ON THE SPECTRAL RADIUS FORMULA IN BANACH ALGEBRAS

JAN-ERIK BJÖRK

B will always denote a commutative semi-simple Banach algebra with a unit element. If $f \in B$ then r(f) denotes its spectral radius. A sequence $F = (f_j)_1^{\infty}$ is called a spectral null sequence if $||f_j|| \leq 1$ for each j, while $\lim_{j\to\infty} r(f_j) = 0$. If $F = (f_j)$ is a spectral null sequence we put $r_N(F) = \lim_{j\to\infty} \sup_{j\to\infty} ||f_j^N||^{1/N}$ for each $N \geq 1$. Finally we define the complex number $r_N(B) = \sup_{j\to\infty} \{r_N(F): F\}$ is a spectral null sequence in B. In general $r_N(B) = 1$ for all $N \geq 1$ and the aim of this paper is to study the case when $r_N(B) < 1$ for some N.

We say that B satisfies a bounded inverse formula if there exists some $0 < \varepsilon < 1$ and a constant K_0 such that for all f in B satisfying $||f|| \leq 1$ and $r(f) \leq \varepsilon$, it follows that $||(e - f)^{-1}|| \leq K_0$. In Theorem 3.1. we prove that B satisfies a bounded inverse formula if and only if $r_N(B) < 1$ for some N.

In §1 we give a criterion which implies that B is a sup-norm algebra. In §2 we introduce the so called infinite product of B which will enable us to study spectral null sequences in §3.

1. Sup-norm algebras. Recall that B is a sup-norm algebra if there exists a constant K such that $||f|| \leq Kr(f)$ for all f in B. Clearly this happens if and only if $r_1(B) = 0$. Next we give an example where $r_1(B) = 1$ while $r_2(B) = 0$.

Let $B = C^{1}[0, 1]$ be the algebra of all continuously differentiable functions on the closed unit interval. If $f \in B$ we put ||f|| = $\sup \{|f(x)| + |f'(y)|: 0 \leq x, y \leq 1\}$. The maximal ideal space M_{B} can be identified with [0, 1], so the spectral radius formula shows that $r(f) = \sup \{|f(x)|: 0 \leq x \leq 1\}$. From this we easily deduce that $r_{2}(B) =$ 0. In fact we also notice that $||f^{n}|| \leq n ||f| ||(r(f))^{n-1}$ holds for all $n \geq 2$. We will now prove that this estimate is sharp.

THEOREM 1.1. Let the norm in B satisfy $||f^n|| \leq qn ||f|| r(f)^{n-1}$ for some q < 1 and some $n \geq 2$. Then B is a sup-norm algebra and there is a constant K(n, q) such that $||f|| \leq K(n, q)r(f)$ for all $f \in B$.

LEMMA 1.2. Let $n \ge 3$ and suppose that $||f^n|| \le K ||f|| r(f)^{n-1}$ for all f in B and some constant K. Then there is a constant K(n)such that $||f^2|| \le K(n)K||f|| r(f)$. *Proof.* Notice that all the inequalities above are homogeneous. Hence it is sufficient to consider the case when ||f|| = 1. If now $r(f) = \varepsilon$, then we must prove that $||f^2|| < K(n)K\varepsilon$ for some K(n).

Under the hypothesis, we note that

$$||(karepsilon+f)^n||\leq K\,||\,karepsilon+f\,||(arepsilon+karepsilon)^{n-1}\leq Karepsilon^{n-1}(1+n)^n$$

for all $0 \leq k \leq n$.

Now consider the inhomogeneous system of equations

$$\sum\limits_{j=0}^n {n \choose j} (karepsilon)^{n-j} f^j = (karepsilon+f)^n \;, \qquad 0 \leq k \leq n \;,$$

which we wish to solve for the f^{j} . The determinant of the system is $\varepsilon\varepsilon^{2}\cdots\varepsilon^{n}K_{0}(n)$, and the determinants of the minors can be expressed similarly. Using Cramer's rule to solve this system for f^{2} , we obtain the estimate $||f^{2}|| \leq K(n)K\varepsilon$, as required.

Proof of Theorem 1.1. Firstly we choose $\varepsilon > 0$ so small that $1 - \varepsilon^n > 2n\varepsilon^n + q$. Next we introduce the power series $\phi(z) = \varepsilon + a_1 z + a_2 z^2 + \cdots$, which satisfies $(\phi(z))^n = \varepsilon^n + z$ for all $|z| < \varepsilon^n$. Notice that $na_1\varepsilon^{n-1} = 1$ holds. If $0 < x < \varepsilon^n$ we put

$$A_v(x) = x^v(|a_{vn}| + \cdots + |a_{vn+n-1}|)$$
.

Then it is clear that the sum $U(x) = A_1(x) + A_2(x) + \cdots$ is finite, while $\lim U(x) = 0$ as $x \to 0$.

Note that from Lemma 1.2. there is a constant K(n) such that $||f^k|| \leq K(n)r(f)$ for all $2 \leq k \leq n-1$ and all f in B satisfying $||f|| \leq 1$. It follows that there is a constant $K(n, \varepsilon)$ such that $||a_2f^2 + \cdots + a_{n-1}f^{n-1}|| \leq K(n, \varepsilon)r(f)$ for all f satisfying $||f|| \leq 1$.

Now we choose $\delta > 0$ so small that $n\delta^{n-1} < \varepsilon^n$ and $U(n\delta^{n-1}) + K(n, \varepsilon)\delta < \varepsilon$ holds.

Suppose now that B is not a sup-norm algebra. Then we can choose f in B such that ||f|| = 1 while $r(f) < \delta$. The assumption shows that $||f^n|| \leq qn\delta^{n-1} \leq n\delta^{n-1} \leq \varepsilon^n$. Hence $||f^{v_{n+k}}|| \leq ||f^n||^{v} ||f^k|| \leq (n\delta^{n-1})^{v} \rightarrow \text{ for all } v \geq 1 \text{ and all } k = 0 \cdots (n-1)$. It follows that we can define the element $g = \phi(f) = \varepsilon + a_1 f + a_2 f^2 + \cdots$ in B.

We get $||g|| \leq \varepsilon + |a_1| + ||a_2f^2 + \cdots + a_{n-1}f^{n-1}|| + U(n\delta^{n-1}) \leq 2\varepsilon + |a_1|$. We also have $r(g) \leq (r(\varepsilon^n + f))^{1/n} \leq (\varepsilon^n + \delta)^{1/n}$.

 $\begin{array}{lll} \text{It follows that } 1-\varepsilon^n \leq ||\,\varepsilon^n+f\,||\,=\,||\,g^n\,|| \leq qn\,||\,g\,||\,r(g)^{n-1} \leq \\ qn(2\varepsilon\,+\,(n\varepsilon^{n-1})^{-1})(\varepsilon^n\,+\,\delta)^{1-1/n}\,=\,Z(\delta). \end{array}$

Clearly $Z(\delta)$ tends to $2qn\varepsilon^n + q$ as $\delta \to 0$. The original choice of ε shows that $1 - \varepsilon^n \leq Z(\delta)$ cannot hold for sufficiently small values of δ . This proves that B must be a sup-norm algebra and the proof gives a lower bound for δ , once we have fixed ε .

2. The infinite product of a Banach algebra. Firstly we introduce the infinite product.

DEFINITION 2.1. Put $B_{\infty} = \{(f_j)_1^{\infty}: (f_j) \text{ is a sequence in } B \text{ such that } \sup_j ||f_j|| < \infty \text{ while } \lim_{j \to \infty} r(we - f_j) = 0 \text{ for some } w \in C^1 \}.$

Clearly B_{∞} is a Banach algebra if to each $F = (f_j)$ we define $||F|| = \sup_j ||f_j||$. If $F = (f_j)$ and if $N \ge 1$, then we put $\pi_N(F) = (g_j)$, where $g_j = 0$ for $j \le N$ and $g_j = f_j$ for j > N.

A complex-valued homomorphism H on B_{∞} is free if $H(F) = H(\pi_N(F))$ for all $N \ge 1$ and each $F \in B_{\infty}$. The part at infinity in $M_{B_{\infty}}$ consists of the points determined by free homomorphisms. We denote this set by M_{∞} .

To each $N \ge 1$ we have an idempotent e_N in B_{∞} , whose Nth component is e while all the other components are zero. The set $\Delta_N = \{x \in M_{B_{\infty}} : \hat{e}_N(x) = 1\}$ is a clopen (closed and open) subset of $M_{B_{\infty}}$. We can identify Δ_N with M_B . For if $x \in M_B$ we get a point $T_N(x)$ in Δ_N satisfying $\hat{F}(T_N(x)) = \hat{f}_N(x)$ for all $F = (f_j)$. It is easily seen that T_N is a homeomorphism from M_B onto Δ_N .

If we put $\Delta = \bigcup \Delta_N$: $N \ge 1$, then it is easily seen that $\Delta = M_{B_{\infty}} \setminus M_{\infty}$. Here Δ is open and hence M_{∞} is closed. The set M_{∞} contains a distinguished point m_{∞} , determined by the complex-valued homomorphism which sends $F = (f_j)$ into the complex number w satisfying $\lim_{j\to\infty} r(we - f_j) = 0$.

With the notations above the following result is evident.

LEMMA 2.2. Let V be an open neighborhood of m_{∞} in $M_{B_{\infty}}$. Then there is an integer N such that $\Delta_j \subset V$ for all j > N.

LEMMA 2.3. Let $b \Delta$ be the topological boundary of Δ in $M_{B_{\infty}}$. Then $b \Delta = \{m_{\infty}\}$.

Proof. Lemma 2.2. means that the clopen sets Δ_N converge to $\{m_{\infty}\}$. Then it is a trivial topological fact that m_{∞} is the only boundary point of Δ .

The result below was motivated by Theorem 2 in [2].

THEOREM 2.4. The set M_{∞} is a closed and connected subset of $M_{B_{\infty}}$.

Proof. We already know that M_{∞} is closed. Suppose next that S and T are disjoint closed subsets whose union is M_{∞} , such that $m_{\infty} \in S$. Then Lemma 2.3. implies that $S \cup \Delta$ is clopen in $M_{B_{\infty}}$. By Shilov's idempotent Theorem there is $E \in B_{\infty}$ such that $\hat{E} = 0$ on $S \cup \Delta$ while $\hat{E} = 1$ on T. In particular $\hat{E} = 0$ on each Δ_j , which

281

implies that the *j*th component is zero. Since this holds for all *j* we conclude that E = 0, and T is empty. Hence M_{∞} is connected.

The next result gives a useful characterization of M_{∞} . This result is due to the referee.

THEOREM 2.5. Let I be the closed ideal of all F in B_{∞} for which $\lim || \pi_N(F) || = 0$ as $N \to \infty$. Then M_{∞} is the maximal ideal space of B_{∞}/I .

Proof. A point m in $M_{B_{\infty}}$ induces a complex-valued homomorphism on B_{∞}/I if and only if $\hat{F}(m) = 0$ for all $F \in I$. Clearly each idempotent e_N belongs to I. This proves that if m annihilates I, then m must belong to M_{∞} . Conversely, if $m \in M_{\infty}$ then $\hat{F}(m) = \pi_N(F)^{\hat{}}(m)$ for all $N \ge 1$. Hence $|\hat{F}(m)| \le \lim_{N \to \infty} ||\pi_N(F)|| = 0$ follows if $F \in I$. This proves that every point in M_{∞} annihilates I.

If $F = (f_j)$ is in B_{∞} we put $r_N(F) = \limsup_{j \to \infty} ||f_j^N||^{1/N}$ for each $N \ge 1$. Let us also put $|F|_{\infty} = \sup\{|\hat{F}(m)|: m \in M_{\infty}\}$. With these notations the following result is a direct consequence of Theorem 2.5.

PROPOSITION 2.6. If $F \in B_{\infty}$, then $|F|_{\infty} = \lim_{N \to \infty} r_N(F)$.

3. Spectral null sequences.

THEOREM 3.1. The following conditions on B are equivalent:

- (a) $r_N(B) < 1$ for some $N \ge 1$.
- (b) B satisfies a bounded inverse formula.

(c) There is a constant K_q such that if $f \in B$ satisfies $||f|| \leq 1$ and r(f) = q < 1, then $||(e - f)^{-1}|| \leq K_q(1 - q)^{-1}$.

Proof. Since $(c) \to (b)$ we only prove that $(a) \to (b)$ and $(b) \to (a)$. Firstly we assume that $r_N(B) < 1$ for some $N \ge 1$. Then we get some $\varepsilon > 0$ and a < 1 such that $||f^N|| \le a^N$ for all f satisfying $||f|| \le 1$ and $r(f) \le \varepsilon$.

Let then $||f|| \leq 1$ while $r(f) \leq q < 1$. Let s be the positive integer satisfying $q^s < \varepsilon \leq q^{s-1}$. It follows that $||f^{Ns}|| a^N$ and hence $||f^{kNs}|| \leq a^{kN}$ for all $k \geq 1$. Using this fact we see that if $R = \sum f^j: j \geq sN$, then $||R|| \leq sNa^N(1-a^N)^{-1}$.

We have $(e - f)^{-1} = e + f + \cdots + f^{N_{s-1}} + R$. Since $||f|| \leq 1$ we get $||(e - f)^{-1}|| \leq sN + ||R|| \leq K_0 s$. Finally $\varepsilon \leq q^{s-1}$ which implies that $s \leq K_1 (1 - q)^{-1}$. Hence (c) follows with $K_q = K_0 K_1$.

Now we assume that (b) holds in *B*. Suppose that $r_N(B) = 1$ for all *N*. To each $j \ge 1$ we can choose f_j such that $||f_j|| = 1$ and $r(f_j) < (j+1)^{-1}$, while $||f_j^j||^{1/j} > 1 - 1/j$.

Let us consider $F = (f_j)$ in B_{∞} . Since $\lim_{j\to\infty} ||F^j||^{1/j} = 1$, it

follows that there is some $w \in C^1$ satisfying |w| = 1 while we - F is not invertible in B_{∞} .

Consider the elements $g_j = (e - f_j/w)^{-1}$ which exist for all $j \ge 1$. Clearly (b) implies that $||g_j|| \le K$ for some fixed constant K. Since $\lim_{j\to\infty} r(f_j) = 0$ it follows that the element $G = (g_j)$ exists in B_{∞} . Now $(we - F)Gw^{-1} = e$ in B_{∞} which shows that we - F is invertible, a contradiction. Hence $r_N(B) < 1$ must hold for some N.

Let us observe that a spectral null sequence $F = (f_j)$ simply is an element of B_{∞} for which $||F|| \leq 1$ and $\hat{F}(m_{\infty}) = 0$. The following result is a direct consequence of Proposition 2.6.

THEOREM 3.2. The following two conditions on B are equivalent: (a) $\lim r_N(B) = 0$ as $N \to \infty$. (b) $M_{\infty} = \{m_{\infty}\}$.

Finally we study spectral null sequences satisfying polynomial conditions.

THEOREM 3.3. Let p be a polynomial of the form z^s $(1 + a_1z + \cdots + a_tz^t)$, with s > 1. Then there exist constants K and c with the following property: If $f \in B$ satisfies $||f|| \leq 1$, $||p(f)|| \leq \varepsilon$ and $r(f) \leq \varepsilon$, where $\varepsilon \leq c$, then $||f^s|| \leq K\varepsilon$.

Proof. For each $\varepsilon > 0$ we put $S(\varepsilon) = \{f \in B : ||f|| \le 1, ||p(f)|| \le \varepsilon$ and $r(f) \le \varepsilon\}$. Suppose the constants c and K do not exist. Then there is a decreasing sequence (ε_j) , with $\lim_{j\to\infty} \varepsilon_j = 0$, while $S(\varepsilon_j)$ contains an element f_j for which $||f_j^s|| > j\varepsilon_j$.

We may assume that $1 > |a_1| \varepsilon_1 + \cdots + |a_t| \varepsilon_1^t$ holds. This implies that the elements $u_j = e + a_1 f_j + \cdots + a_t f_j^t$ are invertible in *B*.

Now $p(f_j) = f_j^s u_j$ and hence $j\varepsilon_j < ||f_j^s|| \le ||p(f_j)|| ||u_j^{-1}|| \le \varepsilon_j ||u_j^{-1}||$. This means that $||u_j^{-1}|| > j$ for all j, so the element $G = (u_j)$ is not invertible in B_{∞} .

Now we obtain a contradiction by proving that G must be invertible in B_{∞} . Since $\lim_{j\to\infty} || p(f_j) || = 0$ it follows that $\lim || p(\pi_N(G)) || = 0$ as $N \to \infty$. Then Proposition 2.6. shows that p(G) must vanish on M_{∞} .

Hence the set $\hat{G}(M_{\infty})$ is contained in the finite set of zeros of p. Using Theorem 2.4. we see that $\hat{G}(M_{\infty})$ is connected. It follows that $\hat{G}(M_{\infty}) = \{\hat{G}(m_{\infty})\}$. Clearly $\hat{G}(m_{\infty}) = 1$ holds and hence \hat{G} does not vanish on M_{∞} . The choice of ε_1 shows that $\hat{G} \neq 0$ on Δ too. This proves that G is invertible in B_{∞} which gives the desired contradiction.

Finally we raise some problems. We do not know if the condition that $r_N(B) < 1$ for some N > 2 implies that $r_2(B) < 1$. We

283

JAN-ERIK BJÖRK

also ask if the condition that $r_{\scriptscriptstyle N}(B) < 1$ for some $N \ge 2$ implies that $\lim r_{\scriptscriptstyle J}(B) = 0$ as $J \to \infty$.

REFERENCES

1. A. Bernard, Une caracterisation de C(X) parmi les algebres de Banach, C. R. Acad. Sci. Paris, Ser. A 267, (1968), 63-63.

2. C. Graham, On a Banach algebra of Varapoulos, Functional Analysis, 3 (1969), 317-327.

Received April 1, 1970 and in revised form August 11, 1970.

INSTITUT MITTAG LEFFLER