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ESTABLISHING ISOMORPHISM BETWEEN
TAME PRIME KNOTS IN Ez

DAVID E P E N N E Y

The "formula" of a polygonal knot in Es is defined by
appropriate labeling of the crossings in the regular projection
of the knot. Admissible transformations of such formulas are
defined (for example, cancellation of the consecutive symbols
x and x~r), and prime formulas are defined. It is shown that
if two knots have formulas which are equivalent by applica-
tions of admissible transformations, and one of the formulas
is prime, then the knots are equivalently embedded in E*.

Since each tame knot type includes a finite polygon, we restrict
our attention to polygonal knots in E\ Such a knot is the image of
a one-to-one continuous mapping g of [0, 1) into E* such that (1) g(t)
approaches g(0) as t approaches 1, and (2) the image of g is the union
of a finite number of straight line intervals. We may of course restrict
our attention to such knots K — Im(g) as lie in general position in
E3; that is, π (defined by π(x, y, z) = (x, y, 0)) is one-to-one on K except
at a finite number of points, called the double points of K, where π
is precisely two-to-one, and no vertex of K is a double point

Let x19 x2, , xn be the points of [0, 1) mapped two-to-one by / =
πg, arranged in their natural order. The formula of the knot K is
then

where e(i) is 1 or —1 according to the following rule: If /(#*) = f(%j)
and the ^-coordinate of g(Xi) exceeds that of g{x0), then e(i) = 1 and
e(j) — — 1. In practice we suppress the positive superscripts. For
example, the formula of the trefoil knot drawn in the ordinary way
can be written αδ"1cα~1δc~1, where α, 6, and c are the three crossings
in the plane projection of the trefoil. If there are no double points,
the knot has empty formula denoted by 1.

Let a knot formula F be given. By an admissible operation on
F is meant the application to F of one of the following ten transfor-
mations.

(1) Reversal of the order of symbols of F.
(2) Coding; that is, consistent substitution of different symbols

for the symbols of F, while preserving superscripts.
( 3) Negation of all superscripts in F.
(4) Cyclic permutation of the symbols of F, as for example re-
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placing

x yz w

b y

z wx ••• y

(5) Replacing

• ab cα"1 ίrV"1

by

• ba a~ιc c~ιb~ι ,

with any order of occurrence of these symbols in pairs or as pairs,
provided only that the following three conditions are met:

(a) No other changes are made in F;
(b) Two pairs of adjacent symbols have like superscripts; and
(c) Between each pair of pairs of symbols, there occurs at least

one symbol whose inverse occurs between one of the other two pairs
of pairs of symbols. We consider this condition to be satisfied also
for two pairs of symbols if no other symbols occur between them,
but this is allowable for only one of the three pairs of pairs.

( 6 ) If F has the form

a,a2 an^anbLb2 bm ,

with superscripts unimportant, and is such that for each i, aγι — a5

and bτι = bo for some j , then F may be replaced by

aλa2 a^jbjbz bman .

(7) If a symbol is adjacent to its inverse, both may be deleted.
Moreover, if x does not occur in F, then either xx~ι or x~λx may be
inserted anywhere in F.

(8) In the case that between the two occurrences of a symbol
all symbols have the same superscript, then all of these symbols and
their inverses may be deleted from F.

(9) If F has the form zPz^Q, where P and Q are sequences of
symbols such that x is a symbol of P if and only if x~~ι is a symbol
of P, and Q' denotes the symbols of Q in the same order but with
superscripts negated, then F may be transformed into PQ'.

(10) If two symbols x and y of F are adjacent with the same
superscript, their inverses x~ι and y~ι elsewhere in F are also adjacent,
and transformation (9) does not apply with either x or y in place of
z, then x, y, x~\ and y~ι may be deleted from F.



ESTABLISHING ISOMORPHISM BETWEEN TAME PRIME KNOTS IN E* 677

Principal results* The first theorem guarantees that if any
sequence of admissible operations is applied to the formula F of a knot
K, then the resulting formula is the knot formula of some knot
isomorphic to K (the knot L is said to be isomorphic to K provided
that there exists a homeomorphism of E3 onto itself carrying L onto
K).

THEOREM 1. Let K be a polygonal knot in regular position in
E3 with formula F, and let G be a formula obtained from F by a
single application of an admissible operation. Then there exists a
polygonal knot L in regular position in E3 such that G is the formula
of L and L is isomorphic to K.

The proof of Theorem 1 presents no intuitive difficulties and few
technical ones The details of the cases for the first seven admissible
operations are available in the author's doctoral dissertation [3]; alter-
natively, most of the techniques are similar to those of Graeub [1].
Hence we omit the proof here. It is worth noting that the effect of
the first four admissible operations is to allow one, when given a
presentation of a knot, to select an arbitrary initial point and direction,
and to label the crossings with any distinct symbols whatsoever. In
addition, in only the third admissible operation is the constructed
homeomorphism between K and L not orientation-preserving.

LEMMA 1. Let the polygonal knot K in general position in E3 be
the image of the mapping g of [0, 1) into E\ let F denote the formula
of Ky and let Cj^Cz, , Cn be the complementary domains in E2 (as
π{E3)) of π(K). Suppose that Cx is the unbounded complementary
domain of π{K) and that Cl(CΊ) Π C1(C2) contains an arc. Then there
exists a polygonal knot L in E3, the image of the mapping h on [0, 1),
in general position, such that

(a) The formula of L is also F;
(b) πg and πh have the same set of double points au α2, , ak

in [0,1);
(c) If &!, ί>2, , bj are the components of (π^-^Bdry C2), then there

is a complementary domain D2 of π(L) such that if B — bt U b2 (J U
bά, then πh(B) = Bdry (D2);

(d) D2 is the unbounded complementary domain of π(L); and
(e) L is isomorphic to K.

This lemma just says that if one of the complementary domains
of π(K) is adjacent to the unbounded one, then the part of K that
projects onto their common boundary arc can be lifted and moved to
the "other side" of K, without disturbing the rest of K or its formula
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F, so that the first-mentioned complementary domain "becomes" the
unbounded one. The same comments on this proof apply as they did
in the comments on the proof of Theorem 1. And by successive
applications of this lemma we can "make" any of the complementary
domains of π(K) "become" the unbounded complementary domain.

Now suppose that K and L are polygonal knots in general position
in Es, the images of the mappings g and h on [0, 1) respectively, and
suppose that π{K) — π(L). We define next what it means for the
crossings of K to correspond to the crossings of L in the natural sense.

Let R — π(K) = π(L), and let q be any double point of R; that
is, q = πgidi) where α* is a double point of g. We suppose that the
mapping h is reparametrized if necessary so that the double points of
h in [0,1) are the same, in the same order, as the double points of g.
Let a and β be two closed subarcs of R that contain no double points
of R other than q and such that a crosses β at q (in the sense of the
definition on page 182 of [2]). Let xx and x2 be the endpoints of a,
and xz and #4 the endpoints of β. Let yt = K Π τc~ι{x^ for 1 ^ i ^ 4
and Wi = L Π τc"x{x^ for 1 ^ i <; 4.

Let aκ be the subarc of K with endpoints yt and y2 such that
π(aκ) = a. Let βκ be the subarc of K with endpoints ys and y4 such
that π(βκ) = β. We similarly define aL and βL. Let z1 denote the
^-coordinate of aκ Π π~\q), let z2 denote the ^-coordinate of βκ Π π~\q),
let 23 denote the ^-coordinate of aL Π 7r-1to)> a n ( i ^e^ z* denote the z-
coordinate of βL Π π~\q).

To say that the crossings of K and L correspond in the natural
sense means that if q is any crossing of R, and the z4 are defined as
above, then zι < z2 if and only if z3 < z4. Of course, all this means
is that when one subarc of K is above another, then the corresponding
subarc of L is above the other corresponding one, the correspondence
determined by use of the common projection R of K and L.

LEMMA 2. Suppose that K and L are polygonal knots in general
position in E3 such that π(K) = π(L), and the crossings of K cor-
respond to the crossings of L in the natural sense. Then K is isomorphic
to L.

Proof. Using the natural correspondence, we map appropriate
double points of K to the corresponding double points of L. This
function moves a finite number of points vertically. Using a triangula-
tion of Ez in which both K and L are subcomplexes, this function
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may be extended to a homeomorphism of all of E3 onto itself taking
K onto L.

Closely related, but not equivalent, to a knot's being prime is the
property of having a prime formula, which we next define.

The knot formula F — xγx2xz xn is said to be prime if there is
no pair of integers j and k such that: (a) 1 S j < k ^ n; (b) k — j <^
n — 2; and (c) for each p with j ^ p ^ k, there exists q such that
k -^ q ^ k and fe)"1 = xq.

THEOREM 2. Suppose that K and L are tame polygonal knots in
general position in E3 such that K and L have the same formula F.
If F is prime then K is isomorphie to L.

Proof. Let K be the image of the mapping g on [0, 1) and L,
similarly, the image of h. Let R = π(K) and S — π(L). Then πg and
πh are prime mappings in the sense of Treybig [4] because F is prime.
Let {αlf α2, •••, an} be the set of double points of πg in [0, 1). Then
F has length n, and so since F is also the formula of L, then πh
also has n double points b19bi9 •••,&» in [0,1). We reparametrize h
so that b{ = α* for 1 ^ i ^ t^.

Since if and L have the same formula, the double points then
double up in the same order; that is, if α̂  Φ ad but πg(a^) — πg(aj),
then also πh{a^ — πh{a5), and conversely. Moreover, as F is the same
for K and L, it follows that K and L have the same overcrossing
structure in the sense that if a{ Φ a3- but πg(a^) — πg(a3), then the
2-coordinate of g{a^) exceeds that of g{a3) if and only if the ^-coordinate
of h(ai) exceeds that of h(a3).

Let D be a complementary domain of R = π(K), and let cly c2, ,
c3 be the components of (πg^ζβdry D). By Theorem 1 of [4], there
is a unique complementary domain E of S = π(L) such that the com-
ponents of (πh)"1 (Bdry E) are exactly c19 c2, , cά. Moreover, by
Lemma 1 of this paper, we may assume that D is unbounded if and
only if E is unbounded.

By Theorem 3 of [4], there is homeomorphism f1 from E2 (as
π(E3)) onto itself such that h = fg on [0,1). We extend Λ to E3 by
defining fz(x, y, z) — (/i(α?, y), z). Then f2{K) and L have the same
regular projection S, and as f2 is constant in the third coordinate,
the crossings of f2{K) and the crossings of L correspond in the natural
sense. By Lemma 2 of this paper there is a homeomorphism / 8 of
E3 onto itself such that f,(f2(K)) = L.
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Define / from Ez to itself by / = / 3/ 2. Then / is a homeomorphism
of Ez onto itself such that f(K) = L. Hence K is isomorphic to L.

Our last result is also the principal result of this paper.

THEOREM 3. // K and L are tame polygonal knots with formulas
F and G respectively, G is prime, and G can be obtained by the
application of a finite number of admissible operations to F, then K
is isomorphic to L.

Proof. It of course suffices to demonstrate the conclusion of the
theorem in the case that only one admissible operation is applied to
F. Suppose then that this is the case. By Theorem 1 there exists
a knot L', polygonal, and in general position in E\ such that U has
formula G and U is isomorphic to K. But G is prime. Hence, by
Theorem 2, U is isomorphic to L. Therefore K is isomorphic to L.

Concluding remarks* The converse of Theorem 3 has been
established by Treybig in [6], and in [7] he has partial results for
the equally interesting question of the existence of a bound on the
number of admissible operations required. Some of this work is based
on his earlier research in [5], in which, among other things, he charac-
terizes those "formular" which are knot formulas. A complete answer
to the bound problem would permit an algorithmic approach for the
construction of knot tables, no doubt with the use of electronic com-
puters for reasons of practicality.
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