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THE UNIFORMIZING FUNCTION FOR A CLASS
OF RIEMANN SURFACES

J. E KIRK, JR

This paper considers a class of simply connected Riemann
surfaces which are shown to be of parabolic type. Infinite
product representations are obtained for both the uniformizing
function and its derivative.

The class of surfaces. For each integer n ^ 1 let [α2Λ_i, &2»-J
and [b2n, a2n] denote closed intervals of the real line satisfying 0 <
«2»-i < b2n-ι < hn and b2n+1 < b2n < a2%. Let Sn denote a copy of the
w-sphere. Slit S1 along [a19 6J, slit S2n along both [a2n_19 62%__J and
IK, cίzn], and slit S2n+ι along [a2n+ί, b2n+ί] and [62w, a2n]. A surface F

belonging to the class is constructed by joining S2n-i to S2n along
[α2%-i, b2n^] and S2n to S2n+1 along [b2n, a2n] with the intervals forming
first order branch lines.

The uniformizing function. F is a simply connected, open Riemann
surface and is thus either parabolic or hyperbolic. There is a unique
analytic one-to-one mapping f(z) which maps {\z\ < r ^ <^} onto F
and satisfies /(0) — 0 e Sι and /'(0) = 1. An argument similar to that
in [2, p. 1137] shows that f(z) is real if z is real. For notation let
f(δk) = 0eSk, f(yk) = - eSk, f(ak) = ak and /(^&) = bk. The image
of St under /^(z) is a region containing the origin and bounded by
a Jordan curve C1 which is symmetric about the real axis. For n > 1
the image of Sn is an annular region about the origin bounded by two
Jordan curves, CW_L and Cn, each symmetric about the real axis. For
n ^ 1, Cn intersects the real axis at an and βn only. Furthermore,

βn+ι < βn < Ύi < 0 < α2%_1 < δ2n < y2n < a2n < τ 2 % + 1 < §2n+ι < a2n+ί .

The closed surfaces and rational functions. Let Fn denote the
surface formed from the first 2n sheets of F with the cut along [b2n,
a2n] on S2n deleted. Fn is an elliptic surface so there is a unique
rational function Rn{z) mapping the ^-sphere one-to-one and onto Fn

which satisfies Rn(0) = 0eSί9Rn(oo) = co e S2n and Rf

n{Q) = 1. For
notation let Rn{SkJ = 0eSk, Rn(ΎkJ = oo e Sk, Rn(ak,») = ak and Rn(βk,n) =
6 .̂ Also, throughout the following the notation 1 — z/aφ = α*, 1 —
/̂/Ŝ  = /9|, 1 — 2/7̂  = 7* and 1 — z/δφ — δ$ is used. Then
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and

since Rn{z) and R'n(z) must contain exactly these factors. The zeros
and poles of Rn(z) and the points corresponding to the branch points
of Fn are real and their ordering is similar to that for f(z).

LEMMA 1. F is parabolic.

Proof. Let Dn be the plane with (-co, β2n-ιn\ on the real axis
deleted. Let Δn be the domain in the plane which is the interior of
the curve C2n excluding the segments [β2n, β2n~λ and [y2n, a2n]. Then
ψn(z) = f~ι[Rn{z)] maps Όn onto An. An argument similar to that in
[2, p. 1138] shows that F cannot be hyperbolic so that F is parabolic.
Thus f(z) maps the plane onto F. Furthermore, the sequence {Dn}
converges to its kernel which is the plane.

LEMMA 2. Rn(z) —> f(z) subuniformly (uniformly on compact sub-
sets) in the plane as n-+oo. Furthermore, δktn—+δk,yk>n—+yk,akιn—*
ak and βk>n — βk as n—>c°.

Proof. Since the sequences of domains {Dn} and {Λn} converge to
their kernels which in both cases is the plane then the sequence
{f~ι[Rn{z)\} converges subuniformly in the plane [3, p. 18] to the
identity. Hence Rn{z) —* f(z) subuniformly in the plane. It follows
from Hurwitz's theorem that δk>n —> δk, yk,n —> yk, akn—>ak and βkt% —>
βk a s n —• co.

LEMMA 3. The infinite product

Π(z) = (Φΐ) Π (δίM)
k = 2

converges subuniformly in the plane.

Proof. Since δk —• oo and 7^-^00 as k —• 00 then if R > 0 there
is an integer n0 = nQ(R) > 1 such t h a t for k :> nQ — 1 both δk > R and
yk > R. Thus, log [δΐ/yt] is defined for \z\ ̂  R. Since for k ^ 1,
0 < δ2k < 72fc < y2k+ί < δ2k+ί, then for n ^ 0, p ^ 0 and \z\ ̂  i?,

no+n+p

Σ log(ίί/7ί)
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Because Rjiδ^^^ — 22) —>0 as n—• <» then the uniform Cauchy criterion
is satisfied in \z\ ̂  R by the infinite series Σ ^ o ^ ί ^ * / 7 * ] * This * s

sufficient for Π(z) to converge subuniformly in the plane.

LEMMA 4. Π{z) = f(z).

Proof. Because Ίk,n-+Ίk and δk>n —>δk as n —> oo there exists R >
0 and N > 0 such that if n > N and | s | ^ i2 the quotient Rn(z)/Π(z)
is nonzero and analytic with value 1 at z — 0. Thus, using the
principal value of the logarithm,

log [R%{z)IΠ{z)\ = log (7!*/7ί ) + Σ cm^m where for 2 < p ^ 2^ - 1 ,

m

Σ

22(1/7Γ - 1/«Γ - 1/7?,.

k=p

Because

and

then \cm(n)\£

Σ (1/7? -

Σ (1/7?,. - 1/5?,,)

<

<

Σ (1/7? - 1/S? - 1/7?,.

This bound for cm(ri) has limit 2/δJLi as n —> oo and 2/<?™_1 —* 0 as p
oo. Hence cm(n) —• 0 as w —• oo. The convergence of {log
is subuniform in the plane and Ίun—>yι as n—> oo. Thus, as n
lim log [B%(z)/Π(z)] = log [f(z)/Π(z)] - 0 so that /(») =

LEMMA 5. The sequences An =

Cn = Σ i ϊ l 1 l/7fc,n « ^ bounded.
Λ = Σ l t Ί 1 Vβk,n

Proof. There is some B > 0 such that R'n{z) Φ 0 if \z\ ̂  i? and

thus,

logΛi(2) = Σ <
m=i

Σ (2/7?,. - l/al% - 1/βΐJ .

Let v — vn denote the coefficient of z in this series expansion. For
n ^ 1 and k > 1, 0 < yk w < αfc>Λ and for & ̂  1, /5fc n < 0 so that, 2/7ltΛ -
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l/aun -vn = Bn + Σ £ ΐ ( l / α * . ~ 1/τ* J - Σ f = ΐ l / 7 ^ < Bn < 0. As n —
oo, log Rή(z) —> log /'(#) subuniformly in the plane and thus,

- oo < lim(2/γ1>Λ - l/aun - vn) ^ lim inf Bn ^ 0.

Hence the sequence {Bn} is bounded. The remaining two sequences
are bounded below and the inequalities Cn < vn + l/aUH — l/τ l fH and
-A* < C» + 1M,» — 1/Tif» show they are bounded above.

LEMMA 6. The series Σ ϊ U 1/A» Σ?=i 1/τ*, Σ?=i 1/α* α^d Σ?=21/«*
convergent.

Proof. Each of these series is monotone. Using Lemma 2 and
the notation and results of Lemma 5 it follows for p ^ 1 that as n —> oo,

- oo < lim inf £„ ̂  lim Σ 1/A, = Σ I/ft < 0 .

Thus the first series converges. Σ?=il/^& converges since it is monotone
increasing and for p ^ 1 and n —> oo,

l/7i,» ^ lim sup Cw < oo .
fc=l fc=l

The remaining two series have positive terms and are dominated by
convergent series since for k > 1, 0 < l/δA+1 < l/ak < I/T*. Thus, they
also converge.

LEMMA 7. The infinite product

Q(z) = Π WβMriY]

converges subuniformly in the plane.

Proof. This follows from Lemma 6.
As a further consequence of Lemma 6 both Q{z) and Π{z) may also

be expressed as a quotient of products.

LEMMA 8. f'{z) = Q(z) exp (δz) with δ real.

Proof. For some R>0 both Q(z) and R'JP) are analytic and non-
zero in IzI < R. Hence, for \z\ < R,

log [R'Λz)/Q(z)] = Ί^iTlm) | j g 1/α*
2n—l oo 2n—1 c©

- Σ l/«?, + Σl/A - ΣViSίn - Σ

+ 2Σ 2/7?, J .
Jk = l J
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From Lemmas 5 and 6 there exists M > 0 such that for n ^ 1

" Z I M . < M and Σ 1/α* < M .
k=i k=i

Also, for k ^ 1 and n Ξ> 1, ak < αA + 1 and αΛ,Λ < αA+1,w so that

k/ak < Σ l/αp < M
p = l

and

k/ak,n < Σ l/α*,» < M .
p = l

Thus, for p S: 1, |Σ"=p 1/«Γ - Σ " ? l/αΓ,.|

< Σ (M/k)m +

This last expression has limit zero as p —• co provided m ^ 2. Thus,
for m ^ 2, it follows that as n —> oo,

lim Γ Σ 1/α? -

= lim[Σ 1/α? -Σl/αΓ .l = 0

Similar arguments show that as n —> oo and provided m Ξ5 2,

lim [ Σ 1//5Γ - ' Σ 1//SΓ.-1 = l i m ΓΣ 1/7Γ - Σ'I/ΎΓ.J = 0 .

Hence, if δ denotes the limit as n —• oo of the coefficient of z in the
expansion of log [R'n(z)/Q(z)] then as n —• co, §2; = lim log [R'n(z)/Π(z)] =
log [/'(2)/Q(«)] so that /'(s) - Q(«) exp (δz).

LEMMA 9. δ — 0 .

Proof. Since Q(«) is composed of cannonical products of genus
zero then for e > 0 there exists R > 0 such that if | z | > R and 0 < p <
\argz\ < TΓ-^then \Q(z)\ ̂  exp (ε\z\) and l/\Q(z)\ ^ e x p ( ε | « | ) . Thus,

exp(δ^(^) - e|s|) ^ |/'(«)( ^ exp (δέp(z) + e|^|) .

Let V1 and F2 denote open sectors in the first and second quadrants,
respectively, with vertex at the origin and sides contained in the open
quadrant. If δ < 0 and ze VΊ then &(z) > 0 and there exists ψι > 0
such that for \z\ > R, \f'(z)\ ^ exp (Φi\z\). Let rn denote the distance
from the origin to the portion of the curve Cn in Vι and let zn and
ζn denote the intersection of Cn with the sides of Vι where 0 < θ —
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arg ζn — arg zn. For n sufficiently large,

2w+l ^2n+l ^ J \rs2n+l) J \~2n+l)

= I f'{z)\dz\^ θr2nexp ( 0 ^ )

where the integral is along CZn+ι. If n —* ©o then <9r2w exp (^!r2n) —> oo
and since α2w+1 > 0 then 62w+i —* °°

However, if ze V2 then &(z) < 0 and there exists &> > 0 such
that for \z\ > R, \ f'(z) \ ̂  exp {-φ2\z\). It follows that f(z) is bounded
in V2 If z e V2 and z e C2n then 0 < b2n < /(«) so that {62J is bounded.
This is a contradiction since b2n+1 < 62% Thus 5 ^ 0 . A similar argu-
ment shows 3 ^ 0 so that d = 0.

THEOREM. A Riemann surface belonging to the class described is
parabolic and a uniformizing function f(z) for a member of the class
has the representation

f(Z) = (2/7*) r m / 7 , * ) .

The derivative has the representation

/'(*) = nι*ΐβi/(Ύtr].

For k^l,

Pfc+l \ βk \ 7 i <C W <C &2k—1 ̂  ^2k \ 72& <C ^2fc \ 72fe+i <C ^2&+l \ &2k+l

Furthermore, Σ?=i !/«*> Σ ί U 1//8*, Σ?=i 1/v* ^ ^ ΣΓ=21/δ* converge.

The author wishes to express his appreciation to Professor H. B.
Curtis, Jr for his suggestions,
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