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ON THE GENUS OF THE COMPOSITION
OF TWO GRAPHS

ARTHUR T. WHITE

Given two graphs G and H, a new graph G(H), called
the composition (or lexicographic product) of G and H, can
be formed. In this paper, a formula is developed to give
the genus for a large class of lexicographic products. In the
simplest special case, the genus of the product is given by
the first Betti number of one of the factors.

In the present context, a graph is a finite 0- or 1- complex. For
terms not defined below, see [2] and [6].

The genus, Ύ(G), of a graph G is the minimum genus among the
genera of all closed orientable 2-manifolds M in which G can be im-
bedded. An imbedding of G in M is said to be minimal if M has
genus Ύ(G). The first Betti number, β(G), of a graph G is given by
β(G) = q — p + k, where G has q edges, p vertices, and k components;
β(G) counts the number of independent cycles in G. Given two graphs
G and H with disjoint vertex sets V(G), V(H) and edge sets E(G),
E(H) respectively, the composition (or lexicographic product) G(H)
has vertex set given by the cartesian product V(G) x V(H), with two
vertices {u^ vά) and (uk, vm) adjacent in G(H) if and only if either:
(i) ut = uk and vάvm is in E(H), or (ii) u-uk is in E(G). For example,
the regular complete m-partite graph on mn vertices is just the
composition Km(Kn), where Ks denotes the complete graph on s vertices,
and Ks denotes the complement of Ks (a 0-complex).

We will also employ the following notions. If G is imbedded in
M, the components of M — G are called regions. A region bounded
by a circuit of length 3(4) in G is said to be triangular (quadrilateral).
The number of triangular (quadrilateral) regions in a given imbedding
is denoted by rd(r4). In general, rk designates the number of regions
having a connected boundary consisting of k edges of G, and r denotes
the total number of regions. It is well known (see, for example, [6])
that, for a minimal imbedding of a connected graph G having p vertices
and q edges, the Euler formula p — q -h r = 2 — 2y(G) applies. Also,
it is easy to show that 2q — Σ^s^V We note that a 3-cycle in a
graph G need not bound a triangular region in a given minimal im-
bedding of G. For example, there are 35 3-cycles in K7; yet any
minimal imbedding of K7 has r = r3 = 14.

The following result of Battle, Harary, Kodama, and Youngs [1]
will be useful:
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THEOREM, The genus of a graph is the sum of the genera of its
components.

We are now prepared to state the main result.

THEOREM. Let G have p vertices of positive degree, q edges, k
nontrivial components, and no ^-cycles. Let H have 2n(n ^ 1) vertices
and maximum degree less than two. Then i(G(H)) = k + n(nq — p).

Proof. Let G have nontrivial components Cif ί = 1, , k; then
G(H) has nontrivial components Cι{H), i = 1, •••,&. It will suffice
to prove the theorem for G connected, since then (by the result of
Battle', Harary, Kodama and Youngs):

= Σ (1 + Mnqi - Pi))

= k + n(nq — p) .

We therefore assume G to be connected. Let V{G) — {ul9 , up},
and V(H) = {vlf - ,v2n}.

Suppose the vertices (ui9 v3), (uk, vm), and (ur, vs) form a 3-cycle
in G(H). Since there are no 3-cycles in G, the vertices ui9 uk, and
ur cannot be distinct in V(G). Hence every 3-cycle in G{H) must
contain an edge of the form (ui3 v3){ui9 vm). There are exactly pe such
edges in G(H), where e designates the number of edges in H(0 <^e^ri).
Since each one of these edges can appear in the boundary of at most
2 triangular regions, it follows that r3* ^ 2pe in any imbedding of
G* = G(H). (A parameter with (without) an asterisk will apply to
graph G^(G)).

We will construct an imbedding of G* so that r* = 2pe and rf =
r* — 2pe; since r* = Σί^3 r * a n d 2g* = Σί§3^r*> r * w ίH be maximal
for such an imbedding. Then, by the Euler formula, the imbedding
itself will be minimal. Now, for G*, p* = 2np, and g* = pe + 4n2q.
Also, if r3* = 2pe = r* — rf, then r* = pe + 2π2g, since 2g* == 2pe +
8?ι2g = 3{2pe) + 4(r* — 2pe). Then, from the Euler formula,

7(G*) = 1 + l/2(ί* - p* - r*)

= 1 + l/2(pe + 4%2g — 2πp — (pe + 2n2q))

= 1 + n(nq — p) .

We now construct such an imbedding. Let the edges of G be
designated by xl9 , xq. For each edge there is a subgraph of G(H)
isomorphic to the complete bipartite graph K2n2n. Imbed q copies of
K2n,2n, minimally, in q closed orientable 2-manifolds Mί9 , Mq of
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genus (n — I)2 each, in the fashion described by Ringel [3]. Select
these 2-manifolds so that each is exterior to any other. Each imbed-
ding has τf = r[ =. 2n2, and it has been shown in [5] that the 2n2

quadrilateral regions can be partitioned into 2n mutually disjoint sets
of n regions each, each set containing all 4n vertices of the graph
K2nt2n. Furthermore, in any region, diagonally opposite vertices are
in the same part of the vertex set partition for K2ny2n.

Suppose edges %ι and x5 are adjacent in G. We make 2n vertex
identifications between Mi and Md as follows. Select one set of n
quadrilateral regions in Mi and the 2n vertices of one part of the
vertex set partition for K2n,2n from the boundaries of these regions
(two diagonally opposite vertices are selected from the boundary of
each region). Make similar selections in Md. Now attach n tubes
between M{ and Ms, one tube for each pair of regions (one from each
2-manifold) that we have selected. The first such tube may be at-
tached as follows. Let region Rι in M{ correspond to region Rj in
Mj. Let Cft be a simple closed curve bounding the open disk Dh

interior to Rh, h = i, j . Let T be a topological cylinder, with bases
d and Cj, such that (Af* U M3) Π T = C{ U C3. Form (Af< - Z>*) U
(Mj — Dj) U T. It is clear how to add the remaining tubes. The
result is a closed orientable 2-manifold M (of genus 2(n — I)2 + n — 1).

We now make two vertex identifications per tube, as indicated
by the sequence of operations in Figure 1.

I I
M ς

l a lb lc

FIGURE 1

This process destroys two quadrilaterals and creates two new quadri-
laterals for each tube. Furthermore, the two identifications for each
tube yield two vertices diagonally opposite in a common region R.
If edge xk is also adjacent to x{ (and to xj) in G, there are now n
regions available on the 2-manifold M with which to make the ap-
propriate 2n identifications with the 2-manifold Mk. From these n
regions on M, we select the diagonally opposite vertices that resulted
from the first identification. It is clear that this process may be
continued until a quadrilateral imbedding of G(K2n) results. We need
only insure that, for 2-manifold Mi corresponding to edge x{ — [uiu ui2]
in G, if we selected the 2n vertices of one part of the vertex-set
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partition of K2n>2n with which to make the identifications at uit in G,
then we must select the 2n vertices of the second part of the vertex-set
partition of K2n>2n with which to make the identifications at ui2 in G.

Corresponding to each vertex of G, there is now a copy of W2n,
within which the e edges of H may be added. Each such edge con-
verts one quadrilateral region of the imbedding of G(K2n) into two
triangular regions. The result is an imbedding of (?* having r3* == 2pe
and r* = r* — 2pe, as desired. This completes the proof.

We note that the value r* = 2qn2 + pe may be verified by a direct
count, since r4* = q(2n2) — pe. Also, the genus of G(H) may be com-
puted directly, for this construction, without recourse to any Euler
type formula. The contributions to the genus are of three types:

( i ) q(n — I)2, representing the collective genera of the q 2-
manifolds with which we began our construction;

(ii) (2q — p){n — 1), representing the contribution of the 2q — p
sets of 2n vertex identifications each, each "bundle" of n tubes adding
n — 1 to the genus;

(iii) β(G) = q — p + 1, representing the contribution of the bun-
dles of tubes taken collectively.
Adding, we find:

7(G(H)) = q(n - I)2 + (2? - p){n - 1) + (q - p + 1)

= 1 + n{nq — p)

It is no surprise that the formula Ύ(K2n>2n) = (n — I)2 is included
in the above theorem. For the case where G is the cycle Cs and
H = W2n, we may combine the theorem with the result of Ringel and
Youngs [4] that Ύ(K,(KJ) = ((m - l)(m - 2))/2 to establish the fol-
lowing:

COROLLARY 1.

fl + n(2n - 3), if s = 3
Ύ(Cs(K2n)) =

(1 + ns(n — 1), if s ^ 4 .

In the situation where G is the complete bipartite graph Kr>s and
H is as in the statement of the theorem, we have:

COROLLARY 2. y(Krt8(H)) = ( w — l)(ns — 1).

We list here only one other result, for the special case n = 1 of
the theorem:

COROLLARY 3. Let G be a graph containing no Z-cycles. Then
Ύ(G(K2)) = Ύ(G(X)) - β(G).
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