A CLASS OF OPERATORS ON HILBERT SPACE

GLENN R. LUECKE

If T is an operator (bounded endormorphism) on the complex Hilbert space H, then $T \in \mathscr{R}$ if and only if $||(T-zI)^{-1}|| = 1/d(z, W(T))$ for all $z \notin \operatorname{Cl} W(T)$, where $\operatorname{Cl} W(T)$ is the closure of the numerical range of T and $d(z, W(T)) = \inf \{|z-u|: u \in W(T)\}$. The main results of this paper are: (1) $T \in \mathscr{R}$ if and only if the boundary of the numerical range of T is a subset of $\sigma(T)$, the spectrum of T; and (2) \mathscr{R} is an arc-wise connected, closed nowhere dense subset of the set of all operators on H (norm topology) when dim $H \ge 2$.

Introduction. If T is an operator (bounded endomorphism) on the complex Hilbert space H, then

$$1/d(z, \sigma(T)) \leq ||(T - zI)^{-1}||$$
 and $||(T - zI)^{-1}|| \leq 1/d(z, W(T))$,

where the first inequality holds for all $z \notin \sigma(T)$, the spectrum of T; and the second inequality holds for all $z \notin \operatorname{Cl} W(T)$, the closure of the numerical range of T [3]. Here d(z, S) denotes the distance from zto the set S. In the current literature, much space has been devoted to the study of those operators T such that $||(T - zI)^{-1}||$ is equal to its smallest possible value for all $z \notin \sigma(T)$. In this paper, the properties of operators T with $||(T - zI)^{-1}||$ equal to its largest possible value, for all $z \notin \operatorname{Cl} W(T)$, are investigated. Let \mathscr{R} denote this set of operators.

We first characterize the operators in \mathscr{R} in terms of the boundary of the numerical range and spectrum of the operator. If S is a set of complex numbers, then let co S denote the convex hull of S, let ∂S denote the boundary of S, and let Cl S denote the closure of S. For $z \notin \sigma(T)$, let $R(T, z) = (T - zI)^{-1}$.

THEOREM 1. $T \in \mathscr{R}$ if and only if $\partial W(T) \subseteq \sigma(T)$.

Proof. First suppose that $\partial W(T) \subseteq \sigma(T)$. Let $z \notin \operatorname{Cl} W(T)$. Then $d(z, \sigma(T)) = d(z, W(T))$ so that

$$1/d(z, W(T)) = 1/d(z, \sigma(T)) \leq ||R(T, z)|| \leq 1/d(z, W(T))$$
.

Therefore $T \in \mathscr{R}$.

Suppose $T \in \mathscr{R}$ and let $z_0 \in \partial W(T)$. Then there exists a sequence $\{z_n\}$ approaching z_0 such that $|z_n - z_0| = d(z_n, W(T)) > 0$ for all n = 1, 2, 3, \cdots . Then $||R(T, z_n)|| = 1/d(z_n, W(T)) \to \infty$. Therefore $z_0 \in \sigma(T)$.

GLENN R. LUECKE

COROLLARY 1. If $T \in \mathcal{R}$, then $\operatorname{co} \sigma(T) = \operatorname{Cl} W(T)$.

COROLLARY 2. If $T \in \mathscr{R}$ and $\sigma(T)$ is a finite set, then there exists a complex number α such that $T = \alpha I$.

Corollary 1 follows immediately from Theorem 1. To prove Corollary 2 we do the following: Since W(T) is a convex set, $\partial W(T) \subseteq \sigma(T)$ implies that the finite set $\sigma(T)$ must contain exactly one point, say α . Then $\sigma(T) = W(T) = \{\alpha\}$ so that $((T - \alpha I)x, x) = 0$ for all $x \in H$. Therefore $T = \alpha I$.

It follows from Corollary 2 that \mathscr{R} is just the set of all scalar multiples of the identity operator when dim $H < \infty$.

To see that all operators satisfying $\operatorname{co} \sigma(T) = \operatorname{Cl} W(T)$ are not in \mathscr{R} , simply let N be a normal operator whose spectrum is a finite set with more than one point. Then by [3, problem 171], $\operatorname{co} \sigma(N) = \operatorname{Cl} W(N)$, and by Corollary 2, $N \notin \mathscr{R}$.

Let B(H) denote the set of all operators on the complex Hilbert space H and give B(H) the norm topology.

THEOREM 2. \mathscr{R} is an arc-wise connected, closed, nowhere dense subset of B(H) when dim $H \ge 2$.

Proof. If $T \in \mathscr{R}$, then $\alpha T \in \mathscr{R}$ for every complex number α . Therefore the ray through T in B(H) is contained in \mathscr{R} , and thus \mathscr{R} is arc-wise connected.

To see that \mathscr{R} is closed, we let $\{T_n\}$ be a sequence of operators in \mathscr{R} approaching $T \in B(H)$ in norm. Then $W(T_n) \to W(T)$ in the Hausdorff metric [3, p. 176]. Let $z \notin \operatorname{Cl} W(T)$. Then there exists a positive integer N such that for all $n \geq N, z \notin W(T_n)$. Then

$$||R(T_n, z)|| = 1/d(z, W(T_n)) \longrightarrow 1/d(z, W(T))$$
.

Now choose $M \ge N$ so that for all $n \ge M$, $||(T - T_n)R(T_n, z)|| < 1$. Then [2, p. 52]

$$R(T, z) = (I - (T - T_n)R(T_n, z))^{-1}R(T_n, z)$$
.

Since $(T - T_n)R(T_n, z) \rightarrow 0$ as $n \rightarrow \infty$,

$$||R(T, z)|| = \lim_{n \to \infty} ||R(T_n, z)|| = 1/d(z, W(T))$$
.

Therefore $T \in \mathscr{R}$ and hence \mathscr{R} is closed.

If \mathscr{C} is the set of all $T \in B(H)$ such that $co\sigma(T) = Cl W(T)$, then

by Corollary 1 $\mathscr{R} \subseteq \mathscr{C}$. By [4] \mathscr{C} is a nowhere dense subset of B(H) when dim $H \ge 2$. Therefore \mathscr{R} is also a nowhere dense subset of B(H) when dim $H \ge 2$.

The set of all operators on H (dim $H = \infty$) that satisfy property (G_1) locally is a larger set than the set of all operators on H that satisfy property (G_1) [see 5]. This situation does not occur for \mathscr{R} . To see this, suppose T is an operator such that

$$||R(T, z)|| = 1/d(z, W(T))$$

for all $z \in U - (\operatorname{Cl} W(T))$ where U is an open set containing $\operatorname{Cl} W(T)$. We now show that $T \in \mathscr{R}$, i.e., the above relationship holds for all $z \notin \operatorname{Cl} W(T)$. Let $z_0 \in \partial W(T)$. Then there exists a sequence $\{z_n\} \subseteq U - (\operatorname{Cl} W(T))$ such that $z_n \to z_0$ and $|z_n - z_0| = d(z_n, W(T))$. Then

$$||R(T, z_n)|| = 1/d(z_n, W(T)) \longrightarrow \infty$$
.

Thus $z_0 \in \sigma(T)$. Therefore, by Theorem 1, $T \in \mathscr{R}$.

We now give a method to construct nontrivial examples of operators in \mathscr{R} .

THEOREM 3. If A is an operator on H, then $A \bigoplus N \in \mathscr{R}$ on $H \bigoplus K$ whenever N is a normal operator on K with $\sigma(N) \supseteq \partial W(A)$.

Proof. Let N be as above and let $T = A \bigoplus N$. Since $W(A) \subseteq W(N)$,

$$W(T) = \operatorname{co} (W(A) \cup W(N)) = W(N)$$
.

For $z \in \sigma(T) = \sigma(A) \cup \sigma(N)$,

$$||R(N, z)|| = 1/d(z, \sigma(N)) = 1/d(z, W(T))$$
.

Thus, since $||R(A, z)|| \leq 1/d(z, W(A)) \leq 1/d(z, W(T))$,

$$\begin{split} ||R(T, z)|| &= \operatorname{Max} \{ ||R(A, z)||, ||R(N, z)|| \} \\ &= \operatorname{Max} \{ ||R(A, z)||, 1/d(z, W(T)) \} \\ &= 1/d(z, W(T)) . \end{split}$$

Therefore $T \in \mathscr{R}$.

There are a number of nice properties that not all operators in \mathscr{R} enjoy. Let $R_{sp}(T)$ denote the spectral radius of T.

THEOREM 4. There exists $T \in \mathscr{R}$ such that (i) $T^2 \notin \mathscr{R}$, (ii) $R_{sp}(T) < || T ||$, and (iii) $T^{-1} \notin \mathscr{R}$. *Proof.* Let $A = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$, and let N be a normal operator with $\sigma(N) = W(A)$. Let $T = A \bigoplus N$. Then by Theorem 3, $T \in \mathscr{R}$. By [1] W(A) is the closed disc of radius 1/2 about z = 1, and $W(A^2)$ is the closed disc of radius 1 about z = 1. Therefore

$$0 \in W(A^2) \subseteq W(T^2)$$
 and $0 \notin \operatorname{co} (\sigma(T)^2) = \operatorname{co} \sigma(T^2)$.

Therefore, $\operatorname{co} \sigma(T^{\mathfrak{d}}) \neq \operatorname{Cl} W(T^{\mathfrak{d}})$ and so $T^{\mathfrak{d}} \notin \mathscr{R}$. A computation yields $||T|| = (3/2 + \sqrt{5/2})^{1/2}$. Thus $||T|| > 3/2 = R_{sp}(T)$. If T^{-1} were in \mathscr{R} , then

$$||T|| = ||R(T^{-1}, 0)|| = 1/d(0, W(T^{-1}))$$

But $1/d(0, W(T^{-1})) = 2 > ||T||$. Therefore $T^{-1} \notin \mathscr{R}$.

References

1. William F. Donoghue, On the Numerical Range of a Bounded Operator, Mich. Math. J., 4 (1957), 261-263.

2. P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Company, New York, 1957.

3. ____, A Hilbert Space Problem Book, Van Nostrand Company, Princeton, New Jersey, 1967.

4. Glenn R. Luecke, Topological Properties of Paranormal Operators on Hilbert Space, (to appear).

5. _____, Operators Satisfying Condition (G_1) Locally, (to appear).

Received October 23, 1970.

IOWA STATE UNIVERSITY