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A THREE POINT CONDITION FOR SURFACES
OF CONSTANT MEAN CURVATURE

EAMON B. BARRETT

Let φ(x, y) be a solution to the equation:

(1) (1 + Φl)φxx - 2φxφyφxy + (1 + φl)φyy = 2H(1 + φ\ + φ\ψ2 .

The quantity H in equation (1) represents the mean cur-
vature of the surface z = φ(x, y). In case H — 0, (1) is the
minimal surface equation. For minimal surfaces, the well-
known three point condition may be stated as follows:

THEOREM 1. Let φ(x, y) be a solution to the Dirichlet

problem for the minimal surface equation in some bounded
region R. Let T be the continuous space curve defined by
the values of φ(x, y) over dR, the boundary of R. Then, if
P is a plane tangent to the surface z = φ(x, y) for (x, y) in
R, P will have at least 4 points in common with T.

The objective of this paper is to establish a natural ana-
logue of the three-point condition for surfaces of positive,
constant mean curvature.

It will be shown that certain "interior tangent spheres" of radius
1/H play the same roles, for surfaces of constant mean curvature
H> 0 defined on a disk of radius p < 1/H, that tangent planes do

for minimal surfaces.
(Rado's statement of the three-point condition for minimal surfaces

appears in [3], pg. 34, et. seq.)

DEFINITION. Let S be a surface of constant mean curvature H>0,
defined by z — Φ(x, y), where φ(x, y) is a solution to equation (1) in
some region R. At the point x0 = (α?0, yOf Φ(%o, 2/o)> let the normal line
to the surface be drawn. Let a sphere, Po, of radius 1/H be construc-
ted, whose center lies a distance I/if from x0, on the normal line
through x0, in the direction specified by the normal vector to S at
x0. Po will be called the "interior tangent sphere to S at xQ".

In case R is a disk of radius p < 1/H, and T is a space curve
consisting of the (continuous) boundary values of φ(x, y) on dR, it
will be shown that Po has at least four points in common with T:

THEOREM II. Let Po be the interior tangent sphere to the surface
z = φ(χ9 y) at a non-umbilical point, x0, where φ(xy y) is a solution to a
given Dirichlet problem for equation (1) in the disk x2 + y2 = p2 < 1/iϊ2,
H > 0. Let T be the continuous space curve defined by the values
of φ(x, y) over the boundary of the disk. Then Po must have at least
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4 points in common with T.

The assumption that xQ is a non-umbilical point is not severe,
since as in the case of minimal surfaces, the umbilical points of a
surface of constant mean curvature are isolated points, except for
the sphere, for which every point is umbilical. The proof of Theorem
II will depend on the observation that the difference of two solutions
to equation (1) must satisfy the strong maximum principle. (Ref. R.
Courant and D. Hubert [1] and on a comparison lemma due to R.
Finn (Ref. [2].)

As H~+0, the radius of the "interior tangent sphere" of Theorem
II tends towards infinity, and Theorem II becomes a statement of the
three point condition for minimal surfaces.

Much of the material in this paper was contained in the author's
doctoral thesis, written at Stanford University under the direction of
Robert Finn and Newton Hawley. The author wishes to thank Pro-
fessors Finn and Hawley for their advice and encouragement.

2* Comparison theorems for quasi-linear elliptic equations*
In this section we will state, without proof, several theorems for
quasi-linear elliptic equations which are essential for the proof of the
three-point condition for surfaces of constant mean curvature.

The first is the maximum principle for quasi-linear equations
having the form of equation (1).

Let M(φ) = (1 + ΦDΦ.. - 2φxφyφxy + (1 + φl)φyy;

THEOREM 2.1. (Courant-Hilbert, [1], pg. 321, et. seq.). If φ(x, y)
is C2 in a domain R, and if φ(x, y) has a maximum at an interior
point of R, then M(φ) <£ 0 at this point.

Theorem 1 implies that solutions of equation (1) in R will not
have interior maxima. Interior minima may exist, however, as with
the hemispherical solution

φ(x, y)= - VljH2 - (x2 + y2) .

Different solutions of the same quasi-linear equation may be com-
pared, as stated in the following comparison theorem (Courant-Hilbert,
[1], pg. 322 et seq.):

THEOREM 2.2. Let φ and Ψ be solutions of equation (1) in some
region R. Denote by co the difference of these solutions, ω — φ — ψ.
Then ω has neither a maximum nor a minimum in the interior of R.
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A theorem concerning the comparison of solutions of quasi-linear
elliptic equations, which is of importance in the study of minimal
surfaces and surfaces of constant mean curvature has been proved by
R. Finn (R. Finn, [2]).

THEOREM 2.3.

Hypotheses:
( i ) Let Q(φ) denote the expression:

2

V π (v w

-\- U\Xι, $2> Φx]_i Φxrji a^i — $21

Assume that (ai3) is positive definite for (x, y) in R and for all φ(x, y)
to be considered.

(ii) Let Γ = dR be the union of two closed sets, Γa and Γβ.
Let every interior point xa of Γa be the end point of a line segment
entering R, and let (dφ/ds) denote the derivative of φ along this line
segment, in the direction approaching xa.

(iii) Let φ{1) be a function defined in R, such that φω tends to
a finite or infinite limit at each point of Γa, and such that

lim (^- φ

on each of the indicated line segments.

Conclusion. Let φ(2) be any function defined and continuously
differentiable in R -f Γ, such that

lim[φw - φ{2)] ^ 0 .

If Q(φ{1)) ^ Q(φ{2)) in 22, then

l i m (^(1) - φ{2) ^ 0 ,
x-+Γa

and the strict inequality holds for any approach to an interior point
of Γa.

Theorem 2.3 has been used by R. Finn to provide a simple proof
of the fact that isolated singularities of solutions to the minimal sur-
face equation are removable.

3. Proof of Theorem II. Let φ(x, y) be a solution to equation
(1) in a region R, and let Po be the interior tangent sphere to the
surface z = φ(x, y) a t the point x0 = (x0, y09 φ(xθ9 y0)), where (x0, y0) is
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an interior point of R. We shall assume that x0 is not an umbilical
point of the surface.

Define

dφ
dx , Qo =

dφ

dy

w0 = 1 + Vl + Ql

The center of the interior tangent sphere Po is located at the
point

"77 ^o ^ 2/ # )

The lower hemisphere of Po has the equation

2 - (x - α )̂2 - (y - y[f .

We define the difference function

ΨQ(x, y) = φ(x, y) - zOL(x, y) .

Let K denote the Gauss curvature of the surface z = ψ(x, y).

LEMMA 3.1.

(ΨoJ2 - ΨOXXΨoyy - wftH* - K) at the point (xQ, y0) .

Proof. The lemma is established by an easy calculation, together
with the observation that Ψ0(x0, Vo) = 0 = Φ0,\XQVQ = Φov\xoVo, since Po

is tangent to the surface z = φ(x, y) at the point x0.

Since x0 is not an umbilical point, H2 — K > 0, and (x0, y0, fF0(x0,
y0)) is therefore a hyperbolic point for the surface z — Ψ0(x, y) We
shall use the familiar properties of hyperbolic points on C2 surfaces.
Let Lt and L2 be lines in the (x, y) plane, passing through (xQ, y0) in
the (orthogonal) directions of principal curvature of the surface z =
ΨQ(x, y) Inside a sufficiently small neighborhood, N, of (x0, y0), Ψ0(x,
y) < 0 at all points of L1 Π N, and Ψ0(x, y) > 0 at all points of L2 Π
N, except for the point (xQ, yQ), where Ψ0(x, y) = 0.

The lines Lu L2, define a right-handed coordinate system. We
denote by lu l2, ϊ3, and liy the intersections of N with the half-lines
resulting from the deletion of (x0, y0) from L1 and L2, as shown in
Figure 1.
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N

Thus, W0(x, y) < 0 on lly l3, and > 0 on l2, l4, respectively.

Let Ro denote the domain of definition of Ψ0(x, y). Ro is the
intersection of R with the projection of Po on the (%, y) plane, as
illustrated by Figure 4. Since R is a disk of radius p < 1/H, it
follows that 3R0 is either a circle of radius p, or consists in part of
a circle of radius p, and part of a circle of radius 1/H.

The open sets G3-, j = 1, 4, are defined as follows:
Gj is the largest connected open subset of i?0 containing lj9 and

such that the sign of Ψ0(x, y) is everywhere the same in Gd.

LEMMA 3.2.

G1 lΊ G3 and G2 Π (?4 are empty .

Proof. Let Γj = dGjy j = 1, 4.
Each set /^ consists only of points where W0(xf y) — 0, or of

points of 3iϋ0, where W0(x, y) may or may not equal zero.

Since W0(x, y) is the difference of two solutions of equation (1),
it follows from Theorem 2.2 that Ψ0(x, y) cannot vanish identically
on any of the boundary sets Γί9 unless φ(x, y) is part of a hemisphere
of radius 1/ίΓ Since x0 is not an umbilical point, this is not the case.

If ψ0 φ 0 at some point p3- of Γ3, then p3- cannot be an interior
point of R0J by the maximality of G> Therefore there exist points
Pi PAI such that

( i ) pjGΓjΠdR,, j = 1, . . 4

(ii) Ψo < 0 on p1 and pB, Ψo > 0 on p2, p4.

Let ^^ G ϊ5-, i = 1, 4, and let po> and ^^ be connected by the
continuous curve Cό lying entirely within Gjy for j = 1, 4.
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FIGURE 2

It follows that the sets G3, j = 1, , 4, are disjoint. If, Gx ΓΊ G3

is not empty, then the points gx and gz could be connected by a
continuous curve lying entirely within the set G1 — Gί Π Gz = G8 This
curve must intersect either C2 or C4, where Ψ0(x, y) > 0, and a contra-
diction results.

Let T denote the space curve determined by the values of φ(x, y)
on dR, as illustrated by Figure 4. The proof of Theorem II is com-
pleted by considering two cases:

Case I. The projection of Po on the (x, y) plane contains R.
In this case, Ro = R, and dR0 is the circle of radius p. It follows

from the continuity of Ψ0(x, y), together with the arguments presented
in the proof of Lemma 3.2, that on any arc of dR0 joining a pair of
the points p3 , there must be a point on which Ψ0(x, y) — 0. Therefore,
the space curve T and the interior tangent sphere Po coincide at least
four times.

Case II. Ro Φ R. In this case, dR0 = SH U Sp9 where SH and SP

are arcs of circles of radius 1/H and p, respectively.

LEMMA 3.3. // Ro Φ R, then Γ2 and Γ4 contain points of Sp where
Ψ0(x, y) > 0.

Proof. Suppose the contrary. Then Γ2 consists of points where
WQ(x, y) = 0, and points on SH where Ψ0(x, y) > 0.

Let Γ2 — Γa U Γβ, where Γa = the closure of the set of points of
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Γ2 Π SH where ΨQ(x, y) > 0, and Γβ = the closure of the remainder.
In general, Γa D Γβ will not be empty.

Let φι{x, y) = zOL(x, y) and φ2(x, y) = φ{x, y). We will verify that
Γay Γβi φ1 and φ2 satisfy the hypotheses of Theorem 2.3 in G2.

Hypothesis (i) is satisfied since both φ1 and φ2 are solutions of
equation (1) in Ro, and therefore in G2.

If xa is an interior point of Γa, then Ψ0(x, y) is > 0 at xa. By
continuity, 3ε < 0 9 ΨQ(p) > 0 for all points psRQ B \\p — xa\\ < ε, where
\\p — xa\\ denotes the Euclidean distance of p from xa. Therefore,
•Ro Π {p\ \\p — xa\\ < s} c (?2, by virtue of the maximal character of the
connected open set G2 of which xa is a boundary point. Therefore,
as illustrated by Figure 3, xa is the end point of a line segment Sa

lying entirely within G2, verifying hypothesis (ii).

FIGURE 3

Since the gradient of φι(x, y) is infinite on SHy hypothesis (iii) is
verified.

By assumption, ΨQ(x, y) = 0 on Γβ, so that φι = φ2 on Γ^. Q{φx) —
Q(^2) in G2, since φ1 and ^2 are solutions of equation (1). The conclu-
sion of Theorem 2.3, that lim^Γ β [φ1 - φ2] ^ 0, i.e., that Ψ0(x, y) ^ 0,
completes the proof of Lemma 3.3 by contradiction. Thus, Γ2 (and
Γ4) contain points of Sp where Ψ0(x9 y) > 0.

To complete the proof of Theorem II, let p2 and p4 be such points,
i.e., pj e Γ, Π SP, Ψoiv3) > 0, j - 2, 4.

By a brief argument, we can verify that there must exist a
point pzeΓz Π Sp9 such that 3Γ0 < 0 on j>3, where p8 lies between ^ 2

and p4 on the arc S^.
Thus,

Φ(Ps)
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Therefore, the space curve T lies below the lower hemisphere of
Po at the point p3, and above the lower hemisphere of Po at the
points p2 and p4.

It follows that the space curve T must have passed from the
outside to the inside of Po at least twice. The points where the
space curve has pierced Po must project onto Sp at points which lie
on Sp between p2 and p4. The space curve T cannot remain inside
Po, since there are points of T which project onto the (x, y) plane at
points exterior to the projection on the (x, y) plane of Po. Therefore
T must eventually emerge from Po, piercing Po twice more as it
emerges.

We conclude that T has at least four points in common with Po.

4* Discussion* Theorem I can be used to derive a priori bounds
on the gradient of solutions to the minimal surface equation. If T
satisfies the condition that the inclinations of all planes having at
least three points in common with T be uniformly bounded, then, an
a priori bound on the inclinations of the tangent planes to the minimal
surface z = φ{x, y) having T for its boundary data, is immediately
known.

Theorem II provides analogous bounds on the gradient of solutions
of equation (1) with H constant, > 0. For example, Let R be a disk
of radius p — (1 — s)/H, 0 < ε < 1. Let T satisfy the condition that
for every sphere P of radius 1/H having four or more points in com-
mon with T, the projection on the (x, y) plane of the center of P is
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within e/2H of the center of R. It is easy to verify that under this
assumption

1 - ε/2

φ*£ V1 - (1 - ε/2)2 *

It is interesting to note that as H-+0, the surfaces and interior
tangent spheres of Theorem II become minimal surfaces and tangent
planes, respectively, producing Theorem I, the three-point condition
for minimal surfaces, as a limiting case.
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