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ON THE ENDOMORPHISM RING OF AN ABELIAN
ί-GROUP, AND OF A LARGE SUBGROUP

G. S. MONK

For an abelian p-group G, denote the endomorphism ring
of G by E(G)9 the ideal of small endomorphisms by ES(G) and
the quotient ring E(G)/ES(G) by S(G). It is not difficult to
show that for a large subgroup L of G, the map that sends
an endomorphism of G to its restriction on L induces a mono-
morphism S(G)-*S(L). We show that if Bx is a large subgroup
of a group B2 which is a direct sum of cyclic p-groups and is
of cardinality not more than 2*o and Rί and R2 are suitable
subgroups of E(Bj) and E(JB2)9 then there are groups Gi and
G2 having Bx and B2 as basic subgroups such that Gi is large
in G2 and S(Gi) = RJ(Ea(Bi) n R,\ (ΐ = 1, 2).

As with Corner's result [2, Th. 2.1], much of the value of this theorem
is in producing examples. Although it is clear that these theorems can
be used to exhibit counterexamples to several obvious conjectures, we
will confine ourselves to giving a counterexample to a theorem of Paul
Hill which asserts that the endomorphism ring of a p-group G (with
p Φ 2) is generated by its units if this property holds for any large
subgroup of G. To show that our example has the necessary properties
we give, in § 3, some conditions equivalent to a ring of endomorphisms
being generated by its units.

All groups considered will be abelian. For a p-group G, we will
denote the set of automorphisms of G by A(G) and the subring of
E(G) that A(G) generates by {A(G)} The ideal of endomorphisms that
annihilate the socle of G will be denoted by N(G). As we will be
writing morphisms on the right, the restriction of an endomorphism
α of a group G to a fully invariant subgroup L of G will be written
as (LI α). For information on large subgroups and small homomorphisms
the reader is referred to Pierce's paper [6]. The topology on a group
or its endomorphism ring will always be the p-adic topology. The
closure of a set X will be denoted by X~.

2* An extension of Corner's Theorem* Given a torsion complete
p-group C with unbounded basic subgroup B of cardinality not more
than 2*°, Corner's theorem [2, Th. 2.1] gives sufficient conditions on
a subring R of E{B) for there to exist a pure subgroup G of C con-
taining B such that E(G) = ES{G)@R. It is necessary for our example
in section 4 to weaken slightly the conditions on the ring R. In doing
this we obtain a group G such that E(G) = ES(G) + R without neces-
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sarily having ES(G) n R = (0), so that S(G) ^ R/(ES(B) Π i2). But as
will be seen in the example, there is no real loss in this. After we
have given the necessary extension of Corner's theorem, we will show
that if B is a large subgroup of a basic subgroup B' of a torsion
complete group C" (containing C) and R is a suitable ring of exten-
sions of the elements of R to Bf, then there is a pure subgroup Gf of
C" containing B', having G as a large subgroup and such that E(G') =
ES{G') + R'.

DEFINITION. If a and β are endomorphisms of a group G and
(pwG)[ί9](α — β) = 0 for some integer w, then we will say that a is
eventually equal to β on G[p] and write a = β.

We begin with one extension of Corner's theorem that is seen to hold
by simply looking at his proof, but is not quite the theorem we need.

LEMMA 1. Let C be a torsion complete p-group with an unbounded
basic subgroup B of cardinality not more than 2*° and let Φ be a closed
separable subgroup of E(B) such that 1 e Φ and

(Cx). If φ19 φ2e Φ, there is an element <p3eΦ and a small endo-
morphism σ e ES(B) such that φλφ2 = φ3 + σ.

(C2). If φeΦ and φ = 0, then φepΦ.
Then there is a pure subgroup G of C containing B such that E(G) =
ES(G) 0 Φ.

Proof. This is just Corner's theorem with the assumption that
Φ be closed under multiplication replaced by (CΊ). But the only place
in which the multiplicative closure of Φ is used is in the proof of his
Lemma 2.10 in which he has a subset Xr of C and a Φ-invariant sub-
group H of C containing B and he wants to conclude that Hr = H +
Σ{XiΦ I xi e Xr) is a Φ-invariant subgroup of C. That it is a subgroup is
a consequence of the fact that Φ is a group. On the other hand, for
h in Hr, there is an element h' in H and a finite set of elements {φj™
of Φ such that h = h! + ΣΓaVPϋ whence, for any φeΦ, (h)<p = h'φ +
ΈtoViiΦiΦ)* Now by condition (Cx), there is, for each i, an element
φ\ e Φ and a small endomorphism σ̂  of B such that 9>#> = φ\ + σίβ

However, since σ< e ES(B), we know, from [6, Th. 4.4] that (C)^ C i?,
from which we conclude that (x^σ e B £ i ί and

(aj)9> = (fc> + ΣΓ (Xi)σt + ΣΓ teM e H + Σ teΦ I ̂  e Xr} .

LEMMA 2. Given any p-group G, ES(G) is complete, and there is
a torsion free, complete subgroup K of E(G) such that E(G) = Es(G)φK
and 1 G K.

Proof. That ES(G) is pure and complete in E(G) and that E(G)/ES(G)
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is torsion free are shown by Pierce [6, Th. 7.5]. It is then easily seen
that ES(G) 0 RPΛ is pure and torsion complete in E(G) (where Rp is the
p-adic integers) so that it has a complement K' in E{G). The group
K = RpΛ@Kr is then the desired complement of E8(G).

THEOREM 1. Let C be a torsion complete p-group with an unbounded
basic subgroup B of cardinality not more than 2K° and let Ro be a count-
able unital subring of E(B) such that

(C') If cte Ro is such that a = 0, there is an element β e Ro and
a small endomorphism σ of B such that a = pβ + σ.

Then there is a pure subgroup G of C containing B such that
E(G) = ES(G) + (ES(B) + Roy.

Proof. Using lemma 2, write E(B) = E,(B) 0 K with 1 e K, let
φQ = (ijj0 + ES{B)) Π K and Φ = Φ^. Certainly Φ is a closed separable
subgroup of E(B) containing 1. By the modular law, it is seen that

( 1 ) 0o + ES{B) = Ro + ES(B) .

It is evident that since Ro + ES(B) is a ring, Φo has the property (d)
of lemma 1 from which it is easily shown that Φ does also. To show
that Φo has the condition (C2) of Lemma 1, suppose that φ e Φ
and φ = 0. By (1) we can choose ψe Ro and σ e ES(B) such that φ =
ψ + σ, so that ψ = 0 and by (C), α/r = pψ' + σ' for some ψ' e Ro and
σf e ES(B). Applying (1) again then gives φ = pφr + σ" with φ* e Φo and
σ"eEs{B). Inasmuch as ΦQ f) ES(B) = (0), we infer that φ = pφr e
pΦ0. Now, if ψ e Φ and φ = 0 there is a sequence {^}Γ of elements
of Φo that converges to <p. The endomorphisms ^ can be chosen such
that φ — φζ e pK for every i, so that <?< = () and there is an element
<Pί G i?0 such that ψi — pφ\. Using the fact that K is torsion free, it
is easily seen that {φ[}T^ι is a Cauchy sequence which, since Φ is
complete, has a limit φr e Φ. Therefore φ — pφr e pΦ, Φ has the proper-
ty (C2) of Lemma 1, and we can apply this lemma to obtain a pure
subgroup G of C containing B such that E(B) = ES(G)@Φ. Now observe
that since (ES(B) + Ro)~ contains Φo and is closed, we have (ES(B) +
Roy 2 Φ whence #(G) g ES(G) + (jE7β(J5) + i20)" On the other hand
E{G) 3 ES(B) + Φ, = ES{B) + Ro, so that, since J5(G) is closed, E(G) a

iί0)-, and we conclude that E(G) = ES(G) + (E8(B) + i20)".

o

NOTATION. For an element a; in a p-group G we will denote the
height of x in G by hG(x). The wth Ulm invariant of G will be denoted
by fG(n).

LEMMA 3. Let A be a p-group without elements of infinite height
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with subgroups G, K and L such that (i) G is pure in A, (ii) L is
large in G, (iii) L is pure and dense in if. Then the subgroup M =
K + G of A has K as a large subgroup.

Proof. According to Pierce [6, Th. 2.6], the large subgroups of
a group G are exactly the subgroups of the form

G{n{i)} = {geG\h^g) ^ n{i) , i = 0, 1, 2, ..} ,

for all finite [/-sequences {n(i)}~, where a strictly increasing sequence
{n(ϊ)}~ of nonnegative integers is called a finite [/-sequence for a group
G of infinite length if n(i) + 1 < n(i + 1) only if fG(n(i)) Φ 0. It is
clear that G is pure and dense in M so that the two groups have the
same Ulm invariants and every finite [/-sequence of G is also a finite
[/-sequence of M. Thus, if {n(i)}~ is the fininite [/-sequence such that

(2) L = {geG\hG(pig)^n(ι) , i = 0, 1, 2, ...} ,

the lemma will be proved if we can show that

(3) K^igeMlh^p^^nψ) , i = 0, 1, 2, ..} .

First observe that for every ΐ, n(i) ̂  i, so by the purity and dense-
ness of L in K

( 4) K[p'] = (p^-'IQlPΊ + L[pr] , r = 1, 2, ,

Now suppose that g e K and i is a nonnegative integer. Then by (4)

g = pn{i)~igi + xi with ^ G if and ^ e L, so that pV = pn{i)g{ + p ^ .
But since ^ G i , pX = pw(ί)i/ί for some ViβG, whence hM(pιg) ^ n(i),
and we conclude that g e M{n(i)}. Conversely, suppose ze M{n(i)} and
z — x + g with x G if and # e G. Then let r be an integer such that
z, x, g G A[pr] and choose x' e K and y G L[pr] with x = pn{r)~rxr + T/, SO
that p*(g + y) = p{z — pn{r)~r+ix'. For i < r, n(r) — r + i > w(i), so that
K{v\Q — v)) = hM(p\g — y)) :> w(ΐ), while, for i ̂  r ^(g - ?/) = 0, whence
hM{p\g — y)) ̂  n ( i ) . T h u s g — ye G\n(i)\ — L a n d ^ G i f r o m w h i c h
we conclude that zeK, as was to be shown.

LEMMA 4. Let K be a large subgroup of a direct sum B of cyclic
p-groups. Then an endomorphism a of K can be extended to an endo-
morphism a' of B if and only if hB(x) ^ hB{a(x)) for every x e K.

Proof. If a has an extension, it clearly does not diminish jB-height
on K. By a lemma of Pierce [6, Lemma 2.12], if B = 0Σ;e/(&ΐ)>
then K = ©Σίe/((δ<) Π if), so that there is a function m of / into
the natural numbers such that if = 0 Σίez (pm{i)bi). Thus if a does
not diminish β-height on if, given ie Z, there is an ^ G S such that
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a(pm{ί)bi) = pm{i)Xi and the endomorphism of B given by a'(b%) = x{ is
the desired extension of a.

The following theorem, when taken with Theorem 1 provides the
representation of two rings that we seek.

THEOREM 2. Suppose G is a p-group with basic subgroup B and
R is a subring of E(B) containing ES(B) such that E(G) = ES(G) + R
and suppose that B is a large subgroup of the basic subgroup Bf of
the torsion complete group O containing C, the torsion completion of
B. Then there is a pure subgroup Gf of C" containing Br having G
as a large subgroup and such that E(Gr) — ES(G') + Rf where R' =
{aeE{Bf)\{B\a)eR}.

Proof. We let G' = G + B, so that by Lemma 3, G is large in
G'. Inasmuch as G'jB' is isomorphic to a quotient group of G/J5, it
is a divisible group. This, together with the fact that Br is pure in
C yields that Gr is pure in C". Now if a'eR' and a = {B\af), then
aeR^E(G), so that a'eE{G'). Thus E{Gf) a E\{Gr) + Rf and it
remains to show the reverse inclusion. Given a'e E(G'), let a = {G\af)
and let σ e ES(B) and β e R be such that α = (j + β. If L = ker σ
and B2 = L f] By we see from [6, Th. 2.8] that B2 is large in B and
hence by [6, Th. 2.13] that it is large in B\ Inasmuch as β = α' on
B2, β does not diminish jB'-height in B2, whence, by Lemma 4, there
is an element β'e E(B') such that βf = β on B2. Let & = (£|/3')
Then since B2(β1 — β) = 0f β, = β + σ, for some σ, e ES(B) £ iϋ, and
/9iG Jϋ so that β'e R'. Now a — β, = σ — a,e ES(G), and there is a
large subgroup K of G and hence of G' annihilated by a — βlm Thus
K(a' — /5') = ϋΓ(α - β) = 0, and we conclude that α' = /3' + σ' for β' G
i2' and σf e ES(G') as was to be shown.

The following bit of information on the relationship between a
group and a large subgroup is helpful in constructing examples.

LEMMA 5. Let G be a p-group, [k(i)}T an increasing sequence of
nonnegative integers and H the large subgroup of G given by H =
ΣΓ (p^GM]. ThenΣ

f Λ j ) = Σ { f a W + l ) + j + i ) \ 0 ^ i ^ k ( j + 2 ) - k(j + 1 ) } .

Proof. Routine calculations show that for any increasing sequence
of nonnegative integers {m(i)}~

= Σ (P

Σ
1
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so that by induction on r we have (Σί(2>m(<)G)[p*l) S (pmωG)[p], and
(ΣΓ {vm{i)G)[vι])[v\ = (pm ( 1 )G)b]. It is also easily seen that for integers
i, i and & with i < k, p\pjG)[pk\) = (p^GOb*""']. Therefore given any
integer i, p Ί ϊ = ΣΓ=y+i (p f c ( ί ) + i G)[p w ], and (p>#)[p] = (p*('+1)+'G)[p].
Inasmuch as the dimension of the vector space

is the sum of the dimensions of the vector spaces

for i = 0, 1, 2, , (fc(i + 2) — &(i + 1)), we have the desired result.

3* Endomorphism rings generated by their units*

LEMMA 6. The following conditions are equivalent for an endo-
morphism a of a p-group G: (a) There is a bounded projection π in
E{G) such that (1 - π)aeN(G), (b) aeEs(G) + N(G), (c) a = 0.

Proof. Inasmuch as a bounded endomorphism is small and for any
projection π, a = πa + (1 — π)a, we see that (a) implies (b). Since
(b) obviously implies (c), it remains to show that (c) implies (a). Sup-
pose (pnG)[p]a = 0. It is not difficult to show that for any integer n
(cf. the proof of Lemma 1 in [5]) there are subgroups Go and G1 of G
such that G = Go 0 Gu pnG0 = 0 and Gλ[p] = (p*G)[p]. Thus, if we let
π be the projection on Go along Glf then π is bounded and G0(l — π) — 0
while (1 — π)a = a on GJp] = (p%G)[p], so that G^pKl — π)a — 0 and
( 1 - π)aeN(G).

THEOREM 3. Given a p-group G with p Φ 2, all of the following
rings are generated by units if any one of them is: (a) E(G), (b)
E(G)/ES(G), (c) E(G)/(ES(G)

Proof. Since the property of being generated by units is inherited
by the quotient rings of a ring, we need only show that if E(G)/(ES(G) +
N(G)) is generated by units, then E(G) is also. We first prove that
in any case ES(G) + N(G) S {A(G)}. If σ = 0, then let π be a finite pro-
jection such that (1 — π)σ e N(G) and write σ = (1 — π)σ + πσ(l — π) +
7rστr. For any endomorphism φ e N(G), Σ Γ Ψι is also an endomorphism
of (?, so that 1 — φ has an inverse and φ e {A(G)} Thus (1 — π)σ e
{A(G)} On the other hand, 7rστr can be viewed as an endomorphism
of the bounded group GΊZ and as such is the sum of automorphisms
of this group ([1, Th. 2.3]). But clearly this expression of πσπ as a
sum of automorphisms can be extended to πσπ as an endomorphism
G, so that πσπ e {A(G)} Finally, since 1 — πσ(l — π) has 1 + πσ(l — π)
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as an inverse, πσ(l — π)e{A(G)} and we conclude that σe{A(G)} If
φ e E(G) is such that φ + ES{G) + N(G) is a unit, there is an integer
n and an endomorphism ψe E(G) such that ψφ = 1 = φ<f on (pnG)[p\.
By a theorem of Pierce [6, Th. 13.1] we then have that ((pnG)\φ) is
an automorphism of pnG so that by a theorem of Fuchs [3, Lemma
1], there is an automorphism ψf of G such that φ = <p' on p%G. Thus,
9> = 9?' + σ for some σ* e ES(G). Now if we assume that E(G)/(ES(G) +
ΛΓ(G)) is generated by its units and a is in E(G), then there is a set
of endomorphisms {a^ of G such that a{ + JS^G) + N(G) is a unit
for every i and α = Σ Γ ^ By what we just showed, there is, for
each i, an automorphism a[ of G such that ^ = al, whence α = Σ Γ # ;
and ae{A(G)}.

4* Counterexample* We give in this section, a counterexample
to the theorem of P. Hill [4, cor. 4.6] which says that if L is a
large subgroup of the p-group G (p Φ 2), then E(G) = {A(G)} if and
only if E{L) = {A{L)}. We fix the following notation: Br = 0 ΣΓ (&{)>
(£7(δ ) = i + 1) is a standard basic p-group (p Φ 2) with torsion comple-
tion C and 5 = ΣΓ (pw(ί)5)[p*] is a large subgroup of £ ' where w(l) =
n(2) = 0, and n(i) = Σ U\ 1 ^ i ^ i} for i ^ 2. Let C be the torsion
completion of B in C.

LEMMA 7. The group B can be written as B = 0 ΣΓ J?ί where
Bi = θ Σi=o (Cϋ), ^ ί ^ £7(c4i) - i απd c4i = p r ( i ) δ: ( i ) for 0 ^ j < ί, for
strictly increasing sequences {r(j)}%\ &nd {sij)}^.

Proof. We infer from [6, Th. 2.12] that

(1) £ = Θ

On the other hand, according to Lemma 5, every direct decomposition
of B into cyclic subgroups involves exactly i summands of order p\
Thus, if we let Bt be the sum of those summands in (1) of order p\
we have that B i ^ φ Σ M Λ t i i ) for some strictly increasing se-
quence Mi)};-1. But for 0 ^ i < k < i, E{Vs{j)) < E(b'B{k)) while

so that r(i) < r(A). If we then let ci5 = pr{j)b's{j) we obtain the desired
result.

Now we give endomorphisms {PJϋoo, {̂ }Γ, {Fi}?, of £ by defining
them on the basis of each Bm. In all that follows, when we are re-
stricting attention to a particular Bm, we will denote by i 0 j the addi-
tion of the integers i and j modulo m.
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(cmi)Ft

Let Ro be the subring of E(B) generated by {PJϋeo, {̂ *}Γ, {̂ }Γ Note
that an element of J?o gives an endomorphism of each Bm and thus
has an m by m matrix representation for each m. Since we are
writing endomorphisms on the right, the m by m matrix corresponding
to an element φ of Ro is the matrix whose ith row is the sequence of
coefficients used to represent (cmi)φ where 0 S i < m. This means that
in an m by m matrix we are numbering the rows and columns from
0 to m — 1.

LEMMA 8. Given an element φ in Ro, there is a small endomor-
phism σ of B and an element ψ e Ro such that φ — ψ + σ and ψ is a
finite ZΊinear combination of the form

(*) ψ = Σ ktPi + Σ MijEiP,- + Σ w yFiPy .

Furthermore, if φ ~ 0 on B[p\, then each of the coefficients in (*) is
divisible by p.

Proof. We first observe that by restricting attention to the sub-
group Bm and applying elementary matrix theory, we obtain:

(2) P5Ek = Ek-jP,' , 0 ^ / b < m , 0 ^ k - j < m .

( 3) P5Ek = JV-fcP,- , 0 ^ ft < j < m .

(4) PyF* = Fk+jPj , 0 < ft< m, 0 < fc + j < m .
/P^\ P 7 Γ — 777 P 0 < ^ ^ < Γ ή <^ ΎV)

Furthermore, formulas (2) and (3) cover the cases in which 0 ̂  k < m/2,
0 ^ \j\ < m/2, while (4) and (5) cover the cases 1 ^ k < m/2, 0 ^
\j I < m/2. Thus, by choosing M sufficiently large φ is equal to
an element of the form of ψ on Σ {Bm\m > M}, whence pM(φ — ψ) = 0
and φ = ^ + σ for some σ e ES{B). Now, if ^ i θ , then -f = 0, so
that for some integer N, ψ = 0 on 5m[p] for every ?̂  > N. But ob-
serve that EiPό is simply the matrix with 1 in the (i, i 0 j) entry and
0 elsewhere, FιP5 has 1 in the (m — i, (m — i) 0.?) entry and 0 else-
where, while P y has 1 in the (k, k 0 i ) entry for k = 0, 1, , (m — 1)
and 0 elsewhere. Thus, by choosing m sufficiently large, we conclude
that if ψ = 0 on J5m[p], then all of the coefficients in the expression
for ψ must be 0 modulo p.

Now by Lemma 8 we can apply Theorem 1 to the ring RQ to
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obtain a pure subgroup G of C containing B such that

E(G) = ES{G) + (ES(B) + Ro)- .

Then by Theorem 2 we get a pure subgroup Gr of C" containing B',
having G as a large subgroup and such that E(Gf) = Es{Gr) + iϋ' where
jβ' = {tf G #(£') I (51 a) e (E.(B) + Λo)-}.

LEMMA 9. If an endomorphism φ of Bm has a matrix representa-
tation which is upper triangular, then φ does not diminish Br-height
on Bm. If ψ is an endomorphism of Bm which does not diminish Bf-
heights, then the matrix representation of φ on Bm[p] is upper tri-
angular.

Proof. According to Lemma 7, Bm = 0 Σpo 1 (c«, ) where cmj =
pr{j)b'sU) for strictly increasing sequences {r(j)}™~1 and {s(i)}™"1. Now
if the matrix representation of φ is upper triangular, we have (cmj)φ =
Σi^} WjiCmi and, writing an element x of Bm as x = ΣPo 1 UjPkU)Cmj with
ί?t%, we obtain (x)φ = Σ i S 1 (Σii=oWijUiPkli)+r{j)Wsu) !* i s c l e a r t h a t

/&£,(#) is the minimum value of {k(j) + r{j}}t~\ so that for some j 0 ,

k(i) + r(i) ^ Λ(io) + r(jQ) = hB,(x) .

But in view of the fact that the sequence {r(ϊ)}™~1 is strictly increasing,
we then infer that for m > j ^ i ^ 0, A:(i) + r(j) ^ Λ(i0) + r(j0), from
which we conclude that hB,((x)φ) ^ fc(i0) + r(j0) = hB,(x). For the partial
converse suppose that ^ is a 2?'-height preserving endomorphism of J5W

and (cmi)φ = SSS'WiC^. Then

B u t hB,{Ί>r{j%u)) = ^ ( Λ . w h i l e for i ^ i , ^ ( ^ p r ( ί ) 6 ; ( ί ) ) ^ r(ί) ^ r ( i ) , so
t h a t hB,(ΣΛo~1w%Pr{i)bf8{i)) ^ ^(i)> w h e n c e p | ^ for i = 0, •••, (i — 1) a n d

m—1

2-1

which says that the matrix representation of φ on I?m[p] is upper tri-
angular.

THEOREM 4. Given α prime p Φ 2, £/&ere is α p-group Gr with
large subgroup G such that E{G) - {A{G)} and E{G') Φ \A(G')}.

Proof. Inasmuch as P{, 1 + Et and 1 + Ft are automorphisms of
JB, we have immediately that Ro £ {A(G)} However, since every ele-
ment of E{G) is eventually equal to an element of Bo on G[p]7 we
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conclude from Theorem 3 that E{G) = {A(G)}.
To show that E(G') Φ {A(G')}9 let us first consider an element

ψeE(B) that preserves i?'-height on some Σ {Bm[p]\m>M} and is of
the form

Ψ = Σ hPi + mtjEiPj + Σ < ^ P ;

Let A = Σ Γ ι •#;, J?ί = Σ ! Fo (i = 1, 2, •) and Do = D'o = 0. Observe
that for 0 ^ i < m the matrix representation of (1 — D'^Pi is upper
triangular, while for — m < i < 0, (1 — D^Pi is strictly lower triangu-
lar. Thus, writing

and choosing Mf sufficiently large, we have that for m > M\ ψ is upper
triangular on Bm[p], while each E{Pά and FiP3 is either upper or strictly
lower triangular, so that ψ = ΣίΞ>o&ί(l — D[)Pi + s where s is some
member of the ideal So in Ro generated by {Ei}™ and {Fi}?. Now if
ψ is another endomorphism of B of the same form as ψ such that φ
eventually does not diminish JB'-height on B and ψφ = 1, then φ =
Σ^o k'i{l — D'^Pi + sr for some sf e SOf whence

for some s" 6 So However, we see from formula (4) in the proof of
Lemma 8 that P^l - D'o) = (1 - D'i+3 + A )-P» when 0 < ί < i + j < m,
while (1 - A )(l - D-+j + D-) - 1 - D'i+j, so that

. Σ M α - Di+j)Pi+J + 8" = 1 - fcofcόl ,

which, by Lemma 8 yields that p | fc0 but p l ^ for every i > 0. Thus
α/r = /col + s where p \ kQ and s e So.

Now suppose that E{G') = {A(G% Since (1 - D^P, is upper tri-
angular on Bm for every m, it has an extension to an endomorphism
of G' which is a sum of automorphisms {v!$ of Gr. Setting u{ = (G| w{),
we have that u{ is an automorphism of G which, by Lemma 8 and
what we showed above, is eventually equal to k{L + sζ on G[p\, where
pJfki and s{ e So. Thus (1 - D[)Pι = (ΣΓ kt)l + ΣΓ st which again con-
tradicts Lemma 8 and we conclude that E{Gr) Φ {A{G')}.
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