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APPROXIMATION TO BOUNDED HOLOMORPHIC
FUNCTIONS ON STRICTLY PSEUDOCONVEX

DOMAINS

R. MICHAEL RANGE

This paper investigates the problem of approximating
bounded holomorphic functions on a strictly pseudoconvex
domain D by functions in H°°(D) which extend analytically
across a given subset E of the boundary of D. In particular,
it is shown that if feH°°(D) extends continuously to E, one
obtains uniform approximation on D.

A recent result of I. Lieb [7] and N. Kerzman [6] states that
any continuous function on the closure of a strictly pseudoconvex
domain D with smooth boundary which is holomorphic on D, can be
approximated uniformly on D by functions holomorphic in a neighbor-
hood of D.1 Here we prove the following theorem, which contains the
above mentioned result in case E = 3D. H°°(D) denotes the Banach
algebra of bounded holomorphic functions on D.

THEOREM l Let D be a bounded, strictly pseudoconvex domain
in Cn with C4 boundary, and let E be any subset of the boundary 3D
of D. Then every bounded holomorphic function on D which extends
continuously to E can be approximated uniformly on D by functions
in H°°(D) which extend analytically across E.

Part of our proof uses the argument of Lieb and Kerzman, with
some additional estimates, so we do not obtain a new proof when
E = 3D. In case D is the unit disc in the complex plane, Theorem
1 was proved by T. W. Gamelin and J Garnett [3].2 We show in §5
that the ideas of our proof, when applied to this special case, simplify
their proof considerably.

We also obtain the following theorem, which, for E — 3D, contains
the bounded pointwise approximation theorem noted by N. Kerzman [6].

THEOREM 2. Let D and E be as in Theorem 1. To every fe
H°°(D) there exists a sequence of functions Fme H°°{D), m == 1, 2, ,
which have the following properties'.

1 This theorem has been proved also by G. M. Henkin, Integral Representations of
Functions Holomorphic in Strictly Pseudoconvex Domains and some Applications, Math.
USSR Sbornik, 7 (1969), 597-616.

2 For open subsets E of the boundary of the unit disc this result was obtained
first by A. Stray, An Approximation Theorem for Subalgebras of H°°, Pacific J. Math.,
35 (1970), 511-515.
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( i ) HF IU
(ii) Each Fm extends analytically across E.
(iii) Fm converges to f uniformly on any subset of D whose closure

is disjoint from E (or only disjoint from E, in case E is a Gδ).

Theorems 1 and 2 will follow quite easily from:

THEOREM 3. Let D and E be as in Theorem 1, and letfeH~(D).
Assume that there is an open neighborhood W of E and a continuous
function u: W-+C, such that for some d > 0

(*) |/(s) -u(z)\ KdforzeDΠ W .

Let S be any subset of D such that S Π E = 0 and let ε > 0 be given.
One can then find F e H°°(D) such that
(1) F extends analytically across E.
(2) \F(z)- f(z)\<efor zeS.
(3) \F(z) - f(z)\ < C,d for all zeD.

REMARK. The proof given here shows that the constants C and
Cι depend only on the domain D, and that they can be chosen indepen-
dently of small C4 perturbations of 3D.

2* Preparations* If z e Cn

y we set z = (zlf , zn) with z3- = x2j-1 +
ia?2y, 3 = 1, , n, where x19 , x2n are the underlying real coordinates
of C\ The norm of z is given by \\z\\ = (Σ*=i ^ )1/2 F o r a multiindex
7 = (7i, •••, 72Λ), 7i nonnegative integers, we set |7 | =

Recall that the complex differential operators are defined by

J JL ( d + 1 d ) L = JL f 3 L d

( + ) f
dzj 2 ^dXzj^ i dx2jJ

9 dzό 2 \dx2i^ i dx2j

and that 3^ = Σy=i (du/dZj)dZj. The function 6̂ is holomorphic if and
only if du — 0.

For a C4 function ^ defined on an open set UaCn we set

\\Φ\U = Σ s u p W ( s ) | , * = 1, -- , 4 .

Let D c c C ^ b e a strictly pseudoconvex domain with C4 boundary.
This is equivalent to the following (see Gunning and Rossi [5], chapter
IX): there is an open neighborhood U of dD, a C4 function p: U-^R
and positive constants A, B such that

(a) D = {ze U: p(z) < 0} u (D - U).
(b) Σtij(32/0(«))/(3«ί9«i)Wiΰj ^A\\w\\\zeU,weCn, i.e., p is strictly
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plurisubharmonic.
(c) \\gradp(z)\\^B,zeU.

In the following we will call such a domain a SSPC domain (smooth,
strictly pseudoconvex domain).

It is well known that a small C4 perturbation of a SSPC domain
gives again a SSPC domain. More precisely, if peCt(U) and \\β\\2 ̂
min (A/2n\ B/2), then D = {ze U: (p - p) (z) < 0} U (D - U) is also a

SSPC domain.
We will need the following sharper version due to Kerzman [6]

of a theorem of Grauert-Lieb [4].

THEOREM 4. Let D be a SSPC domain. There is a constant K > 0
such that for each bounded C~,υ — form a = Σ?=i &jdZj on D with da =
0, there is a continuous function u: D—>C, ueC°°(D), which satisfies
du = a on D and

Here ||α:||z,p = Σ?=i II^JIUP Note that u is continuous up to the
boundary of D, even though a may only be defined on D. The constant
K can be chosen independently of small C4 perturbations of D, i.e.,
the same K will work for the domains D defined above, provided | | | δ | | 2

is sufficiently small.

3* The main Lemma* The basic step in the proof of Theorem
3 will be to prove it for the case of closed subsets of 3D. We for-
mulate this part as a separate lemma.

LEMMA 1. Let D be a SSPC domain, and assume that EadD is
closed, while /, W, u and d are as in Theorem 3. Let Scz D> S Π E =
0 , and let e > 0 be given. We can then find FeH™(D) such that

(Γ) F extends analytically across E.
(2^ \F(z)-f(z)\<e,zeS.
(3') \F(z) - f(z)\ <C2d,zeD.
The constant C2 depends only on D, and it can be chosen indepen-

dently of small C4 perturbations of D.

Proof. By shrinking W we can assume that WΠS = 0. Choose
χ G CΓί W), 0 ̂  χ ^ 1, χ = 1 on an open neighborhood of E. Following
our remarks in §2, if we choose ρeCT{U) with | |jδ| |2 small, β = 0
on supp dχ, p > 0 on E U {3D — W), and otherwise p ^ 0, we can
construct a SSPC domain D, such that

( 4) D U Ed δ, 3D - W c D, hence S c c ΰ ,
( 5 ) A = D U Φ - supp χ) is a SSPC domain.
( 6 ) ΰ Π supp dχ c D.
It follows from (6) that
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ίd(χf) on D

(0 on D - D

is a well-defined bounded C~Λ) — form on D with da = 0. By Theorem

4 there is a function p G C°°(β) Π C(D) with 3p = a. Hence the function

( 7 ) k\
{ — p on D — supp χ c Dι

is in -H"~(A)> and its restriction to Z> is in H°°(D). Since χ = 1, and
hence 3p = 0, in an open neighborhood of E, we also obtain that

( 8 ) f — h extends analytically across E.
Now / — h = p on S, and p may not be small there. Therefore

we want to approximate h by functions holomorphic in a neighborhood
of jDlβ Kerzman [6] showed that there is a bounded sequence {hk}%=1

of functions holomorphic on Di which converges to h uniformly on
compact subsets of Dγ. By (4) and (5), SczczD^ thus we can choose
kQ so large that | h(z) — hko(z) \ < ε for z e S. The function

clearly satisfies (2'), and from (8) we also obtain (Γ). Thus we only
have to prove (3'), which requires an estimate on all of D which we
cannot deduce immediately from Kerzman's result. For the sake of
completeness we will repeat the proof in [6], adding the estimates
needed in our case.

As in [6], we choose a covering of 3D by balls B€ with center
Pi e 3D, i — 1, , r, and we let E7* = DλΠ Bi. Denote by % the unit
outer normal to 3D at p{. For fixed δ > 0 let £7/ = Ui + dni9 i — 1,
•••, r; we also set UQ = Uo = A The covering {Bi} can be chosen
in such a way that ftcc U<=o U* for all sufficiently small δ > 0
For each such δ we then can find a SSPC domain D[ satisfying

If we denote by ^~{Ui) the set of complex valued functions on
i, we can define the translation operators

in the following way:
For i = 0, To is the identity operator, and for i = 1, , r, (T-ψ)(z) =

τ/r(2 — δrii). In particular we set v\ = Γ/A, i = 0, , r, where A is the
function defined in (7). Let v\ also denote its restriction to V =

IT? n DU
The functions v* define a holomorphic cocycle ^ = v* — v) subor-

dinate to the covering {V?}ί=o of D[. Using Theorem 4 one finds
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holomorphic functions h\\ VI—*C such that hi — h) = v\s on Vi Π VI and

(9) \\

for 1 <L p ^ oo. ^ depends only on the constant if of Theorem 4 and
on the covering {ί?J of 3D, hence it is independent of small C4 per-
turbations of D.

For p ^ 1 but p ^ °o, v< = T-h converges to h in Lp-norm for
δ—»0, hence INylUίvfnH) —• 0, and by (9) also

P ί l U * ( F ί > — o , i ^ ^ < - ,
for δ->0.

Thus the holomorphic functions hδ: D[ —* C defined by

h\z) = v}(z) - M(z) for zeVi

converge to h in LP(D^), and we also obtain uniform convergence on
compact subsets of Dλ. Hence, for 8 sufficiently small, we can set
hkQ = hδ to obtain | hkQ(z) — h(z) \ < e for z e S. We now prove

(10) i hφ) - h(z) I < C2d for all zeD19

which will imply (3').
To obtain (10) we will first show the estimate

(11) sup I < (s) \<4d, ij = 0, . . , r

for small δ. Note that v\5 — Tfh — T-h, and hence

(12) vh - T!(χf) - Tl(χf) - (Tip - Tip) .

Extend χu to be zero outside of W. Since χu and p are uniformly
continuous on Du for sufficiently small 3 we will have

(13) I (T!p)(z) - ( 7 » ( z ) \ < d , I Γ/(χw)(z) - Ti(χu)(z) | < d

for «eV?Π F/ Also it follows from (*) that |(χf)(z) - (χu)(z)\ < d

for z e A
Hence for ze ViΠ V)

(14) |

^ I Γ / ( χ / - χ « ) ( 2 ) ί + I T!(χu)(z) - T!{χu){z) I + I T l ( χ n - χf)(z) \<Sd.

(11) now follows from (12), (13) and (14).

From (9) and (11) we now get

(15) sup I hi(z) I < K U .
f
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Let zeVtn A Then | hδ(z) - h(z) | = | v}(z) - h\{z) - h(z) | ^ | v}(z) -
h{z)\ + \M(z)\. Noting that h = 2Y& = ^ , (11) shows that \v\(z) -
h{z) I < 4d. Together with (15) we thus obtain the desired estimate
if we set C2 = 4 + 4K.

4* Proofs of the Theorems* To prove Theorem 3, we have to
extend Lemma 1 to arbitrary subsets of the boundary. The recursive
argument we use is similar to the one in [3], although in our case
we also have to modify the domain at each step.

Let EadD be arbitrary now. We can again assume that S Π
W = 0 . Moreover, replacing E by W Π 3D we can also assume that
E is open in 3D. It is easy to construct two families {QJΓ=i> {Q*}Π=i
of closed subsets of 3D, and open neighborhoods F^resp. Vι) of Q^resp.
Qi) such that

and

(16) V,r\ Vj = 0, VίΠ Vj = 0 for i Φ j .

Hence also the Qi respectively the Qi are pair wise disjoint. We clearly
may also assume that Vi, V* c W, hence V* Π S — 0 and F i Π S = 0 .
Also, let ε < d.

We now construct inductively a sequence of SSPC domains D{ and
functions φ{ e H°°(Di) such that

(17) D U ( U U Qi) c: A and A - ( U U V,-) c D

(18) I Φ&) - φi^(z) I < 6/2* for « e A-i - Vi, i = 1, 2, -

(19) I ^(JS) - φ^iz) I < 2C2d for z e D, i - 1, 2, .

We start with φ0 — f and JD0 = D. Assume that we already con-
structed φG1 •••, φi_γ and Z>0/ •••, A-L satisfying the above conditions.
Note that by (17) Vi ΓΊ A-i c D. Thus for ^ e ^ Π A-i

< Σ e/2y + d < 2rf .

Hence Lemma 1 applies to ^ j , e iZ"°°(A-i) with Q̂  and V̂  replacing E
and W. For S we may choose A-i — Vi Thus we obtain from Lemma
1 a function φt e ίZ°°(A_0 which extends analytically across ζh and such
that (18) and (19) hold.

By a small C4 perturbation of D ^ we now construct a SSPC
domain A such that ( D ^ U Q*) c f t c (A-i U Vi) and ^ { extends to be



APPROXIMATION TO BOUNDED HOLOMORPHIC FUNCTIONS 209

in H^iDi) This completes the inductive step. Note that the domains
D{ can be constructed in such a way that Lemma 1 will hold for Ό{

with the same constant C2.
Since each ^ G D is contained in at most one set F* and S Π V* =

0 , i = 1, 2, , it follows from (18) and (19) that ΣΓ=i (Φs ~ Φd-ύ + / c o n ~
verges uniformly on compact subsets of D to a function Φ e H°°(D)
which satisfies

I Φ(z) - f(z)\ = I Σ (Φ,<z) ~ ΦU*)) l < e + 2C2d
(20)

< ( 2 C 2 + ΐ)d f o r z e D .

(21) I <P(s) - f(z) I < ε for 2 e S .

We also obtain from (*) and (20) | Φ{z) - u{z) \ < (2C2 + ΐ)d + d = d'
for zeWΠD. Since Φ = Σ~=i (0; - &-i) + / = Σ~=<+i (& - Φs-d + &
for each i = 1, 2, •••, Φ extends analytically to each Dζ.

CLAIM. There exists a SSPC domain D such that D U (UΠ=i Qi) c
D̂ c UΠ=i A, Φ e H-φ) and | Φ(z) - %(«) | < d' for z e W ΓΊ D.

Assuming the claim for a moment, we complete the proof of
Theorem 3. We perform the same inductive construction which led
from f to Φ with Φ and the family Q4 Π dD. We thus obtain Ψ e
H~φ) with

(22) I Ψ{z) - Φ{z) I < (2C2 + I K for z e D

(23) \Ψ(z) - Φ(z)\ < ε f o r z e S

and ?Γ extends analytically across each Qi Π 3JD- Then î 7 = f | D is the
required function. Clearly FeH°°(D), and ί 7 extends analytically
across E = (UΓ=i Qi) U (U<°=i Q*) T h e estimates (2) and (3) follow from
(20) - (23) with Cx = (2C2 + 1) [1 + (2C2 + 2)], and ε replaced by 2ε.

It remains to prove the claim. Since Φ is analytic on Qiy i — 1,
2, , we can shrink the neighborhoods F4 and assume that Φ is
analytic on F< and that | Φ(«) | ^ 2 supw e Z ) | Φ(w) |, | Φ(z) - u(z) | < d'
for ^e Fi. Choose fte CrίF*), ft ^ 0, ft > 0 on Q4 and | | ft | | 4 ^ 1/2*'
min(A/2π2, B/2), where A and I? are the positive constants given in §2.
It follows that ΣΠ=i ft converges uniformly to a function βe Q(U) and
that ΣΓ=i £ r f t = ^ r A 171 ^ 4. The domain D = D U {z e U: ρ(z) - β(z) <
0} is the required one.

This completes the proof of Theorem 3.

Proof of Theorem 1. Let / e H°°(D) extend continuously to E.
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For every m = 1, 2, we can choose an open neighborhood Wm of E
such that the diameter of the cluster set of / at z e Wm Π dD is less
than 1/m. It is now easy to construct a continuous function u on
Wm which satisfies condition (*) in Theorem 3, with d = 1/m. We
thus obtain functions Fm e H°°(D) which extend analytically across E
and satisfy sup,eZ) | Fm(z) - f{z) \ < CJm,, m = 1, 2, .

Proof of Theorem 2. Let {Sm}Z=ι be an increasing sequence of open
subsets of D such that SmΠ E = 0 and (j Sm = D - E (Sm Π E = 0
and U Sm = D — E, in case E is a Gδ). The hypotheses of Theorem
3 are satisfied with S = Sm, ε = 1/m, ΐF any neighborhood of E, u = 0
and d = 3 sup26jD |/(«) |. Hence Theorem 3 yields functions Fm e H^iD),
m = 1, 2, •••, which clearly satisfy (ii) and (iii). From (3) we also
obtain, for ze D,

\Fm(z)\ ^ \f(*)\ + \Fm{*) - f(z)\ £ (1 + βQsup.ea |/(s)|

which gives (i) with C = 1 + 3CX.

5* The case of the unit disc* Let D = z/ = {2 e C: \z\ < 1}. In
[3], the proof of Lemma 1 uses Vitushkin's scheme for approximation
(for example, see Chapter VIII of [2]). By adapting our argument to
this special case, we obtain a much simpler proof. We restate Lemma
1 (in a slightly stronger form) for the unit disc and give a complete
proof of it, which can be understood without referring to §3.

LEMMA Γ. Let E be a closed subset of 3A, and let feH°°(A).
Assume that there is an open neighborhood W of E and a continuous
function u: W—+C, such that for some d > 0:

\f(z) - u(z) \<dforzeΛΠW .

Let S be any subset of A with S Π E — 0 , and let e > 0 be given.
We can then find FeH°°(A) such that
(24) F extends analytically across E and across each arc in dA

to which f extends analytically.
(25) \F{z) - f(z)\ <εforzzS.
(26) I F{z) - f(z) I < 2d + 2ε for z e A.

Proof. We extend / to a bounded Borel function / on C, such that
/ = / on A and / is analytic on each arc in dA across which / extends
analytically. Shrinking W, we can assume S Π W = 0 . Let χ e
CT(W), with 0 <£ χ ^ 1 and χ = 1 on a neighborhood of E. Define a
function h: A —• C by
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7Γ J J c ζ - Z d ζ

It is well known (see Gamelin [2], Chapter VIII) that h has the following
properties:

(a) heH°°(Δ), and h extends analytically across each arc in dΔ
on which / is analytic.

(b) f — h extends analytically across E.
(c) h(z) = χf(z) + p(z) for ze Δ, where

is continuous on zf.

Thus h has similar properties as h defined by (7) in § 3. However,
it is now trivial to approximate h. In fact, let hr(z) — h(rz) for
0 < r < 1. Then hr is analytic on Δ. Extending χu to be zero outside
of W, we obtain |χu(z) — χf(z)\ < d for all zed. Since p and χu are
uniformly continuous on Δ, we can choose r0 > 0 so close to 1 that

(27) \p(z) - p(roz)| < ε, \χu(z) -

for all ze I. Hence

(28) \Xf(z)-χf(roz)\

^ \Xf(z) - χu(z)\ + \χu(z) - χu(roz)\ + \χu(roz) - χf(roz)\

<d + e + d for zeΛ .

Now define F = f - h + hrQ. Clearly F is in H°°(Δ)9 F extends
analytically across E and across each arc in dΔ where / is analytic.
It follows from (27) and (28) that

\F(z) - f(z)\ = \h(z) - hro(z)\ <2d + 2efor ze Δ ,

and since S Π W = 0, we also obtain

\F(z) - f(z)\ = \p(z) - p(roz)\ < ε f o r z e S .

Lemma 1' is proved.

Theorems 1, 2 and 3 follow from Lemma 1' as in the general case
(see §4). We can actually use the simpler inductive argument of [3],
that is, we do not have to modify the domain at each step.

6. Concluding remarks. As Kerzman [6] showed, Theorem 4
holds also for strictly pseudoconvex, relatively compact domains D in
a Stein manifold. Hence our theorems are true in this more general
situation.
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The differentiability of the boundary dD can be relaxed. In fact,
the bulk of Kerzman's proof of Theorem 4 is purely local. After a
holomorphic change of coordinates in a neighborhood of p e 3D, we can
assume that 3D is strictly convex (not only pseudoconvex) near p.
As remarked by N. 0vrelid [8], this allows to reduce the order of
differentiability of p by 1, while retaining the same estimates for the
functions needed in the construction of the integration kernel. This
argument shows that we only need a C3 boundary. Actually, a C2

boundary is sufficient, if we use some of the estimates of N. 0vrelid
[8]. He shows that the solution u of du = a in Theorem 4 is continuous
up to the boundary by approximating the integration kernel by con-
tinuous kernels. Thus the Holder estimates in [6], which require a
higher order of differentiability, are not needed.

Let σ be Lebesgue measure on dD. It is known that every fe
H°°(D) has nontangential limits σ — a.e. For a reference, see E. M.
Stein [9], where a stronger statement is proved. H°°(D) can thus be
identified with a subalgebra of L°°(σ). For EadD, let I/£ be the
subalgebra of L°°(σ) of those functions which are a.e. equal to a
function in L°° continuous on E. Similarly, denote by H™ the subalgebra
of H°°(D) of functions which extend continuously to E. As in [3],
part of Theorem 3 can be formulated in the following way.

THEOREM 5. Let D be a SSPC domain. There is a constant d
depending only on D, such that for all Ed 3D and all f e H°°(D)

dist (/, L~) ^ dist (/, fl£) ^ Cx dist (/, L$ .

Davie, Gamelin and Garnett [1] have investigated the smallest pos-
sible constant Cι for planar domains. It appears likely that analogous
results will be valid for the domains considered here.

Since this paper was written, the author obtained the following
related results. The constant C in Theorem 2 can be chosen to be 1.
The constant C1 in Theorem 5 can be chosen to be 2. Note that the
proof of Lemma 1' already gives the value 2 for closed EczoJ. The
value 2 is best possible, as shown by an example of Davie, Gamelin
and Garnett.
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