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INJECTIVE MODULES OVER DUO RINGS

THOMAS S. SHORES

Let R be a ring with unit whose right and left ideals
are two-sided ideals. It is shown that every Noetherian in-
jective R-module has finite length (i.e., has a finite composition
series). If I is a maximal ideal of R, then R has a universal
localization, R; at I. The condition that the injective hull
of R/I is finite is characterized in terms of E;.

1. Introduction. In this note all rings have unit and modules
are unital right modules. A. Rosenberg and D. Zelinsky have shown
that if R is a commutative ring and I is a maximal ideal of R, then
the injective hull of R/I is finite (i.e., has finite length) if and only
if the localization of R at I is Artinian (see Theorem 5 of [6, p. 379]).
In this note we shall prove an extended version (Theorem 4) of their
result for a class of rings which is somewhat interesting in itself. Let
us call a ring R a duo ring if xR = Rx for all x€ R (equivalently all
ideals are bilateral). Such rings were investigated by E. Feller [2]
and G. Thierrin [7]. Trivial examples of duo rings are, of course,
commutative rings and division rings. Nontrivial duo rings are not
difficult to come by (e.g., any noncommutative special primary ring is
duo, since the only right or left ideals are powers of the unique maximal
ideal). In fact some interesting examples of duo rings have already
occurred in the literature: M. Auslander and O. Goldman have shown
in [1, p. 13] that there exist noncommutative maximal orders which
are both duo rings and Noetherian domains. Further investigations
of such rings have been carried out by G. Maury in [4].

One of the basic difficulties in extending Rosenberg and Zelinsky’s
result to duo rings is the existence of suitable localizations. This
problem is considered in §2. Next we show in §3 that Noetherian
duo rings are classical in the sense that the familiar primary decom-
position theory of commutative Noetherian rings extends to duo rings.
We use this fact to show that Noetherian injective modules over duo
rings are finite. Finally we prove our main result in §4.

The injective hull of the module M will be denoted by E(M). If
A and B are subsets of M or R, then A." B ={re R|zB = A} and
A .B={xeR|Ax = B}. Also A\B is the set of elements in A but
not B.

2. Localizations. First of all we need a suitable definition of
the term “localization.” The ideal P of R is prime if AB & P implies
A< Por BZ P for all ideals A and B of R.
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DEFINITION 1. Let R be a ring and P a prime ideal of R. By a
(right) localization of R at P we mean a nonzero ring @ together
with a ring homomorphism ¢: R— @ such that images under ¢ of
elements of R\P (elements in R but not P) are units in @ and Q =
{s(@)p(b)"'|ac R and be R\P}.

REMARK 1. A localization @ of R at P is a local ring whose
maximal ideal is ¢(P)Q. For if ¢(a)#(d)™* is a unit of Q, then so is
(@), say ¢(@)p(c)p(d)™ = 1. But then ac — de ker ¢ & P, so that a ¢ P.
Hence the units of @ are precisely the elements of the set ¢(R\P)s(R\P)™*
and the non-units form a maximal right ideal ¢(P)Q. Therefore @ has
a unique maximal right ideal and is by definition a local ring.

DEFINITION 2. The localization Q of R at P is universal if every
localization ¢*: R— Q* of R at P can be factored through ¢: R — @,
i.e., there is a ring homomorphism \: @ — @* such that \-¢ = ¢*.

Clearly universal localizations are unique up to a ring isomorphism,
if they exist. If R has a universal localization at P, we shall denote
this ring by Rr. In the case of a commutative ring R, R, exists and
is just the usual ring of quotients of R by elements of R\P. With
some slight modifications, we can make the same trick work for duo
rings:

THEOREM 1. If P is a prime ideal of the duo ring R, then R
has a universal localization at P.

Proof. First note that if x, y€ R and xy € P, then s RyR = 2yR &
P, so xe P or ye P. Hence R\P is multiplicatively closed. Let K
be the set of »e R for which there are elements a, b€ R\P such that
arb =0. Then K is an ideal of R. For if arb =0 and a'7’b’ = 0,
then aa'(r — )bb' = 0. To see this apply the fact that «R = Rx
for all e R to obtain that aarbbd’ = a*arbd’ = 0 for some a*¢c R.
Similarly aa’r’bd’ = 0 and ase K if se R. If re R and a, be R\P are
such that arbe K, then a'arbb’ = 0 for suitable o', ¥ € R\I. Hence
re K. Hence re K. In other words images of elements of R\I in
the ring R/K are regular elements (i.e., nonzero divisors). Let S =
(R/K)\(P/K). Since R/K is a duo ring, it follows that for any we
R/K and ve€ S there is an element we€ R/K such that wv = vw. Thus
elements of S satisfy a right Ore condition, so we may form the ring
of right quotients @ of R/K by elements of S in the usual way (i.e.,
Q is the set of equivalence classes of ordered pairs (a, b) such that
be¢ P and (a, b) is equivalent to (¢, d) if da = eb, where dc = ed). If
we identify R/K with its image in Q, then it is clear that @, along
with the natural map ¢: R— R/K, is a right localization of R at P.
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To see that @ is universal, simply note that if ¢*: R— Q* is any
other localization of R at P, then Q* is determined up to a ring
isomorphism by Ker ¢*. For Q* is just the ring of right quotients
of R/kers * by elements of S* = (R/ker ¢*)\(P/ker ¢*). However, it is
clear that K < ker ¢* and this implies that the ring of right quotients
of R/ker ¢* by S* is just Q/((ker $*)Q), for

R/ker ¢* = (R/K)(ker ¢*/K) .

REMARK 2. In the case of commutative R, the ring R, is just the
usual localization and is itself a commutative ring. It is not clear that
R, need be a duo ring if R is a duo ring. We leave this question
open. The ideal K of the proof of Theorem 1 will be called the P-
component of 0. The set of »r€ R for which b = 0 for some bec R\P
will be called the right P-component of 0. Of course if R is com-
mutative, then the right P-component of 0 is just K.

3. Noetherian duo rings. Let A be an ideal of the ring R.
Then by the radical of A we mean the inverse image in R of the
prime radical of the ring R/A. As usual we call the ideal A of R a
primary ideal if the radical of A is a prime ideal and whenever C
and D are ideals of R such that CD or DC is contained in 4 and C &
A, then D is contained in the radical of A. Also A is called an
iwrreducible ideal if A cannot be written as the intersection of ideals
of R which properly contain A. We need to extend the well known
fact that irreducible implies primary in Noetherian commutative rings.

LEMMA 1. Let P be the prime radical of the Noetherian duo ring
R and suppose that 0 is an irreducible ideal of R. Then elements of
R\P are regular.

Proof. The ideal P is nilpotent by Levitzki’s Theorem, since R is
Noetherian. Furthermore if " = 0 for some r € R, then (rR)"=7"R =0
since R is a duo ring. Therefore P consists precisely of the nilpotent
elements of R. Suppose that »e R\P and 0 # a € R are such that ar =
0. Then »*¢ P for all integers n. Apply the fact that R is Noetherian
to the ascending chain 0. » <0 . < .- - to obtain that 0 .*r* = 0.* »**!
for some integer n. Let de Rr* N Ra, say d = sr" = s'a. Then sr**' =
sar =0, so s€0.” "' =0."r*and s =0 = d. Hence 0 = Rr*N Ra,
which contradicts the fact that 0 is irreducible. Hence » is right re-
gular. Repeat the preceding argument on the chain r*. 0&#**. 0= -« -
and obtain that » is left regular (and therefore regular).

COROLLARY. FEwery irreducible ideal of a Noetherian duo ring R
18 a primary ideal.
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Proof. Let A be an irreducible ideal of R. Without loss of
generality A = 0. If P is the prime radical of R, then P is a prime
ideal; for if #, ye€ R\P and zyec P, then there is a least integer n such
that (zy)" %= 0. Then (xy)*** = 0, which implies that = or ¥ is not
regular. This contradicts Lemma 1, so P is a prime ideal. Likewise
apply Lemma 1 and obtain that if xy or yx equals 0 and z == 0, then
ye P. Hence 0 is a primary ideal.

A standard argument (see Exercises 9-13 of [3, p. 105]) shows
that every ideal in a Noetherian ring can be expressed as a finite
intersection of irreducible ideals. Let R be a duo ring and collect all
the irreducibles in such an expression whose radical is the same prime
ideal. Then we obtain the following result:

THEOREM 2. Let A be an ideal in the Noetherian ideal ring R.
Then A 1is the intersection of a finite number of irreducible ideals,
no two of which have the same radical.

The proof of the next result provides us with some information
about injective modules over Noetherian duo rings which we shall use
in Theorem 4. This proof uses Lemma 1 and some results and techni-
ques of E. Matlis [5] for injective modules.

THEOREM 3. FEwery Noetherian injective module over a duo ring
has finite length.

Proof. Let R be a duo ring and M an injective Noetherian R-
module. Let K be the (right) annihilator of M in R. Then R/K is
a Noetherian ring, since R/K is a subdirect sum of R-modules R/K;,
1=1, ---, m, where K, is the annihilator of z; in R and M = R +
«ve +2,R. Also R/K is a duo ring. Furthermore M is certainly
injective as an (R/K)-module, so we may as well replace R by R/K
and assume that K =0 and R is Noetherian. Thus M is a finite
direct sum of indecomposible injective submodules by Theorem 2.5 of
[5, p. 516]. We may replace M by one of these summands and assume
that M is itself indecomposible.

Now apply Theorem 2.4 of [5, p. 516] and we obtain that M =
E(R/J), where J is an irreducible ideal of R. Furthermore if 0 =
xe M, then M = E(R/(x*.0)) by the same theorem. Let P be the
radical of J. Then there is a least integer % such that P**' < J,
since R is Noetherian. Select an element y € P"\P"" and obtain from
the above remarks that M = E(R/(y*.J)). Clearly P= y*.J. Also
if acy*.J, then yaeJ. Since images of elements of R\P are regular
in R/J by Lemma 1, ae P. Therefore y'.J = P, which is a prime
ideal by the Corollary to Lemma 1. Furthermore M = E(R/P) by a
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preceding remark. Now any prime duo ring is an integral domain,
for zy = 0 implies ztRyR = 0. Furthermore a prime duo ring obviously
satisfies an Ore condition, so such a ring is contained in a right
quotient division ring. Let @ be the right quotient ring of R/P.
The injection of R/P into M extends to a R-homomorphism of @ into M.
Such a homomorphism is clearly injective, so @ is a submodule of M
and therefore Noetherian. If x # 0, we obtain from xR = Rz that
27'R = Rx™'. Hence any element a’b™ of @ may be written as b~'a
for suitable a. In particular there are elements a,;, b,e R, 7 =1, -+, n,
such that

Q = br'a,(R/P) + «++ + b,'a,(R/P) .

But then @ = bb,--- b,Q and repeated application of the identity
27'R = Rx~' yields that b, --- b,b;'a; = b, --- b,_,ca for some c€ R.
Consequently @ = R/P and P is actually a maximal ideal of R.

We complete the proof by showing that P” = 0 for some integer
n. For it then follows that R is a local Noetherian ring with nilpotent
maximal ideal P. Since P:/P*' must be a finite dimensional (R/P)-
vector space for all integers 4, one obtains that R is (right) Artinian.
Consequently M must be Artinian, which was to be shown. Now if
P, is any other prime ideal of R and E(R/P) = E(R/P), then we can
think of R/P, and R/P as embedded in E(R/P) and obtain that R/P, N
R/P =+ 0. But nonzero elements of R/P, have right annihilator P, in
R and likewise for nonzero elements of R/P. Hence P = P,. It follows
from the remarks in the previous paragraph that if 0 %= x€ M, then
P < x-.0 for some integer m. Form the ascending chain of sub-
modules of M given by A, ={xeM|zP'=0},t=1,2, --.-. Then
there is an integer n such that A, = A,.,, since M is Noetherian.
But we have shown that M is the union of the A4, +=1,2,---.
Hence M = A, and MP" = 0. But M is a faithful R-module, so P* =
0 and the proof is complete.

3. The main theorem. Note that if I is a maximal right ideal
of the duo ring R, then I is an ideal of R and R/I is a division ring,
so R, exists. We now generalize Rosenberg and Zelinskys’ result.
First we need the following lemma:

LEMMA 2. Let R be a duo ring with a maximal ideal I and
let M be a nonzero R-module with the property that right multiplica-
tion of N by an element of R\I is a one-to-one map of N onto N for
all submodules N of M. Then M can be made into an R,-module in
such a way that R- and R;-submodule lattices of M coincide.

Proof. Let K= M. 0. Then M is a faithful (R/K)-module. Also
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(R/K); = R;/KR,;, since K< I. So it is sufficient to prove the lemma
in the case that K = 0 and we may assume that M is a faithful R-
module. Right multiplication by an element of R\I is a one-to-one
map of N onto N, where N is any submodule of M. In particular if
ar =0 with ae R and r€ R I, then (Ma)r =0. But MaR = MRa = Ma,
since R is a duo ring. Hence Ma is a submodule of M and therefore
Ma = 0. Since M is a faithful R-module, ¢ = 0. Similarly if ra = 0,
then Mra = Ma = 0 and a = 0. Hence elements of R\I are regular
elements of R. Therefore R is actually a subring of R,. So if
r€ R\I, we obtain from rR = Rr that »—'R = Rr™.

Since right multiplication by an element of R\I is a one-to-one
map of M onto M, we can define, for all me M and re R I, mr™ =
m', where m'r = m. For any a€ R define m(adb™) = (ma)b™. If ab™ =
cd™, then we can select an element e€ R such that d'b = ed™, since
d'R = Rd™'. Thus we obtain equations

(m(ad="))(bd) = mad, and m(cd™")(de) = mce .

But ad = ce, so we obtain from these equations that m(ab™) =
m(ed™")(ded™'b™"). Since ded'b7'=1, we conclude that m(ad™) = m(cd™)
and multiplication by elements of R, is well-defined. Similarly it
follows readily that the above definition makes M into an R,-module.
If N is any R-submodule of M, then Nr = N for each re R\I. Hence
Nr~t = N and in general NR, = N. So N is an R,-submodule of M.
Obviously R;-submodules are R-submodules, and the lemma follows.

THEOREM 4. Let I be a maximal ideal of the duo ring R. The
following are equivalent:

(1) R, is Artinian and the I-component of 0 is the right I-
component of 0.

(2) E(R/I) has finite length.

(3) E(R/I) is Noetherian.

Proof. Suppose that (1) is true and let J be the right component
of 0. Then J< I and I/J is contained in the maximal ideal of R,.
But R; is Artinian, so (I/J)" = 0 for some integer n. Hence I" < J.
Let te I™ and select € R\I such that ¢» = 0. Then let E = E(R/I)
and obtain that (Et¢)r = 0. Right multiplication of elements of E by
1 is a one-to-one map of E into E. For if 0 meE and mr =0,
then select se R such that 0 = ms e R/I (possible since E is an essential
extension of R/I) and obtain that 0 = mr = mrR = mRr and msr =
0. This is a contradiction, since R/I is a division ring. It follows
from (Et)r = 0 that Et = 0. Consequently te E*.0. Therefore I” =
E-.0. Hence if N is a submodule of FE, then NI" =0 for some
integer n. Induct on % to show that N» = N for all re R\I. If n =
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1, then N is an (R/I)-vector space and it is clear that N» = N. If
the assertion is true for integers less than » and NI* = 0, then NI
is a submodule of M such that (NI)I** = 0, so NIr = NI by induc-
tion. Select se R such that 1 — sre I (possible since R/I is a division
ring). Then if ne N, we have n — nsre NI = NIr, say n — nsr =
n'r, n'€ N. We obtain that n = (n’ + ns)r€ Nr and hence N = Nr.
It follows that N = Nr for all submodules N of E and r<€ R\I. Apply
Lemma 2 to E and obtain that F is an R,-module with the same
submodule lattice as the R-module E. Let L = IR, be the maximal
ideal of R, and we obtain that EL* = 0. Form the chain R, 2 L &
-+ 2L*=0and set B, ={xc E|zL' =0} fort =1, ---, n. Then F =
E, and E;,,/E; is isomorphic to a submodule of Homg, (L}/L**, E) by
Lemma 1 of [6, p. 373]. Now any image of L/L*' is annihilated
by L. Furthermore if m e E\(R/I), then mI = 0 (else mR is irreducible
and meets (R/I) trivially). Also R/I = R,/L. Hence

Homg, (L}/L*+, E) = Hom g,.,(L*/L**', R,/L) ,

which is just the dual space of L*/L*'. Since R; is Artinian, L*/L*+
is finite dimensional and so E;,,/KE,; is Artinian. It follows that F is
an finite R;-module and therefore a finite B-module. So (1) implies (2).

The equivalence of conditions (2) and (3) follows from Theorem 3.

Finally suppose that (2) is true. As above, let J be the right
I-component of 0, £ = E(R/I) and K = E*.0< I. Since F is finite, it
is certainly Noetherian. We showed in the last part of the proof of
Theorem 3 that if E(R/I) is Noetherian, then I" & K for some positive
integer n. If x is any element of R such that z°.0< I, then ¢ K
by Lemma 6 of [6, p. 377] (simply lift the composition of maps xR —
R/(x*.0) — R/I to a map R— E). Consequently if x<c K, then there
is an element r € R\I such that xr = 0. Hence x belongs to J, the
right I-component of 0. Certainly J is contained in the I-component
of 0, which we denote by T. Thus "€ KEJ<E T. Then R/T is a
local ring with nilpotent ideal I/T. Consequently elements of (R/T)\
(I/T) are already units in R/T and R, = R/T. Also R/T=(R/K))(T/K),
which is Artinian since R/K is Artinian. Hence R, is Artinian.
We now obtain, exactly as in the proof that (1) implies (2), that
Nr = N for every submodule N of E and » € R\I. Consequently if z¢ T,
say axb = 0 for a, be R\I, then (Fax)b = 0. Therefore 0 = (Ea)x = Ex
and 2e K = E*.0. It follows that K = J = T, which completes the
proof that (2) implies (1).

REMARK 3. We have not been able to decide whether or not
condition (1) of Theorem 4 may be replaced by the apparently weaker
condition that R, is Artinian. In any case the condition that right
I-component equal I-component is vacuous if R is commutative.
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