ON THE SPECTRAL RADIUS FORMULA IN BANACH ALGEBRAS

Jan-Erik Björk

Abstract

B will always denote a commutative semi-simple Banach algebra with a unit element. If $f \in B$ then $r(f)$ denotes its spectral radius. A sequence $F=\left(f_{j}\right)_{1}^{\infty}$ is called a spectral null sequence if $\left\|f_{j}\right\| \leqq 1$ for each j, while $\lim _{j \rightarrow \infty} r\left(f_{j}\right)=0$. If $F=\left(f_{j}\right)$ is a spectral null sequence we put $r_{N}(F)=$ $\lim \sup _{j \rightarrow \infty}\left\|f_{j}^{N}\right\|^{1 / N}$ for each $N \geqq 1$. Finally we define the complex number $r_{N}(B)=\sup \left\{r_{N}(F)\right.$: F is a spectral null sequence in $B\}$. In general $r_{N}(B)=1$ for all $N \geqq 1$ and the aim of this paper is to study the case when $r_{N}(B)<1$ for some N.

We say that B satisfies a bounded inverse formula if there exists some $0<\varepsilon<1$ and a constant K_{0} such that for all f in B satisfying $\|f\| \leqq 1$ and $r(f) \leqq \varepsilon$, it follows that $\left\|(e-f)^{-1}\right\| \leqq K_{0}$. In Theorem 3.1. we prove that B satisfies a bounded inverse formula if and only if $r_{N}(B)<1$ for some N.

In $\S 1$ we give a criterion which implies that B is a sup-norm algebra. In $\S 2$ we introduce the so called infinite product of B which will enable us to study spectral null sequences in $\S 3$.

1. Sup-norm algebras. Recall that B is a sup-norm algebra if there exists a constant K such that $\|f\| \leqq K r(f)$ for all f in B. Clearly this happens if and only if $r_{1}(B)=0$. Next we give an example where $r_{1}(B)=1$ while $r_{2}(B)=0$.

Let $B=C^{1}[0,1]$ be the algebra of all continuously differentiable functions on the closed unit interval. If $f \in B$ we put $\|f\|=$ $\sup \left\{|f(x)|+\left|f^{\prime}(y)\right|: 0 \leqq x, y \leqq 1\right\}$. The maximal ideal space M_{B} can be identified with $[0,1]$, so the spectral radius formula shows that $r(f)=\sup \{|f(x)|: 0 \leqq x \leqq 1\}$. From this we easily deduce that $r_{2}(B)=$ 0 . In fact we also notice that $\left\|f^{n}\right\| \leqq n\|f\|(r(f))^{n-1}$ holds for all $n \geqq 2$. We will now prove that this estimate is sharp.

Theorem 1.1. Let the norm in B satisfy $\left\|f^{n}\right\| \leqq q n\|f\| r(f)^{n-1}$ for some $q<1$ and some $n \geqq 2$. Then B is a sup-norm algebra and there is a constant $K(n, q)$ such that $\|f\| \leqq K(n, q) r(f)$ for all $f \in B$.

Lemma 1.2. Let $n \geqq 3$ and suppose that $\left\|f^{n}\right\| \leqq K\|f\| r(f)^{n-1}$ for all f in B and some constant K. Then there is a constant $K(n)$ such that $\left\|f^{2}\right\| \leqq K(n) K\|f\| r(f)$.

Proof. Notice that all the inequalities above are homogeneous. Hence it is sufficient to consider the case when $\|f\|=1$. If now $r(f)=\varepsilon$, then we must prove that $\left\|f^{2}\right\|<K(n) K \varepsilon$ for some $K(n)$.

Under the hypothesis, we note that

$$
\left\|(k \varepsilon+f)^{n}\right\| \leqq K\|k \varepsilon+f\|(\varepsilon+k \varepsilon)^{n-1} \leqq K \varepsilon^{n-1}(1+n)^{n}
$$

for all $0 \leqq k \leqq n$.
Now consider the inhomogeneous system of equations

$$
\sum_{j=0}^{n}\binom{n}{j}(k \varepsilon)^{n-j} f^{j}=(k \varepsilon+f)^{n}, \quad 0 \leqq k \leqq n,
$$

which we wish to solve for the f^{j}. The determinant of the system is $\varepsilon \varepsilon^{2} \cdots \varepsilon^{n} K_{0}(n)$, and the determinants of the minors can be expressed similarly. Using Cramer's rule to solve this system for f^{2}, we obtain the estimate $\left\|f^{2}\right\| \leqq K(n) K \varepsilon$, as required.

Proof of Theorem 1.1. Firstly we choose $\varepsilon>0$ so small that $1-\varepsilon^{n}>2 n \varepsilon^{n}+q$. Next we introduce the power series $\phi(z)=\varepsilon+$ $a_{1} z+a_{2} z^{2}+\cdots$, which satisfies $(\phi(z))^{n}=\varepsilon^{n}+z$ for all $|z|<\varepsilon^{n}$. Notice that $n a_{1} \varepsilon^{n-1}=1$ holds. If $0<x<\varepsilon^{n}$ we put

$$
A_{v}(x)=x^{v}\left(\left|a_{v n}\right|+\cdots+\left|a_{v n+n-1}\right|\right) .
$$

Then it is clear that the sum $U(x)=A_{1}(x)+A_{2}(x)+\cdots$ is finite, while $\lim U(x)=0$ as $x \rightarrow 0$.

Note that from Lemma 1.2. there is a constant $K(n)$ such that $\left\|f^{k}\right\| \leqq K(n) r(f)$ for all $2 \leqq k \leqq n-1$ and all f in B satisfying $\|f\| \leqq 1$. It follows that there is a constant $K(n, \varepsilon)$ such that $\left\|a_{2} f^{2}+\cdots+a_{n-1} f^{n-1}\right\| \leqq K(n, \varepsilon) r(f)$ for all f satisfying $\|f\| \leqq 1$.

Now we choose $\delta>0$ so small that $n \delta^{n-1}<\varepsilon^{n}$ and $U\left(n \delta^{n-1}\right)+$ $K(n, \varepsilon) \delta<\varepsilon$ holds.

Suppose now that B is not a sup-norm algebra. Then we can choose f in B such that $\|f\|=1$ while $r(f)<\delta$. The assumption shows that $\left\|f^{n}\right\| \leqq q n \delta^{n-1} \leqq n \delta^{n-1} \leqq \varepsilon^{n}$. Hence $\left\|f^{v n+k}\right\| \leqq\left\|f^{n}\right\|^{v}\left\|f^{k}\right\| \leqq$ $\left(n \delta^{n-1}\right)^{v} \rightarrow$ for all $v \geqq 1$ and all $k=0 \cdots(n-1)$. It follows that we can define the element $g=\phi(f)=\varepsilon+a_{1} f+a_{2} f^{2}+\cdots$ in B.

We get $\|g\| \leqq \varepsilon+\left|a_{1}\right|+\left\|a_{2} f^{2}+\cdots+a_{n-1} f^{n-1}\right\|+U\left(n \delta^{n-1}\right) \leqq$ $2 \varepsilon+\left|a_{1}\right|$. We also have $r(g) \leqq\left(r\left(\varepsilon^{n}+f\right)\right)^{1 / n} \leqq\left(\varepsilon^{n}+\delta\right)^{1 / n}$.

It follows that $1-\varepsilon^{n} \leqq\left\|\varepsilon^{n}+f\right\|=\left\|g^{n}\right\| \leqq q n\|g\| r(g)^{n-1} \leqq$ $q n\left(2 \varepsilon+\left(n \varepsilon^{n-1}\right)^{-1}\right)\left(\varepsilon^{n}+\delta\right)^{1-1 / n}=Z(\delta)$.

Clearly $Z(\delta)$ tends to $2 q n \varepsilon^{n}+q$ as $\delta \rightarrow 0$. The original choice of ε shows that $1-\varepsilon^{n} \leqq Z(\delta)$ cannot hold for sufficiently small values of δ. This proves that B must be a sup-norm algebra and the proof gives a lower bound for δ, once we have fixed ε.
2. The infinite product of a Banach algebra. Firstly we introduce the infinite product.

Definition 2.1. Put $B_{\infty}=\left\{\left(f_{j}\right)_{1}^{\infty}:\left(f_{j}\right)\right.$ is a sequence in B such that $\sup _{j}\left\|f_{j}\right\|<\infty$ while $\lim _{j \rightarrow \infty} r\left(w e-f_{j}\right)=0$ for some $\left.w \in C^{1}\right\}$.

Clearly B_{∞} is a Banach algebra if to each $F=\left(f_{j}\right)$ we define $\|F\|=\sup _{j}\left\|f_{j}\right\|$. If $F=\left(f_{j}\right)$ and if $N \geqq 1$, then we put $\pi_{N}(F)=$ $\left(g_{j}\right)$, where $g_{j}=0$ for $j \leqq N$ and $g_{j}=f_{j}$ for $j>N$.

A complex-valued homomorphism H on B_{∞} is free if $H(F)=$ $H\left(\pi_{N}(F)\right)$ for all $N \geqq 1$ and each $F \in B_{\infty}$. The part at infinity in $M_{B_{\infty}}$ consists of the points determined by free homomorphisms. We denote this set by M_{∞}.

To each $N \geqq 1$ we have an idempotent e_{N} in B_{∞}, whose N th component is e while all the other components are zero. The set $\Delta_{N}=\left\{x \in M_{B_{\infty}}: \hat{e}_{N}(x)=1\right\}$ is a clopen (closed and open) subset of $M_{B_{\infty}}$. We can identify Δ_{N} with M_{B}. For if $x \in M_{B}$ we get a point $T_{N}(x)$ in Δ_{N} satisfying $\hat{F}\left(T_{N}(x)\right)=\hat{f}_{N}(x)$ for all $F=\left(f_{j}\right)$. It is easily seen that T_{N} is a homeomorphism from M_{B} onto Δ_{N}.

If we put $\Delta=\bigcup \Delta_{N}: N \geqq 1$, then it is easily seen that $\Delta=$ $M_{B_{\infty}} \backslash M_{\infty}$. Here Δ is open and hence M_{∞} is closed. The set M_{∞} contains a distinguished point m_{∞}, determined by the complex-valued homomorphism which sends $F=\left(f_{j}\right)$ into the complex number w satisfying $\lim _{j \rightarrow \infty} r\left(w e-f_{j}\right)=0$.

With the notations above the following result is evident.
Lemma 2.2. Let V be an open neighborhood of m_{∞} in $M_{B_{\infty}}$. Then there is an integer N such that $\Delta_{j} \subset V$ for all $j>N$.

Lemma 2.3. Let ba be the topological boundary of Δ in $M_{B_{\infty}}$. Then $b \Delta=\left\{m_{\infty}\right\}$.

Proof. Lemma 2.2. means that the clopen sets Δ_{N} converge to $\left\{m_{\infty}\right\}$. Then it is a trivial topological fact that m_{∞} is the only boundary point of Δ.

The result below was motivated by Theorem 2 in [2].
Theorem 2.4. The set M_{∞} is a closed and connected subset of $M_{B_{\infty}}$.

Proof. We already know that M_{∞} is closed. Suppose next that S and T are disjoint closed subsets whose union is M_{∞}, such that $m_{\infty} \in S$. Then Lemma 2.3. implies that $S \cup \Delta$ is clopen in $M_{B_{\infty}}$. By Shilov's idempotent Theorem there is $E \in B_{\infty}$ such that $\widehat{E}=0$ on $S \cup \Delta$ while $\hat{E}=1$ on T. In particular $\hat{E}=0$ on each Δ_{j}, which
implies that the j th component is zero. Since this holds for all j we conclude that $E=0$, and T is empty. Hence M_{∞} is connected.

The next result gives a useful characterization of M_{∞}. This result is due to the referee.

ThEOREM 2.5. Let I be the closed ideal of all F in B_{∞} for which $\lim \left\|\pi_{N}(F)\right\|=0$ as $N \rightarrow \infty$. Then M_{∞} is the maximal ideal space of B_{∞} / I.

Proof. A point m in $M_{B_{\infty}}$ induces a complex-valued homomorphism on B_{∞} / I if and only if $\hat{F}(m)=0$ for all $F \in I$. Clearly each idempotent e_{N} belongs to I. This proves that if m annihilates I, then m must belong to M_{∞}. Conversely, if $m \in M_{\infty}$ then $\hat{F}(m)=$ $\pi_{N}(F)^{\wedge}(m)$ for all $N \geqq$. Hence $|\hat{F}(m)| \leqq \lim _{N \rightarrow \infty}\left\|\pi_{N}(F)\right\|=0$ follows if $F \in I$. This proves that every point in M_{∞} annihilates I.

If $F=\left(f_{j}\right)$ is in B_{∞} we put $r_{N}(F)=\lim \sup _{j \rightarrow \infty}\left\|f_{j}^{N}\right\|^{1 / N}$ for each $N \geqq 1$. Let us also put $|F|_{\infty}=\sup \left\{|\hat{F}(m)|: m \in M_{\infty}\right\}$. With these notations the following result is a direct consequence of Theorem 2.5.

Proposition 2.6. If $F \in B_{\infty}$, then $|F|_{\infty}=\lim _{N \rightarrow \infty} r_{N}(F)$.

3. Spectral null sequences.

Theorem 3.1. The following conditions on B are equivalent:
(a) $\quad r_{N}(B)<1$ for some $N \geqq 1$.
(b) B satisfies a bounded inverse formula.
(c) There is a constant K_{q} such that if $f \in B$ satisfies $\|f\| \leqq 1$ and $r(f)=q<1$, then $\left\|(e-f)^{-1}\right\| \leqq K_{q}(1-q)^{-1}$.

Proof. Since (c) \rightarrow (b) we only prove that $(a) \rightarrow(b)$ and (b) \rightarrow (a). Firstly we assume that $r_{N}(B)<1$ for some $N \geqq 1$. Then we get some $\varepsilon>0$ and $a<1$ such that $\left\|f^{N}\right\| \leqq a^{N}$ for all f satisfying $\|f\| \leqq 1$ and $r(f) \leqq \varepsilon$.

Let then $\|f\| \leqq 1$ while $r(f) \leqq q<1$. Let s be the positive integer satisfying $q^{s}<\varepsilon \leqq q^{s-1}$. It follows that $\left\|f^{N s}\right\| a^{N}$ and hence $\left\|f^{k N s}\right\| \leqq a^{k N}$ for all $k \geqq 1$. Using this fact we see that if $R=$ $\sum f^{j}: j \geqq s N$, then $\|R\| \leqq s N a^{N}\left(1-a^{N}\right)^{-1}$.

We have $(e-f)^{-1}=e+f+\cdots+f^{N_{s-1}}+R$. Since $\|f\| \leqq 1$ we get $\left\|(e-f)^{-1}\right\| \leqq s N+\|R\| \leqq K_{0} s$. Finally $\varepsilon \leqq q^{s-1}$ which implies that $s \leqq K_{1}(1-q)^{-1}$. Hence (c) follows with $K_{q}=K_{0} K_{1}$.

Now we assume that (b) holds in B. Suppose that $r_{N}(B)=1$ for all N. To each $j \geqq 1$ we can choose f_{j} such that $\left\|f_{j}\right\|=1$ and $r\left(f_{j}\right)<(j+1)^{-1}$, while $\left\|f_{j}^{j}\right\|^{1 / j}>1-1 / j$.

Let us consider $F=\left(f_{j}\right)$ in B_{∞}. Since $\lim _{j \rightarrow \infty}\left\|F^{j}\right\|^{1 / j}=1$, it
follows that there is some $w \in C^{1}$ satisfying $|w|=1$ while $w e-F$ is not invertible in B_{∞}.

Consider the elements $g_{j}=\left(e-f_{j} / w\right)^{-1}$ which exist for all $j \geqq 1$. Clearly (b) implies that $\left\|g_{j}\right\| \leqq K$ for some fixed constant K. Since $\lim _{j \rightarrow \infty} r\left(f_{j}\right)=0$ it follows that the element $G=\left(g_{j}\right)$ exists in B_{∞}. Now ($w e-F) G w^{-1}=e$ in B_{∞} which shows that $w e-F$ is invertible, a contradiction. Hence $r_{N}(B)<1$ must hold for some N.

Let us observe that a spectral null sequence $F=\left(f_{j}\right)$ simply is an element of B_{∞} for which $\|F\| \leqq 1$ and $\hat{F}\left(m_{\infty}\right)=0$. The following result is a direct consequence of Proposition 2.6.

Theorem 3.2. The following two conditions on B are equivalent:
(a) $\lim r_{N}(B)=0$ as $N \rightarrow \infty$.
(b) $M_{\infty}=\left\{m_{\infty}\right\}$.

Finally we study spectral null sequences satisfying polynomial conditions.

Theorem 3.3. Let p be a polynomial of the form $z^{s}\left(1+a_{1} z+\right.$ $\left.\cdots+a_{t} z^{t}\right)$, with $s>1$. Then there exist constants K and c with the following property: If $f \in B$ satisfies $\|f\| \leqq 1,\|p(f)\| \leqq \varepsilon$ and $r(f) \leqq \varepsilon$, where $\varepsilon \leqq c$, then $\left\|f^{s}\right\| \leqq K \varepsilon$.

Proof. For each $\varepsilon>0$ we put $S(\varepsilon)=\{f \in B:\|f\| \leqq 1,\|p(f)\| \leqq$ ε and $r(f) \leqq \varepsilon\}$. Suppose the constants c and K do not exist. Then there is a decreasing sequence $\left(\varepsilon_{j}\right)$, with $\lim _{j \rightarrow \infty} \varepsilon_{j}=0$, while $S\left(\varepsilon_{j}\right)$ contains an element f_{j} for which $\left\|f_{j}^{s}\right\|>j \varepsilon_{j}$.

We may assume that $1>\left|a_{1}\right| \varepsilon_{1}+\cdots+\left|a_{t}\right| \varepsilon_{1}^{t}$ holds. This implies that the elements $u_{j}=\mathrm{e}+a_{1} f_{j}+\cdots+a_{t} f_{j}^{t}$ are invertible in B.

Now $p\left(f_{j}\right)=f_{j}^{s} u_{j}$ and hence $j \varepsilon_{j}<\left\|f_{j}^{s}\right\| \leqq\left\|p\left(f_{j}\right)\right\|\left\|u_{j}^{-1}\right\| \leqq$ $\varepsilon_{j}\left\|u_{j}^{-1}\right\|$. This means that $\left\|u_{j}^{-1}\right\|>j$ for all j, so the element $G=$ $\left(u_{j}\right)$ is not invertible in B_{∞}.

Now we obtain a contradiction by proving that G must be invertible in B_{∞}. Since $\lim _{j \rightarrow \infty}\left\|p\left(f_{j}\right)\right\|=0$ it follows that $\lim \left\|p\left(\pi_{N}(G)\right)\right\|=0$ as $N \rightarrow \infty$. Then Proposition 2.6. shows that $p(G)$ must vanish on M_{∞}.

Hence the set $\hat{G}\left(M_{\infty}\right)$ is contained in the finite set of zeros of p. Using Theorem 2.4. we see that $\widehat{G}\left(M_{\infty}\right)$ is connected. It follows that $\widehat{G}\left(M_{\infty}\right)=\left\{\widehat{G}\left(m_{\infty}\right)\right\}$. Clearly $\widehat{G}\left(m_{\infty}\right)=1$ holds and hence \hat{G} does not vanish on M_{∞}. The choice of ε_{1} shows that $\hat{G} \neq 0$ on Δ too. This proves that G is invertible in B_{∞} which gives the desired contradiction.

Finally we raise some problems. We do not know if the condition that $r_{N}(B)<1$ for some $N>2$ implies that $r_{2}(B)<1$. We
also ask if the condition that $r_{N}(B)<1$ for some $N \geqq 2$ implies that $\lim r_{J}(B)=0$ as $J \rightarrow \infty$.

References

1. A. Bernard, Une caracterisation de $C(X)$ parmi les algebres de Banach, C. R. Acad. Sci. Paris, Ser. A 267, (1968), 63-63.
2. C. Graham, On a Banach algebra of Varapoulos, Functional Analysis, 3 (1969), 317-327.

Received April 1, 1970 and in revised form August 11, 1970.
Institut Mittag Leffler

