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ON THE SPECTRAL RADIUS FORMULA IN
BANACH ALGEBRAS

JAN-ERIK BJORK

B will always denote a commutative semi-simple Banach
algebra with a unit element. If fe B then r(/) denotes its
spectral radius. A sequence F = ( / , )Γ is called a spectral
null sequence if \\fj\\ ^ 1 for each j , while limy-*,r(fj) = 0.
If F=(fj) is a spectral null sequence we put TN(F) —
limsupj-c \\ff \\ιlN for each N S 1. Finally we define the
complex number TN(B) — sup {r^CF): F is a spectral null
sequence in B). In general rχ(B) = 1 for all N ^ 1 and the
aim of this paper is to study the case when TN(B) < 1 for
some N.

We say that 5 satisfies a bounded inverse formula if there exists
some 0 < ε < 1 and a constant Ko such that for all f in B satisfying
| | / | | ^ 1 and r(f) ^ ε, it follows that || (e - f)~ι \\ S Ko. In Theorem
3.1. we prove that B satisfies a bounded inverse formula if and only
if rN{B) < 1 for some N.

In § 1 we give a criterion which implies that B is a sup-norm
algebra. In §2 we introduce the so called infinite product of B
which will enable us to study spectral null sequences in § 3.

1* Sup-norm algebras. Recall that B is a sup-norm algebra if
there exists a constant K such that \\f\\ <£ Kr{f) for all / in B.
Clearly this happens if and only if r^B) = 0. Next we give an example
where r^B) = 1 while r2(B) = 0.

Let B = C^O, 1] be the algebra of all continuously differentiate
functions on the closed unit interval. If feB we put | | / | | =
sup {|/(α;) I + \f\y) |: 0 ^ x, y £ 1}. The maximal ideal space MB can
be identified with [0, 1], so the spectral radius formula shows that
r(f) = sup {\f(x) |: 0 g x <; 1}. From this we easily deduce that rz(B) =
0. In fact we also notice that \\fn\\ ^ n\\f \\(r(f))n~ι holds for all
n ^ 2. We will now prove that this estimate is sharp.

THEOREM 1.1. Let the norm in B satisfy \\fn\\ ^ qn

for some q < 1 αwrf some w ^ 2. Then B is a sup-norm algebra and

there is a constant K(n, q) such that \\f\\ ^ K(n, q)r(f) for all feB.

LEMMA 1.2. Let n^Z and suppose that \\fn || ^ K\\f\\r{f)n~ι

for all f in B and some constant K. Then there is a constant K(n)

such that | | f21| ^ K{n)K\\f\\r{f).
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Proof. Notice that all the inequalities above are homogeneous.
Hence it is sufficient to consider the case when | | / | | = 1. If now
r(f) = ε, then we must prove that | | / 2 1 | < K(ri)Ke for some K(ri).

Under the hypothesis, we note that

II (kε + f)n\\^K\\kε + / ||(ε + As)-1 ^ JKe-^l + n)*

for all 0 ^ k ^ n.
Now consider the inhomogeneous system of equations

Σ ( n )(ke)n~jfj = (kε + f)n , 0 ^ k ^ n ,
i=o V ^ /

which we wish to solve for the f°\ The determinant of the system
is εε2 εnKQ(ri), and the determinants of the minors can be expressed
similarly. Using Cramer's rule to solve this system for / 2, we obtain
the estimate | | / 2 1 | ^ K(ri)Kε, as required.

Proof of Theorem 1.1. Firstly we choose ε > 0 so small that
I — εn > 2nεn + #. Next we introduce the power series φ(z) = ε +
aγz + α2z

2 + , which satisfies (Φ(z))n — ε% + z for all |2 ] < en. Notice
that na^'1 = 1 holds. If 0 < x < ε% we put

Av(x) = xv(\ avn I + . + I c w ^ I) .

Then it is clear that the sum U(x) = Ax(x) + A2(x) + is finite,
while lim U(x) = 0 as x —> 0.

Note that from Lemma 1.2. there is a constant if(w) such that
Il/Ίi ^ K(n)r(f) for all 2 ^ & ^ ^ - 1 and all / in B satisfying
| | / | | ^ 1 . It follows that there is a constant K(n, ε) such that
II a2f

2 + + α ^ / - 1 1 | ^ iΓ(w, ε)r(/) for all / satisfying | | / | | ^ 1.
Now we choose δ > 0 so small that nδ^1 < εn and U{nδn~ι) +

iί(^, ε)δ < ε holds.
Suppose now that B is not a sup-norm algebra. Then we can

choose / i n 5 such that | | / | | = 1 while r(f) < δ. The assumption
shows that || fn \\ ̂  qnδn~ι ^ ^ δ ^ 1 ̂  ε%. Hence \\fvn+k \\ ̂  || fn \\v \\fk \\ ^
(nδn~ι)v -> for all v ^ 1 and all k = 0 (w - 1). It follows that we
can define the element g = ψ(f) = ε + aγf + α2/2 + in B.

We get || g \\ ̂  ε + | a, | + || α2/2 + + α ^ J -
2ε + I αL |. We also have r(g) £ (r(εn + /)) 1 / % ^ (ε% +

It follows that 1 - εn ^ || εn + / | | = \\ gn \\ ^

Clearly Z(δ) tends to 2qnεn + g as <5 -^ 0. The original choice of
ε shows that 1 — εn <; Z(δ) cannot hold for sufficiently small values
of δ. This proves that B must be a sup-norm algebra and the proof
gives a lower bound for δ, once we have fixed ε.
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2* T h e infinite product of a Banach algebra* Firstly we
introduce the infinite product.

DEFINITION 2.1. Put I L = {(/, )Γ: (/?) is a sequence in B such
that supy ||/y || < oo while lim^oo r(wβ — /,-) = 0 for some w e C1}.

Clearly B^ is a Banach algebra if to each F = (/,) we define
\\F\\= supyll/,11. If F = (Λ) and if iSΓ^ 1, then we put πN{F) -
(gj), where #,- = 0 for j ^ N and #, = /,• for j > N.

A complex-valued homomorphism H on 1?̂  is free if H(F) =
H{πN{F)) for all J V ^ l and each F e S ^ . The part at infinity in
MBoo consists of the points determined by free homomorphisms. We
denote this set by ΛL.

To each N ^ 1 we have an idempotent eN in !}„, whose iVth
component is e while all the other components are zero. The set
AN = {xe MBj. eN(x) = 1} is a clopen (closed and open) subset of MBoo.
We can identify ΔN with MB. For if xe MB we get a point TN(x) in
AN satisfying F(TN{x)) = fN{x) for all F = (/,•). It is easily seen that
TN is a homeomorphism from MB onto zί^.

If we put Δ ~ \J ΔN: N^ 1, then it is easily seen that A =
MBo\Moo. Here z/ is open and hence ikL is closed. The set Λf«,
contains a distinguished point moo, determined by the complex-valued
homomorphism which sends F — (f3) into the complex number w
satisfying limŷ oo r(we — f5) = 0.

With the notations above the following result is evident.

LEMMA 2.2. Let V be an open neighborhood of m^ in MBoo.
Then there is an integer N such that Δό c V for all j > N.

LEMMA 2.3. Let bΔ be the topological boundary of Δ in MBco.
Then bΔ = {mM},

Proof. Lemma 2.2. means that the clopen sets ΔN converge to
{moo}. Then it is a trivial topαlogical fact that m^ is the only
boundary point of Δ.

The result below was motivated by Theorem 2 in [2].

THEOREM 2.4. The set ikL is a closed and connected subset
of M^.

Proof. We already know that M*> is closed. Suppose next that
S and T are disjoint closed subsets whose union is ikL, such that
moo G S. Then Lemma 2.3. implies that S U Δ is clopen in MBoo. By
Shilov's idempotent Theorem there is EeB^ such that E = 0 on
S U Δ while E = 1 on T. In particular E = 0 on each z/y, which
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implies that the jth component is zero. Since this holds for all j
we conclude that E = 0, and T is empty. Hence ikL is connected.

The next result gives a useful characterization of ikL. This
result is due to the referee.

THEOREM 2.5. Let I be the closed ideal of all F in B^ for which
lim 11 7ΓN(F) || = 0 as N —* co. Then M^ is the maximal ideal space
of BJL

Proof. A point m in MBoo induces a complex-valued homo-
morphism on B^/I if and only if F(m) — 0 for all F e I. Clearly
each idempotent eN belongs to /. This proves that if m annihilates
7, then m must belong to M^. Conversely, if m e 1L then F(m) =
πN(F)A(m) for all N^l. Hence | F(m) | ^ limΛ,_ || πN(F) 11 ===== 0 follows
if F e I. This proves that every point in JfcL annihilates I.

If F = (/,•) is in B^ we put τN(F) = lim s u p ^ \\ff \\1IN for each
N ^ 1. Let us also put | F U = sup {| F{m) \:me ikL}. With these
notations the following result is a direct consequence of Theorem 2.5.

PROPOSITION 2.6. 1/ F e ^ , then \F\OO = limN^ rN(F).

3* Spectral n u l l sequences*

THEOREM 3.1. The following conditions on B are equivalent:

(a) rN{B) < 1 for some N ^ 1.
(b) B satisfies a bounded inverse formula.
(c) There is a constant Kq such that if feB satisfies \\f\\ ^ 1

and r(f) = ? < 1, then \\{e~ f ) ~ ι \\ £ Kq(l - q)~\

Proof. Since (c) —> (b) we only prove that (a)—>(b) and (b) —>(a).
Firstly we assume that rN{B) < 1 for some N ^ 1. Then we get
some ε > 0 and a < 1 such that \\ fN \\ ̂  αΛT for all / satisfying
Il/H ^ 1 and r(f) ^ ε.

Let then | | / | | ^ 1 while ?Λ(/) fg g < 1. Let s be the positive
integer satisfying gs < ε ^ qs~\ It follows that || fNs || α^ and hence
|| //ίΛTs || ^ α&" for all k ^ 1. Using this fact we see that if R =
Σ /'": i ^ siV, then || R \\ £ sNaN(l ~ aN)~\

We have (β - f)"1 = β + / + + Z ^ " 1 + i? Since | | / | | ^ 1 we
get || (e - Z)-11| ^ siV + \\R\\ ^ i^os. Finally ε ^ g5-1 which implies
that s ^ 1^(1 - g)"1. Hence (c) follows with Kq = K,K,.

Now we assume that (b) holds in B. Suppose that rN(B) — 1
for all N. To each j >̂ 1 we can choose /^ such that \\fj\\ = 1 and
r(Λ) < (j + I)" 1, while | |// | p > 1 - 1/j.

Let us consider F = (/,-) in β^. Since l i m ^ || 2^ ||1/J" = 1, it
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follows that there is some weC1 satisfying | w \ = 1 while we — F
is not invertible in B^.

Consider the elements g3- = (e — fj/w)"1 which exist for all j ^ l
Clearly (b) implies that || g3- || ^ K for some fixed constant K. Since
lim^oo r(f3) — 0 it follows that the element (? = (^ ) exists in Be
Now (we — F)Gw"1 = e in Boo which shows that we — F is invertible,
a contradiction. Hence r^B) < 1 must hold for some JV.

Let us observe that a spectral null sequence F = (f3) simply is
an element of jR* for which || F\\ ^ 1 and F(m^) = 0. The following
result is a direct consequence of Proposition 2.6.

THEOREM 3.2. The following two conditions on B are equivalent:
(a) lim rN(B) = 0 as N —• °°.

(b) AL - {m4.

Finally we study spectral null sequences satisfying polynomial
conditions.

THEOREM 3.3. Let p be a polynomial of the form zs (1 + a^z +
••• + atz*), with s > 1. Then there exist constants K and c with
the following property: If feB satisfies \\f\\ ̂  1, || p(f) \\ <; ε and
r(f) ^ ε, where ε <; c, £/&ew | | / s || ^ -Ke.

Proo/. For each ε > 0 we put S(ε) = {feB:\\f\\^ 1, || p(f) || ^
ε and r(/) ̂  e} Suppose the constants c and K do not exist. Then
there is a decreasing sequence (εy), with lim^^ ε,- = 0, while S(εy)
contains an element fd for which | | // || > iε, .

We may assume that 1 > | a, \ e, + + | at |ε{ holds. This im-
plies that the elements % = e + c /̂? + + atf] are invertible in B.

Now p(Λ) = flu, and hence iε, < | |// || ^ || p{f3) \\ || U711| ^
εy II ̂ 7X ll This means that || uj1 \\ > j for all j , so the element G —
(Uj) is not invertible in B^.

Now we obtain a contradiction by proving that G must
be invertible in JS^. Since lim^^ 11 p{f3) 11 = 0 it follows that
lim II p(πN(G)) \\ = 0 as iV—>°o. Then Proposition 2.6. shows that
2>(G) must vanish on M^

Hence the set G(MOo) is contained in the finite set of zeros of p.
Using Theorem 2.4. we see that G{M^) is connected. It follows that
G(Moo) = {G(m^)}. Clearly G(mM) = 1 holds and hence G does not
vanish on M^. The choice of ε : shows that G Φ 0 on Δ too. This
proves that G is invertible in B* which gives the desired contra-
diction.

Finally we raise some problems. We do not know if the con-
dition that rN{B) < 1 for some N > 2 implies that r2(B) < 1. We
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also ask if the condition that rN(B) < 1 for some N ^ 2 implies that
lim?v(i?) = 0 as J—> °o.
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