ON SPACES WITH REGULAR $G_{\mathfrak{o}}$-DIAGONALS

Phillip Zenor

Abstract

It is the purpose of this note to investigate spaces with regular $G_{\dot{\delta}}$-diagonals. Among other things, it is shown that if X is T_{1}-space, then $1 . X$ admits a development satisfying the 3 -link property if and only if X is a $\omega \Delta$-space with a regular $G_{\dot{\delta}}$-diagonal and 2. X is metrizable if and only if X is an M-space with a regular G_{δ}-diagonal.

Recall that a subset H of the space X is a regular $G_{\dot{\delta}}$-set if there is a sequence $\left\{U_{n}\right\}$ of open sets in X such that $H=\bigcap_{i=1}^{\infty} U_{i}=\bigcap_{i=1}^{\infty} U_{i}^{-}$. We will say that X has a regular $G_{\dot{i}}$-diagonal if $\Delta X=\{(x, x): x \in X\}$ is a regular $G_{\dot{j}}$-set in X^{2}.

In [4], Ceder shows that X has a G_{i}-diagonal if and only if there is a sequence $\left\{G_{n}\right\}$ of open covers of X such that if x is a point of X, then $x=\bigcap_{i=1}^{\infty}$ st $\left(x, G_{i}\right)$. In Theorem 1, we show that there is a similar characterizing property for spaces with regular $G_{\dot{\delta}}$-diagonals.

Theorem 1. The topological space X has a regular G_{i}-diagonal if and only if there is a sequence $\left\{G_{n}\right\}$ of open covers of X such that if x and y are distinct points of X, then there are an integer n and open sets u and v containing x and y respectively such that no member of G_{n} intersects both u and v.

Proof. Suppose that X has a regular G_{s}-diagonal. Let $\left\{U_{n}\right\}$ be a sequence of open sets in X^{2} such that $\Delta X=\bigcap_{i=1}^{\infty} U_{i}=\bigcap_{i=1}^{\infty} U_{i}^{-}$. For each n, let $G_{n}=\left\{g: g\right.$ is an open subset of X such that $\left.g \times g \subset U_{n}\right\}$. Let x and y be distinct points of X. Let n be an integer such that (x, y) is not in U_{n}^{-}. Let u and v be open sets in X that contain x and y respectively such that $u \times v$ does not intersect U_{n}. To see that no member of G_{n} intersects both u and v, suppose otherwise; that is, suppose that g is a member of G_{n}, p is a point of $g \cap u$ and q is a point of $g \cap v$. Then (p, q) is a point of $U_{n} \cap(u \times v)$ which is a contradiction.

Now, suppose that $\left\{G_{n}\right\}$ is a sequence of open covers of X as described in the theorem. For each n, let $U_{n}=\bigcup\left\{(g \times g): g \in G_{n}\right\}$. Clearly, $\Delta X \subset \bigcap_{i=1}^{\infty} U_{i}$. To see that $\Delta X=\bigcap_{i=1}^{\infty} U_{i}^{-}$, let x and y be distinct points of X. Then there are an integer n and open sets u and v containing x and y respectively such that no member of G_{n} intersects both u and v. It must be the case that U_{n} does not intersect $u \times v$.

Corollary. If X has a regular G_{δ}-diagonal, then X is Hausdorff.

A development $\left\{G_{n}\right\}$ for the space X is said to satisfy the 3 -link property if it is true that if p and q are distinct points of X, then there is an integer n such that no member of G_{n} intersects both st $\left(x, G_{n}\right)$ and st $\left(y, G_{n}\right)$ (Heath [6]). According to Borges [3], the space X is a $\omega \Delta$-space if there is a sequence $\left\{U_{n}\right\}$ of open covers of X such that if x is a point and if, for each n, x_{n} is a point of st $\left(x, U_{n}\right)$, then the sequence $\left\{x_{n}\right\}$ has a cluster point. Clearly, the class of $\omega \Delta$-spaces includes the class of strict p-spaces, the class of M-spaces, and the class of developable spaces. It is easy to see that the Niemytski plane (page 100 of [11]) is a non-metrizable Moore space that admits a development satisfying the 3 -link property. In [6], Heath establishes the existence of Moore spaces that do not admit developments that satisfy the 3 -link property. In [5], Cook asserts that a continuously semi-metrizable space is a Moore space that admits a development that satisfies the 3 -link property. Cook's result follows as a corollary to the following theorem:

Theorem 2. Let X be a topological space. Then the following conditions are equivalent:

1. X admits a development satisfying the 3-link property.
2. X is a $\omega \Delta$-space with a regular G_{i}-diagonal. And
3. There is a semi-metric d on X such that:
a. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences both converging to x, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$, and
b. If x and y are distinct points of X and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences converging to x and y respectively, then there are integers N and M such that if $n>N$, then $d\left(x_{n}, y_{n}\right)>1 / M$.

Proof. It is obvious that a developable space is a $\omega \Delta$-space; thus, that (1) implies (2) is a corollary to Theorem 1.

To see that (2) implies (1), let X be a $\omega \Delta$-space with a regular G_{δ}-diagonal. Let $\left\{U_{n}\right\}$ be a sequence of open covers of X as given by the fact that X is a $\omega \Delta$-space. According to Theorem 1, there is a sequence $\left\{V_{n}\right\}$ of open covers of X such that if p and q are distinct points, then there are an integer n and open sets u and v containing p and q respectively such that no member of V_{n} intersects both u and v. For each integer n, let G_{n} be an open cover of X such that (i) G_{n} refines both U_{n} and V_{n} and (ii) G_{n+1} refines G_{n}. We will show that $\left\{G_{n}\right\}$ is a development for X that satisfies the 3 -link property. First, to see that $\left\{G_{n}\right\}$ is a development, suppose the contrary; that is, suppose that there are a point x and an open set u containing x such that, for each n, there is a point p_{n} in st $\left(x, G_{n}\right)-u$. Then, for each n, p_{n} is in st $\left(x, U_{n}\right)$. Thus, $\left\{p_{n}\right\}$ has a cluster point p. Since for each n, G_{n} refines each of V_{1}, \cdots, V_{n}, it follows that there are an
integer N and open sets v and w containing x and p respectively such that if $j>N$, then no member of G_{j} intersects both v and w. But this is a contradiction since there is a $j<N$ such that p_{j} is in w. Thus, $\left\{G_{n}\right\}$ is a development for X. To see that G_{n} satisfies the 3-link property, let p and q be distinct points, u and v open sets containing p and q respectively, and N an integer such that if $n>N$, then no member of G_{n} meets both u and v. Let S and T be integers such that $\operatorname{st}\left(p, G_{S}\right) \subset u$ and $\operatorname{st}\left(q, G_{T}\right) \subset v$. Let $M=\max \{N, S, T\}$. Then no member of G_{M} meets both st $\left(p, G_{M}\right)$ and st $\left(q, G_{M}\right)$.
(1) implies (3): Let $\left\{G_{n}\right\}$ be a development satisfying the 3 -link property. Assume that for each n, G_{n+1} refines G_{n}. If x and y are distinct points, define $d(x, y)=1 / N$, where N is the first integer such that y is not in st $\left(x, G_{N}\right)$. Define $d(x, x)=0$. It is a standard argument to see that d is a semi-metric on X. To show that (a) is satisfied, suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences converging to x. Let N be an integer and let g be a member of G_{N} that contains x. There is an integer $M>0$ such that if $n>M$, then both x_{n} and y_{n} are in g. It follows that if $n>M$, then $d\left(x_{n}, y_{n}\right)<1 / N$; and so, $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. To see that (b) is satisfied, let x and y be distinct points of X and suppose that $\left\{x_{n}\right\}$ converges to x and $\left\{y_{n}\right\}$ converges to y. Let M denote an integer such that if $n \geqq M$, then no member of G_{n} intersects both st $\left(x, G_{n}\right)$ and st $\left(y, G_{n}\right)$. There is an integer N such that if $n>N$, then x_{n} is in st $\left(x, G_{M}\right)$ and y_{n} is in st $\left(y, G_{M}\right)$. Thus, if $n>\max \{N, M\}$, then $d\left(x_{n}, y_{n}\right)>1 / M$.
(3) implies (1): Let $G=\left\{\right.$ int. $\left.D_{\varepsilon}(x): \varepsilon>0, x \in X\right\}$ where $D_{\varepsilon}(x)=$ $\{y \in X: d(x, y)<\varepsilon\}$. For each N, let $G_{N}=\{g \in G$: diam. $g<1 / N\}$ where diam. $g=\operatorname{lub}\{d(x, y):(x, y) \in g \times g\}$. Clearly, if for each n, G_{n} convers X, then $\left\{\mathrm{G}_{n}\right\}$ is a development for X. Suppose that $x \in X$ and N is an integer such that no member of G_{N} contains x. Then for each integer j there are points x_{j} and y_{j} such that $d\left(x, x_{j}\right) \leqq 1 / j$ and $d\left(x, y_{j}\right) \leqq 1 / j$ and such that $d\left(x_{j}, y_{j}\right)>1 / N$. But this says that $\left\{x_{j}\right\}$ and $\left\{y_{j}\right\}$ are sequences converging to x such that the sequence $\left\{d\left(x_{j}, y_{j}\right)\right\}$ does not converge to zero. This is a contradiction from which it follows that $\left\{\mathrm{G}_{n}\right\}$ is a development for X.

Now, suppose that x and y are distinct points of X such that for each n there is a member of G_{n} intersecting both st (x, G_{n}) and st $\left(y, G_{n}\right)$. Then for each n, there are points x_{n} and y_{n} in st $\left(x, G_{n}\right)$ and st $\left(y, G_{n}\right)$ respectively such that x_{n} and y_{n} are in a common member of G_{n}. But, this means that $\left\{x_{n}\right\}$ converges to $x,\left\{y_{n}\right\}$ converges to y, and $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$ which is a contradiction.

Note. The argument that (3) implies (1) is essentially the argument that H. Cook used when he showed the author how to prove that a continuously semi-metrizable space admits a development satisfy-
ing the 3 -link property. Also, recall that in [1] it is shown that X is developable if and only if there is a semi-metric satisfying condition (a) and in [7], Hodel defines the notion of a G_{o}^{*}-diagonal and he shows that the space X is a Hausdorff developable space if and only if X is a $\omega \Delta$-space with a G_{δ}^{*}-diagonal.

A space X is said to be an M-space if there is a normal sequence $\left\{G_{n}\right\}$ of open covers of X such that if x is a point and $\left\{x_{n}\right\}$ is a sequence of points such that, for each n, x_{n} is in st $\left(x, G_{n}\right)$, then $\left\{x_{n}\right\}$ has a cluster point (Morita [10]).

Lemma. If X is an M-space, then either X is discrete or there is a countable discrete subspace of X that is not closed in X.

Proof. Suppose that x_{0} is a limit point of X. Let $\left\{G_{n}\right\}$ be a normal sequence of open covers of X as given by the fact that X is an M-space. Let x_{1} be a point of st (x_{0}, G_{1}) distinct from x_{0} and let u_{1} be an open set containing x_{1} such that x_{0} is not in $\mathrm{cl} u_{1}$. Having x_{1}, \cdots, x_{n} and u_{1}, \cdots, u_{n}, let x_{n+1} be a point of st $\left(x_{0}, G_{n+1}\right)-U_{i=1}^{n} \operatorname{cl} u_{i}$ distinct from x_{0}. Let u_{n+1} be an open set containing x_{n+1} such that x_{0} is not in $\operatorname{cl} u_{n+1} \cdot\left\{x_{1}, x_{2}, \cdots\right\}$ is a countable discrete subspace of X that is not closed in X.

Theorem 3. Let X be a topological space. The following statements are equivalent:

1. X is metrizable.
2. X is a Hausdorff M-space such that X^{2} is perfectly normal.
3. X is an M-space with a regular G_{i}-diagonal.
4. X is a Hausdorff M-space such that X^{3} is hereditarily normal.
5. X is a Hausdorff M-space such that X^{3} is hereditarily countable paracompact.

Proof. That (1) implies each of the other conditions is obvious. Also, it is clear that (2) implies (3). That (4) implies (2) follows from our Lemma and Corollary 1 of [8] and that (5) implies (2) follows from our Lemma and Theorem B of [12]. It remains to show that (3) implies (1). To this end, it follows from Theorem 2 that X is developable and Hausdorff. According to Theorem 6.1 of [10], there is a closed mapping f taking X onto a metric space Y such that $f^{-1}(y)$ is countably compact for each y in Y. Since X is developable, $f^{-1}(y)$ is compact for each y in Y; thus, f is a perfect map. It is a well known consequence of Theorem 1 of [9] that the preimage of a metric space under a perfect map is paracompact. But, it is shown in [2] that a paracompact developable space is metrizable.

References

1. P. S. Alexandrov and V. V. Nemitskii, Der allgemarine metrisatienssatz und das symmetricaxiom, (Russian), Mat. Sbornik, 3 (45) (1938), 663-672.
2. R. H. Bring, Metrization of topological spaces, Canad. J. Math., 3 (1951) 175-186.
3. C. J. R. Borges, On metrizability of topological spaces, Canad. J. Math., 20 (1968), 1795-803.
4. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-125.
5. H. Cook, Cartesian products and continuous semi-metrics, Topology ConferenceArizona State University (1967), 58-63, Tempe, Arizona.
6. R. W. Heath, Metrizability, compactness and paracompactness in Moore spaces, Notices Amer. Math. Soc., 10 (1963), 105.
7. R. E. Hodel, Moore spaces and $\omega 4$-spaces, Pacific J. Math., 38 (1971), 641-652.
8. M. Kate̊tov, Complete normality of cartesian products, Fund, Math., 35 (1948), 271-274.
9. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc., 4 (1953), 831838.
10. K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
11. L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Holt Rinehart and Winston, Inc., New York, 1970.
12. P. L. Zenor, Countable paracompactness in product spaces, to appear in Proc. Amer. Math. Soc.

Received February 8, 1971 and in revised form March 25, 1971.
AUburn University

