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PEAK INTERPOLATION SETS FOR SOME ALGEBRAS
OF ANALYTIC FUNCTIONS

A. M. DAviE AND B. K. OKSENDAL

For certain algebras of analytic functions on holomor-
phically convex sets in C* metric sufficient conditions are given
for a set (not necessarily compact) to be an interpolation set.
The results extend the Rudin-Carleson theorem for the disc
algebra.

Let K be a compact subset of C* which is holomorphically convex,
i.e. K is the intersection of a decreasing sequence of pseudoconvex
domains (see [4], Ch. 2). We denote by H(K) the uniform closure
on K of the algebra of all functions analytic in a neighborhood of K,
and by A(K) the algebra of all continuous functions on K analytic
on K° (the interior of K). If E is any subset of the boundary oK
of K then we denote by H; the algebra of all bounded continuous
functions on K°U E which are analytic on K°. We show that if the
boundary of K is well behaved at each point of E, and E satisfies a
metric condition which says roughly that E has zero 2-dimensional
measure in the directions of the complex tangent and zero one dimen-
sional measure in the orthogonal direction, then E is a peak interpolation
set (in an appropriate sense) for H;, sx5. If E is compact then it is
a peak interpolation set in the usual sense ([2], p. 59) for the uniform
algebra H(K). We show also that if E has zero one-dimensional
measure then the conditions on 0K can be relaxed.

We say that 0K is strictly pseudoconvex in a neighborhood of a
point € 0K if there is an open neighborhood V of { such that V' N
0K is a C*submanifold of V and the Levi form is positive definite at
{. Then we can find an open neighborhood V of { and a C* strictly
plurisubharmonic function p in V such that KNV = {ze V: p(z) < 0}
and grad o = 0 on VNoK. (See [3] Prop. IX. A4).

LEMMA 1. Let K be a holomorphically convex compact set im C"
and let { be a point of 0K in a neighborhood of which 0K is strictly
pseudoconver. We can find positive numbers m; and M; and G; € H(K),
such that

(8 ReGi(e) = m|l — 2|} ze K

(b) Re Gg(Z) < Mglc — ZIZ, z€ 0K

(¢) grad (Re Gy)(§) = — grad p() .

Proof. Put
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F@) = 580 - 0) + 3 31 28 - 0 - 0.

Then the Taylor expansion of o about { is

o) = 2Re F@) + 31 28 (s — C)(as — £ + o1z — L1 -
C;0C;
Since o is strictly plurisubharmonic at { it follows that, shrinking
V if necessary, we can find m > 0 with Re F(z) £ — m|{ — z|* for
2€¢KNV. Since p=0 on 0KNV we also deduce that for some
constant M

Re F(z) = — M| — z|;z€0KNV.

Choose a pseudoconvex open neighborhood U of K so that Re F' < 0
on an open neighborhood W of 6VNU in U. Let W, = Wu(VnU)
and W,= WU(U\V), so that W,.UW,= U and W,NW,= W. By
solving a Cousin problem in U (see [4], Theorem 5.5.1) we can
find analytic functions g, and ¢, on W, and W, respectively such that
9. — ¢, = F*log F on W.

F(z) exp (F(2)°¢.(2)), z€ W,

PUERE) = oxp F@pa@),  ze W

The definitions agree on W so h is an analytic function on U, h(z) = 0
only when z = {, and in a neighborhood of {, i(z) = F(z) + 0(|z — {|®).
Thus Re 2 < 0 near {, so there exists ¢ > 0 such that if ze K and
[h(z) — | <& then z = (. Put

h(z)
€ — h(z)

Then Ge H(K), ReG(z) > 0 for ze K\{{}. Finally, near {, Re G(2) =
— ¢ 'Re F(z) + ¢ *(Im F)* + 0(]z — {|®) from which it follows that G; =
2¢G has the required properties.

If S is a real subspace of C* and Y is any subset we denote by
ds(Y) the diameter (in the Euclidean metric) of the (real) orthogonal
projection of Y on S.

Let K be a compact holomorphically convex subset of C* and suppose
0K 1is strictly pseudoconvex in a neighborhood of a point {€dD. Then
in a neighborhood of { we can write 0K = {z: p(¢) = 0} where o(z) is
strictly plurisubharmonic in a neighborhood of { and grad o = 0. The
vector ¢ grad o is orthogonal to grad o and so lies in the (real) tangent
space to 0K at (; let T({) be the orthogonal complement to ¢ grad p
in this space. Then T({) is the unique complex subspace of the real
tangent space with complex dimension % — 1. Let L({) be the real

Gz) = — ,2e K.



PEAK INTERPOLATION SETS FOR SOME ALGEBRAS 83

line spanned by the vector ¢ grad p.

If F is any subset of 6K we denote by H; the set of all bounded
continuous functions on K°U E which are analytic on K°. We define
A(K) = Hjx.

THEOREM 1. Let F be a subset of 0K such that 0K is strictly
pseudoconvex in a meighborhood of F. Suppose that for every & >0
the set F' can be covered by a sequence {V;} of open sets with diameter < e
such that if {;€ F' NV for each © then >; dy ¢, (Vi) <€ and 33 {dr¢ (V)P <
e. Let V be a neighborhood of F, let n >0, and let g be a bounded
continuous function on F with ||g|| < 1.

Then we can find f € Hyywr with f1F =g, || fIIS 1, and [ f|<7
on K\V.

The proof will be split up into lemmas.

LEMMA 2. Let F,V and 7 be as in the theorem. Then we can
find fe Hyywr with f =1 on F,||f]| =2 and |f| <7 on K\V.

Proof. For each {e F we choose m,, M; > 0, and a function G; €
H(K) as in Lemma 1.

If W, is a sufficiently small open neighborhood of £, then whenever
LeUS W, and ze UNOK we have

|G:(2)| = Re G¢(2) + [Im Ge(2) |
= Az — " + [ < grad Im G¢)(©), z — > |
= 2A4,(d} + di) + | grad p(0)[d,
= Bl{d, + d)

where d, = d,¢(U), d, = dp,(U), Ay B; do not depend on z, and <,
denotes the real scalar product.
For each positive integer = let

F, = {CeF: B; < n, 4G Yn) & We, med(C, K\V)* > 1/n, m; > 1/} .

Then F = U, F,. For each n we choose a sequence {V;'} of open sets
with diameter less than 1/n such that each point of F, is contained
in infinitely many Vi*, and 3\ {do¢(VY) + (drep (V))} < pr*27"7" for
some choice of {” e V" N F,. Renumber the collection of all V™ as
Vi, Vs ++-. For each j choose n; so that V; = V"2 for some 4, and
let {; =", Let G; = G;. Writing ¢; = di¢ (V) + {dre ) (V)} we
define

T G,(2)
B.(z) = . F A Kr=12 ---
(Z) J*I;[I 2nj0j -+ GJ(Z) € "
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Then B,€ H(K) and |B,| <1 on K. We claim that {B,} converges
pointwise on F' U (K\F') to a limit B which is continuous on F U (K\
F), analytic on K°, zero at each point of F, with ||B|| <1 and |1 —
B| < 7non K\V.

If ze K\V then Re Gi(z) = mg;|2 — {;|* > 1/n;, so

i Gi(2) _ < 2nc;
1—__G®
fgl 2ne; + G4(2) ’; [2n5e; + Gi(2)]

< 2 2nie; < 7)2,

which proves that B,(z) converges to a limit B(z) with |1 — B(z)| < 7.
If ze K\F then

< 2n.5¢; S 2nbc; 2= .
2 Tomes 1 G@] = Ahle - g = 15 B3 2nier
The series on the right converges, so B, converges uniformly to a
limit B on sets at positive distance from F, so B is continuous on
K\F and analytic on K°.
Finally let ze F. Then ze V; for infinitely many j. For each
such j we have V;S W,  and for all we W,

Gi(w) < MG
2n;c; + Gi(w) | — 2ne;

=1
5

It follows that B,(z) — 0 and lim | B,| is continuous at z. Thus B has
the asserted properties, and f = 1 — B satisfies the requirements of
the theorem.

LEMMA 3. Let X be a compact subset of K, W a netghborhood of
X, and h a continuous function on K with support in X such that
[|h|| < 1. Let 7 > 0.

Then there exists fe Hpyxm Such that |f — h| < non F, | f|| <
3, and | f| <7 on K\W.

Proof. Choose 0 < 0 < d(X, K\W) so small that |h(zx) — h(y)| <
7/8 whenever 2, ye K, | — y| < 6. We can easily find an integer
N > 0, compact sets X, --- X, contained in X, and open sets W, ---
W,, with diameters < é, with W, 2 X;, W, =W, such that

(a) if ze X and N, is the number of integers ¢ in {1, ---, 7} for
which 2e X, |N, — N| < n N/8

(b) if xe C" the number of integers 7 for which xe W,\X; is less
than 7N.

Let F;=FnNX,. Fori=1,2..-7 we can find by Lemma 2 func-
tions f; € Hiy w7, With f; = Lon F, || f;]| £2 and | f;| < 9/3r on K\W..
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Choose ; € X; for each ¢ and put f(2) = 1/N 3., f:(?)h(z;), z € FU (K\F).
Clearly fe Hiy ks and || f||=3 by (a). If ze K\W then | f.(2)| < n/r
for each 7 so | f(2)| < 7.

Finally let ze F. Then

MOES —(Z P YR EOLCY

WN\X; zeW

= fi(®) + f:(2) + fi(2), say.
We have

FA@) = h@)| £ |5 S, £

<77N’+|1

ol

by (a), since [z — x;| < 0. Moreover, |f,(2)| < >, 7/3, by (b) and
| f+(2)| < -1 p/3r = 1/3, so that we have | f(z) — A(z)| < 7 as required.

LEMMA 4. With F as in the theorem, if W is any open neighborhood
of F and h a bounded continuous function on W with ||kh|| <1, we
can find Ge Hyyxm with |G —h|<7n on F,||G]| =7, and |G| <7
outside W.

Proof. Choose a sequence {W,} of relatively compact open subsets
of W with W = Uz, W,, such that W,N W, = @ if |/m —«n| >1. We
can write o = 3.2, h, on W where h,c C(K) has support in W, and
||h,]] £1. By Lemma 3 for each n we can find f,e€ Hy, x» Wwith
[fo—ho] < 2™ on F,|f,|<2"pon K\W, and || f,|| £3. Then G =
S, f» has the required properties.

Proof of Theorem 1. By Lemma 4 and using the fact that g can
be approximated uniformly by functions continuous in a neighborhood
of F, we can construct by induction on % a sequence {G,}r-, in HF, x5
such that, writing f, = G, + --- + G, we have:

(1) |G, — g| < \Ton F,
(1), 1Gn+fn_1-—(1+,\+...+V)g]<L7“

on F, n >1, where » = 9/10
(2). NG ST fuor — X+ N+ coe 2 A)g|lr < 8\
(3)a HFall S L 4+ XN+ o0 + ",
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(To get (3), observe that by (1),_, we have |f, | <14+ X4« +
A"t 4 A*/7 on F, and hence on a neighborhood of F’; if we make |G,| <
A"71/10 outside this neighborhood then (8), follows from (2), and (3),_,).

(4)n ’Gnl<2_n on K\V'

Then (2), shows that f,— G say uniformly on K, so Ge H, 7
by (1), G =10g on F and by (3), ||G|| = 10. Finally by (4)./G|< 7 on
K\V. Then f = (1/10)G is the required function.

REMARK. The metric condition on F in Theorem 1 is clearly
satisfied if F' has zero one-dimensional Hausdorff measure; however it
is also satisfied by sets which are thicker in the direction of the complex
tangent space, e.g. any smooth arc in 0K whose tangent at each point
lies in the complex tangent space.

If F' is compact then of course it is a peak interpolation set, so
Theorem 1 extends the Rudin-Carleson theorem. The extension to non-
closed sets in the case of the disc has been obtained independently
by Detraz [1], and subsequently generalized to other domains in the
plane by A. Stray (private communication).

If we assume that F has zero one-dimensional Hausdorff measure
then we can make do with a weaker pseudoconvexity hypothesis at
the points of F'. We say that 6K is point pseudoconvex at { if there
exists a neighborhood N of { and a real C? strictly plurisubharmonic
function o in N such that o) = 0 and p(z) £0 in NN K.

THEOREM 2. Let K be holomorphically convex, and let F be a
subset of 0K with zero one-dimensional Hausdorff outer measure such
that oK is point pseudoconvexr at each point of F. Let V be a neigh-
borhood of F in K, let 7> 0, and let g be a bounded continuous
function on F with ||g| = 1.

Then we can find fe Hyywm with fI1F =g, ||fl|<1land|f|<7n
on K\V.

Proof. We show that the conclusion of Lemma 2 holds; the rest
of the proof is just as before. As in the proof of Lemma 2 for each
CeF we can find positive constants m; and M, a neighborhood W,
of {, and G;e H(K) such that

(@) m¢|C -z =<ReG:z), zeK

(b) |Ge(2)| = ML — 2], ze K.

Then whenever { € Uc W, and ze U we have |G(z)| < M, diam (U).
We define F', as before and cover F, by balls 4™ such that 3; diam (47) <
en®27"%. The rest of the proof goes just as before, with ¢; replaced
by diam (4;).
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COROLLARY. Let F be a compact subset of 0K with zero 1-dimen-
stonal Hausdorff measure and assume 0K 1is point pseudoconvex at each
point of F. Then F is a peak interpolation set for A(K).

Finally we remark that the functions obtained in Theorem 1 and
2 are actually pointwise limits on K° of bounded sequences in H(K);
this follows from the construction. If F' is compact the peak-inter-
polating functions constructed are in H(K); in this case the proof
simplifies somewhat since it is only necessary to take finite products
in Lemma 2 and the theorem follows from Lemma 2 by general theorems
on peak interpolation sets.
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