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F U N C T I O N S W H I C H O P E R A T E O N J^LP(T), l<p<2

DANIEL RIDER

is the algebra of Fourier transforms of func-
tions in Lp of the circle. It is shown that if F is defined on
the plane and the composition Foφ e J^~Lχ whenever φ e J^~LP

then for all e > 0, F(z) = P(z, z) + O(| z \*'*-*) where P is a
polynomial in z and z and p-1 + q'1 = 1 (1 < p < 2).

1* Introduction* Throughout, Lp = LP(T) will denote the usual
space of functions on T, the unit circle, normed by

For /el/! the Fourier transform is given by

f(n) = -±-\' e~Mf(e»)dt (n = 0, ±1, ±2, . . •) .

is the algebra of Fourier transforms of functions in Lp(p ^ 1)
is the algebra of transforms of the continuous functions.

Let F be a complex function defined on the plane. F is said to
operate from ^Lp to JrLr provided the composition Foφ belongs to
j^Lr whenever φ e y i p .

We shall write F(z) = O(G(z)) to mean F(z)/G(z) is bounded near
the origin. It is an immediate consequence of Parseval's theorem that
F operates from ^L2 to ^L2 if and only if F(z) = O(z). On the
other hand it was shown by Helson and Kahane [2] that F operates
from ^ " L i to ^"Lx if and only if F is real analytic in a neighbour-
hood of the origin and, of course, F{0) = 0 (cf. [6, chapter 6]).

For 2 < g ^ oo it was shown by the author [3] that the functions
operating from ^Lq to JF"Lq and from &~C to J^~"Lq are the same
and combine the types of behavior of the examples above. We state
the result for completeness.

THEOREM 1.1. Let 2 < q <̂  oo and p~ι + q~ι = 1. The following
are equivalent.

( a ) F operates from ^Lq to
(b) F operates from ^C to
(c) F(z) ^c^ + CzZ + Odz^).
Half of the Hausdorίϊ-Young theorem [8, Thorem 2.3 ii] was used

to show that (c) implies (a) in the above. In fact, it is not difficult
to see that F operates from ^L2 to ^~"Lq if and only if F(z) =
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0(\z\*»).
The other half of the Hausdorίf-Young theorem [8, Theorem 2.3 i]

shows that if 1 < p < 2, p~ι + q~ι = 1 and F(z) = O(\ z \q'2), then F
operates from ^~LP to ^L2. It is also easy to see that this is a
necessary condition. Since polynomials operate from ^~LV to
we then have

THEOREM 1.2. Let 1 < p < 2 αm£ p" 1 + g"1 = 1. If F{z) = P(z, z) +

O(| z\q/2), where P is a polynomial in z and z (P(0) — 0), then F oper-
ates from JfLv to J?~LP and thus also from J^"LP to

We can assume the polynomial P has order less than q/2, for
higher order terms can be absorbed into O(\z\ql2).

The main result of this paper is the following partial converse
to Theorem 1.2.

THEOREM 1.3. Let 1 < p < 2 and p~ι + q~ι = 1. If F operates
from ^Lv to ^Lx, then, for all ε > 0,

(1.4) F(z) = P(z9z) + O(\z\^')

where P is a polynomial in z and z.

I have not been able to remove the ε in (1.4). In fact, I have
not been able to show whether or not zql2 log | z \ operates from # " L P

to ^ L ^ However, as a corollary to Theorems 1.2 and 1.3 we can
state the following complete result.

COROLLARY 1.5. Let 1 < p < 2 and p~ι + g"1 = 1. The following
are equivalent.

(a) F operates from \}r>v^Lr to J^L^
(b) F operates from \Jr>p^Lr to \}r>v^Lr.
( c ) F(z) = P(z, z) + O(| z \ql2-ε) for all ε > 0.

The proof of Theorem 1.3 uses a factorization of the Rudin-
Shapiro polynomials. The idea is to construct polynomials, P, with
few coefficients so that small changes in P cause large changes in
the norms of P. This is done in § 2.

In § 3 these polynomials are used to show that if F operates
then, for all complex w, all integers k and certain β,

(1.6) Σ {-iY())F((w + j)z) = O(| z |0 .

Now any polynomial in z and z of degree less than k satisfies (1.6).
In §4 it is shown that, except for a O(\z\β) term, these are the only
functions which satisfy 1.6, at least if β is not an integer and F(z) =
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0(1). This is then used to obtain a proof of Theorem 1.3.

2. The Rudin-Shapiro polynomials* The Rudin-Shapiro poly-
nomials are defined as follows: let PQ(x) — QQ(x) — 1 and define in-
ductively

Pk+1(x) = Pk(x) + x*kQk(x)

Qk+1(x) = Pk(x) - x*kQk(x) .

Then

(2.1) Pk(x) = 2 Σ ε(n)xn

0

where ε{n) = ± 1 is independent of k. As shown in [5] and [7],

(2.2) Σ ε(n)eint < 5(N + 1)1/2 (0 ^ t < 2π; N = 1, 2, . . . ) .

This definition differs slightly from that given in [5] and [7]. It
has also been given by Brillhart and Carlitz [1].

We have the following explicit representation for e(n) (cf. [1] and
[4, Lemma 2]).

LEMMA 2.3. If n has a binary expansion

n = δ0 + 2δλ + 2232 + + 2kδk (3, = 1 or 0)

then

ε(n) = Π (1 - 2δ^d -
1

In the following we will factor e(n) in various ways as was done
in [4]. Fix positive integers N and k and let 0 <£ n < 2Nk+1 so that
n has a binary expansion

n = So + 23, + + 2 * ^ , .

Define

(2.4) Pj(n) = Π (1 - 2SA-J U = 1, 2, . . . ft) .
( i l ) i V + l

Note also that w can be written in a unique way as

(2.5) n = nL + n22
Nj+1 +

where
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0 rg nγ < 2Nij-ί)

0 ^ n2 < 2N{k^]

0 ^ n, < 2^+1

and, by Lemma 2.3, ^(w) = e(w3). It also follows from Lemma 2.3
that

(2.6) ε(n) = f[ Pj(n) .

Define

the sum being from 0 to 2Nk+1 - 1 .
The usefulness of the R5 comes about because if S is the con-

volution product S = Rj.* R2* ••• * Rhi ^hen by (2.6)

2Λ
r A-4-1 !

S = Σ

Now, by (2.2), || S | U ^ 5 2 Λ ^ + 1 and since || S\\z = 2{Nk+1)l2 i t follows t h a t

(2.7)

Thus, very roughly, H^lli must be as large as 2NI\ The following
shows that ||J?y[|i is not much larger than this.

PROPOSITION 2.8.

\\Rj\\ι^2NI2N2k2C

where C is an absolute constant.

Proof. R3 can be written

(2.9) Rs - FXF2FZ

where

F1(t)= Σ e<κf

0

2N(k-j)-1

Ft(t) = Σ exp (in 2Ni+1t)
0

Fs{t) = Σ Φ) exp (in 2N(j~ι)t) .
0

To see that (2.9) holds, note that the product FλF2Fz consists of
2Nk+1 distinct exponentials between 0 and 2Nk+1 — 1. Also the coefficient
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of eint where n is given as in (2.5) is ε(n3)=pj(n) so that F ^
It is not difficult to see that || i ^ l l i ^ Ck2N2 and since, by (2.2),

|| F 3 |U ^ 5 2{N+ι)'2 the proposition follows.

PROPOSITION 2.10. For 1 < p ^ 2 α^d p-1 + g-1 =

Proo/. Since || R31|2 = 2(i™+1)/2 this follows from Holder's inequality
and (2.8).

LEMMA 2.11. For N and k positive integers there is a decomposi-
tion of {0, 1, 2, , 2Nk+1 - 1} into k + 1 sets Aθ9 Al9 , Ak such that
if

(2.12)

0 AA

then

(a) HΓ^IL

(b) || TN,k H, ^ CityNW11!*™-1"* (1< p ^ 2)

(c) I I S ^ I I ^ C ^ " ' 2

(d) HΛ^H^CίA;)^'*

(e) I Σ eiMί I ^ C(&)2™/2 ( i = 0, 1, , fc)
II -4j Hi

where the C(k) are (different) positive constants depending only on k.

For k = 2 this has been done in [4] .

Proof. Define

Now

NtkX^/ — x ^

where

k Σ
0

Since ^(w) = ± 1, φ(n) assumes only the values 0 , 1 , •••, & so t h a t
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if Aj consists of the n with φ(n) = j then TN>k is as in (2.12). (a)
then follows from (2.8) and (b) from (2.10).

Now if φ(n) — j , then precisely k — j of the Pi(n) — — 1, so that,
by (2.6), e(n) = ( - l ) w . Hence

SNιk(t) = (~ Σ
0

so that (c) follows from (2.7).
Define T°N,k = £ffc+1-* e

int, and inductively

-N,k
>k * τN,k.

Then {T^,k} (s = 0, 1, , k) are k + 1 linearly independent polynomials
which span the space of polynomials of the form Σ J cy ̂ A. eint. In
particular,

(2.13) SN,k = Σtb.Tά,k

where the bs depend on k but not on N.
Now it follows from (a) that

(2.14) || n,k ||, rg C(k)N2s2Ns'2 (s - 1, 2, . . •) .

Also

so that

(d) then follows from (2.15) and (c) since T^fk — RNίk. (e) holds for
the same reasons since, for each j , ^A. eint and {T*Ntk} (s — 0, , k — 1)
are linearly independent.

REMARK. Because T£,k = i2^,fc we must have || 2V,fc IU ̂  C(/b)2Λ/2.
It would be useful to know if the N2 in (a) can be removed. Also,
by the Hausdorff-Young theorem, || TNtk \\p ̂  C(k)2Nklq. If the right
side of (b) could be replaced by C(k)2NklQ, then the ε in Theorem 1.3
could be removed.

3* The main lemma* The purpose of this section is to use the
polynomials of Lemma 2.11 to prove the following.

LEMMA 3.1. Let F operate from ^"Lv to ̂ ~ L1(l<p^2; p-1 +
(Γ1 = 1). Assume that F(z) = O(\ z\β) for some β > 0. Then for each
positive integer k and each complex w
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(3.2) Σ (-iy®F((w + j)z) = O(| z Π
0

where

Before proving this we need the following lemma If ^operates
from ^~LP to ^"Lx then, for fe Lp, F °/ will denote the function in
LL such that (Fof)A(n) = F(f(n)).

LEMMA 3.3. Let F operate from ^ L p to
( a ) There are constants M and δ such that \\ f \\P < δ implies

\\Fof\KM.
( b ) F(z) = O(z).
( c ) F(0) = 0.

Proof. The proof of (a) is the same as that of Lemma 1 of [3].
By considering Sidon sets, is is easily seen that F must operate
from J?~L2 to J^L2 and this gives (b). (c) is obvious.

Proof o / 3 . 1 . k and w are fixed throughout this proof. If 0 <
I z I < 1, then a positive integer N can be chosen so that

/g 4_\ 2~N{{k+g)iq) <. I z I <C 2~{N~1){{k+q)l9)

Let TNtk be as in Lemma 2.11 and define

f(t) - z{TNtk(t) + v>n,k(t)} .

Then by (3.4) and (2.11 (b))

Thus if ikf and δ are as in Lemma 3.2 and | z \ is small enough then
< δ so that

(3.5)

Now

(3.6)

where the bs

F o f

satisfy

WFofW^

k

' = Σ F((w
0

k

s ' ^s-^ Nyk

0

4- ό\?\ V
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F((w + j)z) = i = 0, 1, , k) .

Solving for the bs and using the assumption that F{z) = O(\ z \β) gives
that, for \z\ small enough,

(3.7)

and

\bs\^C(k)\z\β (8 = 0 , l , . .)

det

/I 0 0 . 0 F(wz)

1 1 1 1 F((w + 1)«)

1 2 2 ! 2*-1 F((w + 2)2)

1 3 32 •'•• 3*-1 F((w + 3)2)

(3.8) V1 k k2 + k)z) I

det

/ I 0 0 •••

in...
1 2 22 •

1 3 32 •

0

1

0 ^

1

"• A;*"1 Λ*/

where

(3.9)

0 is independent of z. Now by (3.5) and (3.6)

Σ\bk\\\n9k\\ί£M+Σi\b.\\\Tiί,k\\ι.

L e m m a 2.11d, (2.14), (3.7), (3.8) a n d (3.9) t h e n g ive, if \z\ is
smal l e n o u g h ,

(3.10)

ikf
+

By (3.4) the right side of (3.10) is bounded by

C(k){M\z\k9/{2{k+q)) + |s|/>+*/«<*+*>}

and this gives (3.2).

4* Proof of Theorem 1 3 We can now prove Theorem 1.3
provided we have the following theorem.
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THEOREM 4.1. Suppose F is bounded near the origin and for some
positive integer k and each complex w, F satisfies

(4.2) Σ (- l)'(5)F((w + j)z) - O(| z \β)

where β > 0 and is not an integer. Then

F(z) = P(z, z) + H(z)

where P is a polynomial in z and z of degree less than k,

H{z) = 0(\ z |0 and H(0) = 0 .

REMARKS. Since β > 0 and H(0) — 0 it follows that H and thus
also F is continuous at 0. F need not be continuous anywhere else.

The theorem is false if β is an integer as can be seen by letting
β = 1, k = 2 and F(z) = z log | z \ (F(0) = 0).

It is also false if F(z) Φ 0(1). For there are functions defined
on the plane which are unbounded near the origin and satisfy F(z +
w) = F(z) + F(w) for all z and w. The left side of (4.2) is then 0
for all k > 1. Being unbounded F cannot satisfy the conclusion of
the theorem.

Proof of 1.3. F operates from J?~LP to J^L X where 1 < p < 2.
There is a positive integer r such that r < qβ <̂  r + 1. We will
prove the theorem by induction on r.

First, we can assume that

(4.3) F(z) = O(| z \r~δ) for all δ > 0.

For if r = 1 then, by Lemma 3.3b, (4.3) holds even with δ = 0. On
the other hand, suppose r > 1 and the theorem holds when r - 1 <
q'/2 g r. Since F operates from ^~LP to ^^L x , it operates from
^L8 to ^L, where s-1 + βr)- 1 = 1. Thus F(z) - P(z, z) + O(| * \r~ε)
for all ε > 0. Since polynomials operate we can assume p — 0, that is
(4.3).

Next choose k so large and then δ so small that βf = min (r—
δ + g/4(fc + q), q/2{k + q)) > r and also so that βr is not an integer.
Then by (4.3), Lemma 3.1 and Theorem 4.1

Thus, by subtracting another polynomial from F, we can assume

(4.4) F(z) = O(| z \βr) for some β' > r .

Finally, let 7 = sup β' such that (4.4) holds. If y < q/2 then we
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can choose k so large and then r < β' < 7 so that

(4.5) β» = min (β' + q/4(k + q), q k ) > 7
V 2(k + q)y

and /3" is not an integer.
Then by Lemma 3.1 and Theorem 4.1 again

Since F(z) = O(\ z \βf) and r < β' < /3" < r + 1 we must have P(z, 2) =
O(| z |r+1) so that F(z) = O(\ z \β"). Since β" > 7 this is a contradiction.
Thus (4.4) holds for all βf < q/2 and this completes the proof of the
theorem.

It now remains to give a proof of Theorem 4.1.

LEMMA 4.6. Suppose F, defined on the plane—{0}, satisfies

where q > 1.
( a ) If F = 0(1) and s > β > 0, έ / ^ i φ ) = O( |z |0
(b) If β>s>0 then F(z) = K{z) + O(| s |0 where K{qz) - (T.K(z).

// also F{z) = 0(1) ίλew ϋΓ(s) - O( |^ | s ).

The proof of (a) is simple and that of (b) is the same as the
proof of Lemma 3 of [3].

LEMMA 4.7. Suppose F is bounded near the origin and, for some
positive integer k and each nonnegative integer p, F satisfies

0

where β > 0 and β is not an integer. Then

(4.9) F(z) = F(0) + Σ Fό{z) + 0 ( | z \β)
1

where

(4.10) Fs(qz) = q'Ffr)

for all positive integers q and F5{z) — O(\ z3' |).

Note that it follows from the conclusion that F is continuous at 0.

Proof. The lemma is clear if k = 1, so assume k > 1 and the
lemma holds for k — 1. Fix q > 1, an integer and for a nonnegative
integer p consider the polynomial
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Now S has a zero of order A; at 1 and thus can be written

S(x) = (1 - λ) 4 Σ α,λ, (6 = (p + A; - 1)? - k)

By comparing the coefficients of λ* in the two forms of S it is
seen that for any function F

)s®(-iy®F((s+j)z) .
υ υ υ

Thus if F satisfies the hypotheses of the lemma for k then the
function T(z) = F(qz) - qk^F{z) satisfies them for k - 1. Thus

fc-2

1

where the Tό satisfy (4.10). Let

(4.11) H{z) = F(z) - F(0) -
k-l

0 QJ —

Then H{qz) - qk~Ή{z) = O(\ z \β). Since β is not an integer and H(z) =
0(1) one of the two cases of Lemma 4.6 holds so that H can be written

where K(qz) = qk'ιK{z) and K{z) = O(\ zk~ι |). If β < k - 1 then we
can assume K = 0 and by using any #, (4.11) gives the desired form
for F. If β > k - 1, then it is easily seen that F3 = ϊyfa* - g "̂1) and
Fk_γ = iΓ are independent of the choice of #. All the F$ then satisfy
(4.10), and by (4.11), F is given by (4.9).

Proof of Theorem 4.1. We have that for each complex w

(4.12) Σ (- mϊ>F((w + j)z) = O(| z
0

Because of the previous lemma we need only consider functions of
the form

F(z) - F(0) + Σ V . ( « )
1

where the Fs satisfy (4.10) and Fs = 0 if s > β. Also since constant
functions satisfy (4.12) we can assume F(0) = 0. If β < 1 there is
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nothing left to prove so assume β > 1.
Now by (4.10) and (4.12), for each positive integer g,

Σ-^Σ
i qs o

Fixing z and letting q —»• °° then gives

so that

(4.13)
0

for all z and w. Similarly (4.13) holds for F2f FZy -• , F f c _ 1 Then,
for each complex w, the function H{z) = Fs(w + 2) satisfies the
hypotheses of Lemma 4.7, but this implies that H is continuous at 0
so that Fs is continuous everywhere and Fs(xz) — xsF$(z) for all x Ξ>
0. Finally, for each integer n,

Kn(z) = \
Jo

satisfies (4.13) and for x ^ 0

Kn(xeu) = xseintKn(l) .

It can be easily seen directly that Kn{l) must be zero unless s + n
is even and | n \ ̂  s which implies Fs(z) — Σ ί crz

rzs~r and this com-
pletes the proof of the theorem.
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