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AN ALGEBRAIC PROPERTY OF THE TOTALLY

SYMMETRIC LOOPS ASSOCIATED WITH

KIRKMAN-STEINER TRIPLE SYSTEMS

A. HEDAYAT

The concept of an a>root of degree r in a loop of order
n is introduced. It is shown that the totally symmetric loop
of order n + 1 derived from any Kirkman-Steiner triple sys-
tem of order n admits a maximal identity-root. A statistical-
combinatorial application of this algebraic property is then
indicated. Finally, two open problems are also given.

A mathematical system consisting of an w-set Ω and a binary
operation * is said to form a loop of order n if the following axioms
are satisfied:

( 1 ) Ω contains an identity element e such that x*e = e*x = x

for every x in Ω.

( 2 ) Any two of the elements in the equation x * y = z uniquely

determine the third.

Since the notation x*y is too bulky we shall use, hereafter, the
notation xy instead. A loop is said to be a totally symmetric loop
if it also satisfies

( 3 ) xy — yx and x(xy) — y for all x and y in Ω.

In this paper, we shall introduce and study an algebraic property

of totally symmetric loops of order n == 3(mod 6). In the final part

of this paper we shall indicate, briefly, a statistical-combinatorial

application of this study. A few open questions are also stated.

We begin by introducing and reviewing certain concepts and

results that will be relevant to our forthcoming results.

DEFINITION 1. We say a loop £f of order n accepts a

orthogonal partition if the n2 cells in the Cayley table of J?f can be
divided into r mutually disjoint exhaustive sets £>„ S2,•••, Sr; in such
a way that (1) S< has kt cells from each row and each column, (2)
each element of ^ a p p e a r s k{ times in the cells of Si9
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( 3) kx • + k2 + + kr = n .

In particular a set St is called a transversal of «5f if &« = 1. If
two transversals have no cells in common, they are said to be parallel;
if they have exactly one cell in common, they are called orthogonal.

A set {tL, £2 , <U mutually orthogonal transversals of =5̂  is said
to be an α -root of degree r if these transversals are all sharing
a unique cell containing the element x. Clearly any x-τoot of
degree r occupies r(n — 1) + 1 cells of the Cayley table of a loop
of order n. An a -root of degree r in the Cayley table of a loop of
order n is said to be a maximal α -root if r = n - 2. The following
lemma justifies this terminology.

LEMMA 1. For any x-root of degree r in a loop of order n,
r <,n — 2.

Proof. Let the cell in the given α>root that contains the element
x occur in row i and column j . Then the remaining 2n — 2 cells of
row i and column j , together with the n — 1 other cells containing
the element x, cannot be in the #-root. Thus there remains only
n2 — Sn + 3 cells to accommodate the given #-root. However, as
pointed out before, this #-root must occupy r(n — 1) + 1 cells. Hence
r ^ n - 2.

DEFINITION 2. Let Σ be an n-set, n = 1, 3(mod 6). Then a
Steiner triple system of order n on Σ is a collection of n(n — l)/6
unordered triples (x, y, z) with a?, y, z in Σ, such that every pair of
distinct elements of Σ belongs to exactly one triple. A triple system
of order n = 3(mod 6) is said to be a Kirkman-Steiner triple system
of order n if it is a Steiner triple system with the following additional
stipulation: the set of triples can be partitioned into r — (n — l)/2
disjoint classes such that the totality of elements in each class exhaust
the set on which the system is defined.

While Reiss [9] has shown the sufficiency of n = 1, 3(mod 6) for
the existence of a Steiner triple system of order n, Ray-Chaudhuri and
Wilson [8] have proved the sufficiency of n = 3(mod 6) for the existence
of a Kirkman-Steiner triple system of order n.

The coextensiveness of totally symmetric loops of order n + 1
with Steiner triple systems of order n has been shown by Bruck [2]
who proved the following theorem:
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THEOREM 1. A totally symmetric loop of order n + 1 exists if
and only if there exists a Steiner triple system of order n.

For the sake of clarity of later arguments, we shall sketch a
proof of this theorem here.

Proof. Let A be a totally symmetric loop of order n + 1 and let
H = A — {e, the identity element in A}. Then the collection of all
unordered triples (x, y, z) with x, y, z in H, such that xy = z, forms
a Steiner triple system on H. Conversely, given a Steiner triple
system of order n on an w-set W, we can then form a totally sym-
metric loop of order n + 1 from these triples as follows: Define an
operation o on the set £f* = WU{e} by: (1) a°b = c if and only if
(α, δ, c) is in c^

p*, (2) eoa = aoe = a, and (3) a2 = e2 = e for all a in
«Sf *. Then £f* together with the binary operation o forms a totally
symmetric loop of order n + 1.

Let 2* be an n-set, n =Ξ 3(mod 6) and let JίΓ be a Kirkman-Steiner
triple system on Σ. Let also £f* be the totally symmetric loop of
order n + 1 derived from 3ίΓ. Denote the identity element in J?P*
by e Partition £f* into r = (n — l)/2 disjoint classes Ci9i= 1, 2, , r
as described in Definition 2. Then we have the following lemma.

LEMMA 2. d determines an e-root of degree 2 in the Cayley table
of £f*.

Proof. Denote an arbitrary triple in C< by

(aiJtbii,σiJ)J = l ,2 , . , n / 3 .

Identify three cells in the Cayley table of £f* by the 2-tuples (aij9 biS),
(hj, ciS) and (Cij, aid)9 the components of each 2-tuple being the row
and column indicies respectively. Now let j run through all the n/3
triples in C{. Then the corresponding 3 x n/S = n cells determined
by the preceding rule, together with the cell corresponding to row
and column indices (e, e), form a transversal for £f*. Denote this
transversal by th. Another transversal ti2 is obtained by considering
the cell (e, e) and the three cells in the Cayley table described by the
2-tuples (bij, atj), (cij9 bi3) and (aiif ci9), where we let j run through the
values 1, 2, , n/Z. These exhibition rules clearly guarantee that
th is orthogonal to ti2 and that the point of intersection is the cell
(e, e).

We shall now prove the following:
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THEOREM 2. The totally symmetric loop S^* derived from any
Kirkman-Steiner triple system contains a maximal identity-root.

Proof. By Lemma 2 every class in the given Kirkman-Steiner
triple system determines an e-root of degree 2 in the Cayley table of
Jέf*, where e is the identity in Sf*. The method of exhibition in
the lemma together with the fact that every pair or distinct elements
in the triple system appears exactly once reveals that the transversal
tik(k = 1, 2) is orthogonal to t'ik(k = 1, 2) if i Φ V with cell (e, e) as
the intersection point. Since there are (n — l)/2 classes, we have
2(n — l)/2 = n — 1 pairwise orthogonal transversals sharing the cell
(e, β), i.e., an identity-root of degree n — 1. Since the order of Jϊf*
is n + 1, the proof is complete.

As an immediate application we have

COROLLARY. Every totally symmetric loop of order n + 1 derived
from a Kirkman-Steiner triple system of order n implies the existence
of a set consisting of at least a pair of mutually orthogonal Latin
squares of order n.

A proof of this corollary, together with some additional results,
will be given in another paper. However, we should remark that, in
particular, for n = 15, the corresponding pair of orthogonal Latin
squares can be embedded in a set of three mutually orthogonal Latin
squares of order 15, thus disproving MacNeish's [5] conjecture for
order 15.

Before finishing, let us mention a few open problems.
(1) Prove or disprove that the totally symmetric loop of order

n + 1 derived from any arbitrary Steiner triple system of order n
admits a maximal a -root.

(2) Characterize those loops whose Cayley tables admit a (1,
1, •••, 1) orthogonal partition.
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