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APPROXIMATION TO BOUNDED HOLOMORPHIC
FUNCTIONS ON STRICTLY PSEUDOCONVEX
DOMAINS

R. MICHAEL RANGE

This paper investigates the problem of approximating
bounded holomorphic functions on a strictly pseudoconvex
domain D by functions in H=(D) which extend analytically
across a given subset E of the boundary of D. In particular,
it is shown that if fe H=(D) extends continuously to E, one
obtains uniform approximation on D.

A recent result of I. Lieb [7] and N. Kerzman [6] states that
any continuous function on the closure of a strictly pseudoconvex
domain D with smooth boundary which is holomorphic on D, can be
approximated uniformly on D by functions holomorphic in a neighbor-
hood of D.! Here we prove the following theorem, which contains the
above mentioned result in case K = ¢D. H=(D) denotes the Banach
algebra of bounded holomorphic functions on D.

THEOREM 1. Let D be a bounded, strictly pseudoconvexr domain
wn C* with C* boundary, and let E be any subset of the boundary 0D
of D. Then every bounded holomorphic function on D which extends
continuously to E can be approximated uniformly on D by functions
. H=(D) which extend analytically across E.

Part of our proof uses the argument of Lieb and Kerzman, with
some additional estimates, so we do not obtain a new proof when
E = 6D. In case D is the unit disc in the complex plane, Theorem
1 was proved by T. W. Gamelin and J. Garnett [3].> We show in §5
that the ideas of our proof, when applied to this special case, simplify
their proof considerably.

We also obtain the following theorem, which, for £ = oD, contains
the bounded pointwise approximation theorem noted by N. Kerzman [6].

THEOREM 2. Let D and E be as in Theorem 1. To every fe
H=(D) there exists a sequence of fumnctions F,e H*(D), m =1,2, «--,
which have the following properties:

! This theorem has been proved also by G. M. Henkin, Integral Representations of
Funections Holomorphic in Strictly Pseudoconvex Domains and some Applications, Math.
USSR Shornik, 7 (1969), 597-616.

2 For open subsets E of the boundary of the unit disc this result was obtained
first by A. Stray, An Approximation Theorem for Subalgebras of H=, Pacific J. Math.,
35 (1970), 511-515.
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(1) [ Fulle = Cllflley m=1,2, -
(ii) Fach F, extends analytically across E.
(iiiy F,, converges to f uniformly on any subset of D whose closure

is disjoint from E (or only disjoint from E, in case E is a G;).
Theorems 1 and 2 will follow quite easily from:

THEOREM 3. Let D and E be as in Theorem 1, and let f e H*(D).
Assume that there is an open mneighborhood W of E and a continuous
Sfunction u: W— C, such that for some d > 0

(*) [f(z) —uw(z)| < dforzeDNW.

Let S be any subset of D such that SN E = @ and let ¢ > 0 be given.
One can then find F e H=(D) such that
(1) F extends analytically across E.
(2) [F() — f(®| <e forzeS.
(3) |F(z) — f(»)] < Cd for all ze D.

REMARK. The proof given here shows that the constants C and
C, depend only on the domain D, and that they can be chosen indepen-
dently of small C* perturbations of oD.

2. Preparations. If ze C*, wesetz=(z, --+, 2,) With z; =a,;_, +
Wy, J = 1, «++, m, where x,, ---, ., are the underlying real coordinates

of C". The norm of z is given by ||z|| = (37, #;2;)"’. For a multiindex
Y = (Y, *++, V.), ¥; Nonnegative integers, we set |v| = >, v; and
3 6li'|
D= TR owis

Recall that the complex differential operators are defined by

o 1/ o 1 9 o _1(4 1 3
oz; 2 (axzj_l 5 axz,->’ 0z, 2 <ax2,-_1 i ax2j>’

and that ou = 3., (0w/0Z;)dZ;. The function w is holomorphic if and
only if ou = 0.
For a C* function ¢ defined on an open set UcC C" we set

191l = S sup | D'o@)], k=1, -+, 4.

Let D c c C” be a strictly pseudoconvex domain with C* boundary.
This is equivalent to the following (see Gunning and Rossi [5], chapter
IX): there is an open neighborhood U of oD, a C* function po: U— R
and positive constants A4, B such that

@) D={zeU: ok <0lU(D— U).

(b) .5 (0°0(2))/(02:0%;) w;iw; = Al|w|]’ ze U, we C", i.e., pis strictly
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plurisubharmonic.

(©) |lgrad o(z)|| = B, ze U.

In the following we will call such a domain a SSPC domain (smooth,
strictly pseudoconvex domain).

It is well known that a small C* perturbation of a SSPC domain
gives again a SSPC domain. More precisely, if 0e CiU) and ||p]], <
min (A4/2r% B/2), then D = {ze U: (0 — p) (2) < 0} U (D — U) is also a
SSPC domain.

We will need the following sharper version due to Kerzman [6]
of a theorem of Grauert-Lieb [4].

THEOREM 4. Let D be a SSPC domain. There is a constant K > 0
such that for each bounded C3,, — form a = 3", a,;dz; on D with oo =
0, there is a continuous function u: D — C, wec C=(D), which satisfies

ou =« on D and

“u”L{’m = KH““KZ(’D), I1=sp=o.

Here ||a||,» = 3, ||@;||». Note that u is continuous up to the
boundary of D, even though & may only be defined on D. The constant
K can be chosen independently of small C* perturbations of D, i.e.,
the same K will work for the domains D defined above, provided |9,
is sufficiently small.

3. The main Lemma. The basic step in the proof of Theorem
3 will be to prove it for the case of closed subsets of 0D. We for-
mulate this part as a separate lemma.

LEMMA 1. Let D be a SSPC domain, and assume that E C 0D 1s
closed, while f, W, uw and d are as in Theorem 3. Let Sc D, SNE =
O, and let ¢ > 0 be given. We can then find F e H*(D) such that

(1) F extends analytically across E.

(2) |F(z) — f(z)| <e zeS.

(3") [F(z) — f(»)| < Cd, ze D.

The constant C, depends only on D, and it can be chosen indepen-
dently of small C* perturbations of D.

Proof. By shrinking W we can assume that WNS = @. Choose
yeCs(W), 0=y =1, x =1 on an open neighborhood of E. Following
our remarks in §2, if we choose peCg(U) with ||@]], small, p =0
on supp oy, 0 >0 on EU (0D — W), and otherwise p =0, we can
construct a SSPC domain D, such that

(4) DUEcD,oD — Wc D, hence Sc c D.

(5) D,= DU (D — suppy) is a SSPC domain.

(6) Dnsuppoyc D.

It follows from (6) that
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a_{é(xf)onD
o onD—D

is a well-defined bounded Cf,, — form on D with da = 0. By Theorem
4 there is a function p e C=(D) N C(D) with dp = @. Hence the function

h:{xf—ponD

7 N
(7) —ponD — suppyC D,

is in H=(D,), and its restriction to D is in H=(D). Since x =1, and
hence dp = 0, in an open neighborhood of E, we also obtain that

(8) f — h extends analytically across E.

Now f— h=p on S, and »p may not be small there. Therefore
we want to approximate % by functions holomorphic in a neighborhood
of D,. Kerzman [6] showed that there is a bounded sequence {h.}7-.
of functions holomorphic on D, which converges to % uniformly on
compact subsets of D,. By (4) and (5), Sc c D,, thus we can choose
k, so large that |A(z) — h,(2)| < ¢ for ze S. The function

F=Ff—h+h,

clearly satisfies (2’), and from (8) we also obtain (1’). Thus we only
have to prove (3’), which requires an estimate on all of D which we
cannot deduce immediately from Kerzman’s result. For the sake of
completeness we will repeat the proof in [6], adding the estimates
needed in our case.

As in [6], we choose a covering of 0D by balls B; with center
p;€dD, 1 =1, -+-, 7, and we let U, = D, N B;. Denote by n; the unit
outer normal to oD at p,. For fixed 6 >0 let U’ = U, + on;, ¢ =1,
<o, 7; we also set U} = U, = D,. The covering {B;} can be chosen
in such a way that D, cc Ui, Ui for all sufficiently small ¢ > 0.
For each such 0 we then can find a SSPC domain D’ satisfying

DccDcclUi,U?.

If we denote by .&# (U;) the set of complex valued functions on
U;, we can define the translation operators

T Z(U)— 7 (U))

in the following way:

For ¢ =0, T¢ is the identity operator, and for ¢ =1, -« -, 7, (T ¥)(2) =
(2 — 0n;). In particular we set v{ = T/h, ¢ =0, ---, », where k is the
function defined in (7). Let v! also denote its restriction to V? =
U’ n D;.

The functions »] define a holomorphic cocycle v, = v} — v’ subor-
dinate to the covering {V?}i_, of D!. Using Theorem 4 one finds
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holomorphic functions Al: Vi— C such that k! — k2 = 2}, on Vi N V} and

(9) B[] o w2y < K max o251 Pwinvd)
0<k,j<r

for 1 < p < . K depends only on the constant K of Theorem 4 and
on the covering {B;} of 6D, hence it is independent of small C* per-
turbations of D.

For p =1 but p # o, v = T¢{h converges to k2 in LP-norm for
0 — 0, hence ]lvzj]}Lp(Vgﬂvg) — 0, and by (9) also

1B oty = 0,1 S p < oo,

for 6 — 0.
Thus the holomorphic functions 4’: D! — C defined by

hi(z) = vi(z) — hi(z) for ze V7

converge to % in L?(D,), and we also obtain uniform convergence on
compact subsets of D,. Hence, for ¢ sufficiently small, we can set
hy, = B’ to obtain |h,(z) — h(z)| < ¢ for ze S. We now prove

(10) [hi(2) — h(z)| < Cd for all ze D, ,

which will imply (3).
To obtain (10) we will first show the estimate

(11) Sl_lp Iv’fJ(z)l < 4d’ iy .7 = 07 AP
ZEVZHV?

for small 6. Note that v, = Tih — T{h, and hence

12) vi; = Ti(f) — Ti(wf) — (Tip — Tip) -

Extend yu to be zero outside of W. Since yu and p are uniformly
continuous on D,, for sufficiently small § we will have

(13) H(Tip)(2) — (Tip)(2)] <d,  [TiQu)(2) — Ti(quw)(2)| <d

for ze VINVi. Also it follows from (*) that |(xf)(z) — (uw)(?)| < d
for ze D..
Hence for ze ViNn V?

(14) [ Ti(1f) (=) — T;(()(@)]
SITif — W@+ I TEuw)(R) — T (@) | + [ Ti(w — 1) @) | < 3d .
(11) now follows from (12), (13) and (14).
From (9) and (11) we now get
(15) sup |hi(z)| < K 4d .

zeV;
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Let ze VN D,. Then |A%(z) — k(z)| = [v2(2) — hi(z) — h(2)| < |vi(z) —
hz)| + [hi(z)|. Noting that - = T/h = v}, (11) shows that |vi(z) —
hz)| < 4d. Together with (15) we thus obtain the desired estimate
if we set C, =4 + 4K.

4. Proofs of the Theorems. To prove Theorem 3, we have to
extend Lemma 1 to arbitrary subsets of the boundary. The recursive
argument we use is similar to the one in [3], although in our case
we also have to modify the domain at each step.

Let Ec oD be arbitrary now. We can again assume that SN
W = @. Moreover, replacing E by W N oD we can also assume that
E is open in 6D. It is easy to construct two families {Q;},, {Q};;l
of closed subsets of 6D, and open neighborhoods Vi(resp. V;) of Q;(resp.
Q,-) such that

and
(16) VinV, =2, V.nV; =@ fori=j.

Hence also the Q; respectively the @, are pairwise disjoint. We clearly
may also assume that V,, V,c W, hence V;NS= and V,NnS=02.
Also, let ¢ < d.

We now construct inductively a sequence of SSPC domains D; and
functions ¢; € H=(D;) such that

(17) DUWUJi.Q)c D;and D;, — (U:..V,)c D
(18) [0:2) — ¢:u(2)| < ¢f2'forze D,y — V,,i=1,2, ---
(19) |6:(2) — 6;_.(2)| < 2Cyd for ze D, 1 =1,2, ++- .

We start with ¢, = f and D, = D. Assume that we already con-
structed ¢, +-+, ¢,_, and D, ---, D,_, satisfying the above conditions.
Note that by (17) V;N D,_,c D. Thus for ze V; N D,_,

60a(2) — @) | = 3 16:(2) — pra(2)] + |6u(2) — u(2)|

. S
-

<S¢+ d<2d.
=1

Hence Lemma 1 applies to ¢,_, € H*(D,_,) with Q, and V, replacing F
and W. For S we may choose D,_, — V;. Thus we obtain from Lemma
1 a function ¢, ¢ H*(D,_,) which extends analytically across @; and such
that (18) and (19) hold.

By a small C* perturbation of D,_, we now construct a SSPC
domain D; such that (D,_, U Q;) < D;C (D;_, U V;) and ¢, extends to be
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in H=(D;) This completes the inductive step. Note that the domains
D; can be constructed in such a way that Lemma 1 will hold for D,
with the same constant C,.

Since each ze D is contained in at most one set V; and SNV, =
@,1=1,2, .-, it follows from (18) and (19) that >.=, (¢; — ¢,_,) + f con-
verges uniformly on compact subsets of D to a function @ € H>(D)
which satisfies

0() — F@) = | 56,6) — 6:-2)| <& + 2Cd
< (2C,+1)d forzeD.
(21) |®(z) — f(z)] <e& forzeS.

We also obtain from (x) and (20) [@(z) — u(z)| < 2C, + 1)d +d =d'
for ze w N D. Since @ = Z?___l (gZSJ — ¢j—1) + f = Z;o:i.u (¢] - ¢j—1) + ¢i
for each 1 =1, 2 ..., @ extends analytically to each D,.

(20)

) CLAIM. There exists a SSPC domain D such that Du Uz, Q)
Dc U, D, @ H(D) and |0(2) — u(z)| < d’ for ze WN D.

Assuming the claim for a moment, we complete the proof of
Theorem 3. We perform the same inductive construction which led
from f to @ with @ and the family @, N oD. We thus obtain ¥ e
H=(D) with

(22) |W(2) — ®(2)| < (2C, + 1)d’ for ze D
(23) |W(2) — O(2)| < & for ze S

and ¥ extends analytically across each Q; N 9D. Then F = ¥|D is the
required function. Clearly Fe H=(D), and F extends analytically
across E = (U2, Q) U (U, Q). The estimates (2) and (3) follow from
(20) — (23) with C, = 2C, + 1) [1 + (2C, + 2)], and ¢ replaced by 2e.

It remains to prove the claim. Since @ is analytic on @, ¢ = 1,
2, +++, we can shrink the neighborhoods V; and assume that @ is
analytic on V; and that |0(z)| < 2sup,.,|0(w)|, |0(z) — w(z)| < d’
for ze V,. Choose 0;€Cz(Vy), 0:=0,0;>0 on Q; and [|p;ll, < 1/2
min(A4/2%°, B/2), where A and B are the positive constants given in § 2.
It follows that >, p;, converges uniformly to a function e C¥U) and
that 3=, D'o; = D'p, |v| <4. Thedomain D = D U {ze U: p(z) — p(2) <
0} is the required one.

This completes the proof of Theorem 3.

Proof of Theorem 1. Let fc H=(D) extend continuously to E.
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For every m =1, 2, --- we can choose an open neighborhood W,, of E
such that the diameter of the cluster set of f at ze W, N oD is less
than 1/m. It is now easy to construct a continuous function w on
W.. which satisfies condition (*) in Theorem 3, with d = 1/m. We
thus obtain functions F, € H*(D) which extend analytically across E
and satisfy sup,cp | F.2) — f(®)| < C/m,m=1,2, «-- .

Proof of Theorem 2. Let {S,}n_, be an increasing sequence of open
subsets of D such that S,NE= @ and US,=D—-E S, NE=9
and US, =D — E, in case E is a G;). The hypotheses of Theorem
3 are satisfied with S = S,,, ¢ = 1/m, W any neighborhood of E, u = 0
and d = 3 sup,., |f(2)|]. Hence Theorem 3 yields functions F,, ¢ H*(D),
m =1, 2, -+, which clearly satisfy (ii) and (iii). From (3) we also
obtain, for ze D,

|Fn(@| = 1 f()] + | Fu) — f(2)] = (1 + 3C) sup.cp | f(2)]
which gives (i) with C =1 + 3C..

5. The case of the unit disc. Let D =4 = {zeC:|2] <1}. In
[3], the proof of Lemma 1 uses Vitushkin’s scheme for approximation
(for example, see Chapter VIII of [2]). By adapting our argument to
this special case, we obtain a much simpler proof. We restate Lemma
1 (in a slightly stronger form) for the unit disc and give a complete
proof of it, which can be understood without referring to §3.

LEMMA 1. Let E be a closed subset of 04, and let f e H>(d).
Assume that there is an open neighborhood W of E and a continuous
function u: W — C, such that for some d > 0:

[f(z) —uR)| <dforzedNW.

Let S be any subset of 4 with SN E = &, and let ¢ > 0 be given.
We can then find F e H=(d) such that
(24) F extends amalytically across E and across each arc in 04
to which f extends analytically.
(25) |F(z) — f(z)| < eforzel.
(26) |[F(z) — f(»)| < 2d + 2¢ for ze 4.

Proof. We extend f to a bounded Borel function f on C, such that
F=f on 4 and f is analytic on each arc in 04 across which f extends
analytically. Shrinking W, we can assume SN W = . Let ye¢
Co(W), with 0 <y =<1 and ¥ = 1 on a neighborhood of E. Define a
function A: 4 — C by
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_1 O — f(z) (74
ne = LI, =T 2L azay.
It is well known (see Gamelin [2], Chapter VIII) that /# has the following

properties:

(a) he H=(4), and h extends analytically across each arc in 04
on which f is analytic.

(b) f — h extends analytically across E.

(¢) h(z) = xf(z) + p(z) for ze 4, where

p(2) = 1 S‘ Cf(_C) 3X dedn
is continuous on 4.

Thus % has similar properties as % defined by (7) in § 3. However,
it is now trivial to approximate A. In fact, let A,(z) = h(rz) for
0 <7 < 1. Then h, is analytic on 4. Extending yu to be zero outside
of W, we obtain |yu(z) — xf(2)| < d for all ze 4. Since p and yu are

uniformly continuous on 4, we can choose 7, > 0 so close to 1 that
(27) [p(2) — p(rz) | <& [Yu(z) — yu(re)| <e

for all ze 4. Hence

(28) |2F (@) — xf(r2) |

= [ Af(R) — qu(@)] + [qu@) — qu(re)| + [ qulre) — 1f(re)|
<d-+e+dfor zed.

Now define F'= f — h + h,. Clearly F' is in H>(d), F extends
analytically across E and across each arc in 04 where f is analytic.
It follows from (27) and (28) that

[F(z) — f(2)] = | M=) — h,(2)| < 2d + 2¢ for ze 4,
and since SN W = ¢, we also obtain
|F(z) — f(2)| = |p(z) — p(re)| < eforzeS.

Lemma 1’ is proved.

Theorems 1, 2 and 3 follow from Lemma 1’ as in the general case
(see 84). We can actually use the simpler inductive argument of [3],
that is, we do not have to modify the domain at each step.

6. Concluding remarks. As Kerzman [6] showed, Theorem 4
holds also for strictly pseudoconvex, relatively compact domains D in
a Stein manifold. Hence our theorems are true in this more general
situation.
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The differentiability of the boundary 0D can be relaxed. In fact,
the bulk of Kerzman’s proof of Theorem 4 is purely local. After a
holomorphic change of coordinates in a neighborhood of p € 0D, we can
assume that 0D is strictly convex (not only pseudoconvex) near p.
As remarked by N. Qvrelid [8], this allows to reduce the order of
differentiability of o by 1, while retaining the same estimates for the
functions needed in the construction of the integration kernel. This
argument shows that we only need a C*® boundary. Actually, a C*
boundary is sufficient, if we use some of the estimates of N. @Qvrelid
[8]. He shows that the solution w of du = a in Theorem 4 is continuous
up to the boundary by approximating the integration kernel by con-
tinuous kernels. Thus the Holder estimates in [6], which require a
higher order of differentiability, are not needed.

Let o be Lebesgue measure on ¢D. It is known that every fe
H=(D) has nontangential limits ¢ — a.e. For a reference, see E. M.
Stein [9], where a stronger statement is proved. H>=(D) can thus be
identified with a subalgebra of L=(¢). For E c oD, let L3 be the
subalgebra of L=(o) of those functions which are a.e. equal to a
function in L= continuous on E. Similarly, denote by H; the subalgebra
of H=(D) of functions which extend continuously to E. As in [3],
part of Theorem 3 can be formulated in the following way.

THEOREM 5. Lzt D be a SSPC domain. There is a constant C,
depending only on D, such that for all Ec oD and all fe H*(D)

dist (f, L) = dist (f, Hp) = C dist (f, L) .

Davie, Gamelin and Garnett [1] have investigated the smallest pos-
sible constant C, for planar domains. It appears likely that analogous
results will be valid for the domains considered here.

Since this paper was written, the author obtained the following
related results. The constant C in Theorem 2 can be chosen to be 1.
The constant C; in Theorem 5 can be chosen to be 2. Note that the
proof of Lemma 1’ already gives the value 2 for closed £ co4. The
value 2 is best possible, as shown by an example of Davie, Gamelin
and Garnett.
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