(y) | = K,

almost everywhere on D,.

22. Let D, and D, be arbitrary relatively compact regions such
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that D,c D} c D} © D,. Set D.=xz(D;) and D' =x(D;). Let he C=(D,)
such that the support of % is contained in D} and 2| D, = 1. Choose
{@.(v)} € W(Dy) N C=(Dy) with

(75) lim [Ja(-) — @) |lo) = (=1, .-+, m)

(cf. 17). Set ui(y) = «i(y)-h(y) and %'(y) = x'(y)-h(y); they can be
viewed as members of W(D,). From (75) and (51), we conclude that

[|ahoy — afoy|lp! < [|Uboy — woy ||p,

7 = |lun — w'{lp,—0 (n— e0)

for every ¢ =1, ---, m. By choosing a suitable subsequence, we may
assume that

0
ox’

0% ) O
) S

5, (y())

9 iy() = lim
ax’ n—roo
(77)

. m
= lim 3,
Nn—roo k=

almost everywhere on D]. We might also assume that dxi/oy* con-
verges to ox‘/0y* almost everywhere on Dj, and since y(x) is measur-
able (i.e., x(y) is inverse-measurable), we conclude by (77) that

(18) 3598y ay) L

— 5
£ 5y 57 D) =0

almost everywhere on D] and hence on D,. This means that
(79) Jy (@) J(y(®) =1

almost everywhere on D,. From (74), (79), and the fact that x(y) is
inverse-measurable, it follows that, by setting K, = K; 7,

(80) | Jy(@) | = K, < e

almost everywhere on D,. On combining this with (72) we see that

(81) l_a.gfi(x)' =K, (5,7 =1, «++, m)
ox’

almost everywhere on D,, with K, = K,-K,.

23. We are ready to prove (54), or equivalently (55). To this
end we fix two arbitrary points x, and x, satisfying (56). Set

B={ecE"||o —ua|<Z |2 — |} D,,

and let » > 0 be the distance, which may be «, between the boundary
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of D, and B.

Let 0,(x) = exp (|2 — 1)™) for |z] <1 and 6,(x) = 0 for |z| = 1;
it is in C=(E™). Choose ¢, > 0 so that the function 6,(x) = ¢,0,(nx)(= 0)
which is also in C=(E™) with its support in || < 1/n, satisfies

(82) | 0u@dn() = 1

for each n =1,2,---. We will consider only those » which meet
the condition 1/n < 7. Consider regularizations of y'(x):

v@ = | v = 90.0due)

1éls1/n

Y (€)0u(x — E)dp(E)

Six—-elélln

where @ is in the interior B of B. Then yi(x)eC=(B) (1 =1, +++, m;
m=1,2 ---) and

(83) lim [|3(+) = ¥'(-) |ls = 0 (G=1, -+, m)

(cf. Yosida [11; p. 29, 58]). Since the 0dy‘/ox’ (i, =1, ---, m) are
square integrable, integration by parts implies

Y () — oy’ _
Lew) = |, 3500 — 9 -

By (81) and (83), we conclude that

(84) g%'jf(x)’gxﬁ @eBii,j=1, - m).

The mean value theorem yields

g'ﬁ (@2 + ti(w, — @)

vi(®) — vi(@) = 35 (@f — ob)

for some ¢;€(0,1) and every 2 =1, ---, m. In view of (84), we have
| Ya(@) — va(@) [ = mEKS |2 — @ .
On letting » — <, we conclude in view of (83), that
(85) @) — ¥'(@) P = mES o, —wF (@=1, .-, m).
Adding (85) with respect to ¢ =1, ---, m, we finally obtain
ly(@) — y(@) | = K| 2, — 2],

with K; = mK;, for every x, and 2, in D, with (566). If we inter-
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change the roles of ¥y = y(x) and z = x(y), we also have
K e —a] = y) — y@) | = Kslo, — 22,

i.e., (55) and thus (54) is valid.
The proof of Theorem 15 is herewith complete.
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