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THE WEIERSTRASS EXCESS FUNCTION

RUSSELL D. R U P P

This paper presents properties of the Weierstrass excess
function in a general setting. The results contained herein
are appropriate to applications of Hestenes' method of multi-
pliers.

!• Introduction* This paper presents properties of the Weier-
strass excess function in a general setting. These results are appro-
priate to applications of Hestenes' method of multipliers (Hestenes
[3, pp. 305-310], Rupp [10, Theorem 3.1]). Particular cases of most
of the results here presented are due to or are similar to those of
Hestenes [2, pp. 151-152; 4, pp. 518-521; 5] or Reid [6, pp. 951-952; 7, pp.
680-682; 8, pp. 667-671] who applied them to specific problems in
the calculus of variations. In fact, Hestenes [1, pp. 263-264; 4, p.
514] obtained sufficiency theorems for constrained problems by adding
a penalty term to the original functional and applying the unconstr-
ained theory.

The method of multipliers was suggested by Hestenes in order to
circumvent the numerical error to which the method of penalty func-
tions is susceptible (Hestenes [3, pp. 305-308]). These two methods
arise from the observation that a series of unconstrained minimization
problems is often easier to work with than a single constrained pro-
blem. Thus instead of solving a single constrained problem, one might
solve a series of unconstrained problems whose solutions tend to the
minimum of the constrained problem.

Consider, for example, the problem of Lagrange: Minimize

:, X(t), X(t))dt

over the subclass 5) of the class 21 of terminally admissible piecewise
smooth arcs

x:x\t) Γ ^ t ^ Γ ί = 1, 2, - . . , n

which is determined by the constraints

φa(t, x(t), x(t)) = 0 α = l, 2, . . . , m .

Let

Ψ{x) = φa(t, x(t), ί(t))φa(t, x(t), x(t))

where here and later the repeated index a is summed. The method
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of penalty functions is to minimize

over SI as ξ tends to infinity, Hestenes' method of multipliers is to
minimize

(1.1) J(x, λ ) =

over 3t where C is a fixed function and the Xa(t) are approximations
to the Lagrange multipliers. Thus an initial multiplier estimate fixes
an initial minimization problem. A second multiplier estimate is ob-
tained from the solution to the first minimization problem and so on.

The function C in (1.1) must be suitable, that is, if the constrained
problem satisfies the usual sufficiency criteria, then the new family
of problems must satisfy the sufficiency criteria in Rupp [9, Section
2] In particular, a suitably strengthened Weierstrass condition must
hold. The results here presented ensure that C may be chosen so
that a suitably strengthened Weierstrass condition holds.

Let 3 be a metric space with metric d(z, z*). Let u = (u1, u2, , un)
be a vector in ^-dimensional real space R*. Repeated indices denote
summation with respect to the index. For example, the norm of u is

Here and later, the range of the index i is 1, 2, , n. Given varia-
bles like z in 3 a n d u ιτί Rn> #-space or 2M-space is the set of points
z or (z, u), that is, 3 or &xRn. Similarly given a set @ £ 3 x Rn>
projM(@) or proj2(@) is the projection of @ into u or 2-space respectively.
Given z in projz(@), we define @* to be the set of all u in Rn such
that (z, u) is in @. Let f(z, u) be a real-valued function defined on
@. Suppose that &z is open for each z in proĵ (@). Assume that
f(z, u) has at least one derivative with respect to each u\ We define
the Weierstrass excess or ^/-function Ef of / with respect to the n
variables to be

E,(z, u, v) - f(z, v) - f(z, u) - (v* - ^)Λ*(«, y)

2* Minor iί-dominance properties* This section contains lemmas
which are both useful in applications of Hestenes' method of multi-
pliers and in proving some of the results in the next section. These
lemmas could be generalized to the type of i?-dominance relations
developed by Hestenes [5] in the parametric case. Most of the results
in Hestenes [5] are stated so as to be equally valid in the nonpara-
metric case.
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When an arc x(t) is considered, we make the correspondence
u — x(t). Thus the function

L(u) = (1 + N 2 ) 1 / 2

is the integrand of the arc length integral. Integration of the E-
function EL of L(u)

EM v) = L(v) - L(u) - (v* - ri)Lni{μ)

L ( v ) [ l c o s ( ( l , ^ ) f (1, v))]

or the function

(2.2) L(u - v) - 1

provides a measure of the distance between two arcs. In order to
prove some sufficiency theorems by expansion, Reid [6, pp. 951-952;
7, pp. 680-682] considered the function

\u - v\\l + \u- v\)~ι

rather than (2.1) or (2.2). This function has the same qualitative
growth as (2.1) or (2.2). However (2.2) is more useful in an indirect
sufficiency proof because of its relation to directional convergence
(Hestenes [2, pp. 152-159]). Results obtained by Reid [6, pp. 951-
952; 7, pp. 680-682; 8, pp. 667-671] are contained in Lemmas 2.1, 2.2,
2.3 and Theorems 3.1, 3.2.

LEMMA 2.1. Let positive constants M and m be given. There
are positive constants Mx, M2, m19 and m2 such that

M,\v - u\2 ^ EL(u, v) ^ M2\v - u\2 when \u\, \v\ ^ M

and

m^v — u\ >̂ EL(u, v) ^ m2(l + \v — u\) when \u\,\v\*zm.

The proof of the first inequality follows from the intermediate
value theorem,

EL(u, v) = |τr|2 (1 - θ)L{w)~z[l + \w\2sin2φ]dθ

where π — v — u, w(θ) = u + θ(v — u), and φ(θ) is the angle between
7Γ and w. The second inequality follows from the identity

EL(u, v) = L(v)(l - cos φ)

where φ is the angle between (1, u) and (1, v). This proves the lemma.
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LEMMA 2.2. There are positive constants τ, τ* such that

τEL(O, v - u) ^ EL(u, v)

^ τ*ELφ, v - u) = τ*[L(v - w) - 1] = r*
i> — u) + 1

u is in a bounded subset @ o/ 2*7* αwc£ i; is m 2£n.

In order to prove this result, first note that if we assume \v\ is
bounded, then Lemma 2.1 implies the existence of the required con-
stants (which depend on the bound). Now observe that EL(0, v — u)
is asymptotic to \v\ Hence Lemma 2.1 implies that there is another
pair of positive constants such that the inequalities hold for large
\v\. This proves the lemma.

In the next two lemmas we assume that $ and © are subsets of
2t&-space and that $ is compact. Let f(z, u) be a continuous, real-
valued function defined on a neighborhood of S) union & and having
two continuous ^-derivatives on a neighborhood of $ . Given (z0, u0)
in $, we define the cone (£(z0, u0) of (z0, u0) with respect to 2) and ^
to consist of zero and all positive multiples of vectors π for which
there are sequences (zn, un) in $ and (zny vn) in ® such that

lim (zn, un) = lim (2n, vΛ) = (β0, w0)

and

LEMMA 2.3. If there is a positive constant τ such that (z, u) in &
and (zy v) in 5D imply

Ef(z, u, v) ^ τEL(u, v) ,

then for each (z, u) in $,

fuiuJ(z,u)KW^v[L(u)]-^\>

whenever π is in (£ (z, u).

In order to prove this lemma, let (z, u) be in & and π be in &(z, u).
There are sequences (znf un) in & and (zn9 vn) in 2) such that

lim (zn, un) = lim («n, vn) = («, w)

and

lim—- 7Γ

\π\
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Applying the intermediate value theorem to the hypothesis, we obtain

\\l - θ)fuiuj(zn, wn)πiπίdθ ^ τ\\l - θ)L(wn)^\πJ[l + \wn\
2sm2φn]dθ

Jo Jo

where πn = vn — un, wn{θ) = un + θπ, and <ρ{θ) is the angle between
πn and wn. Dividing n by |τrj2 and letting n tend to infinity, we com-
plete the proof of the lemma.

LEMMA 2.4. Suppose there is a positive constant τ* such that
(z, u) in U and (z, v) in 3) imply

L(v) ^ τ*\f(z, v)\ .

There is a positive constant τ such that (z, u) in $ and (z, v) in 3) imply

EL(u,v) ^ τ\Ef(z, u,v)\ .

This lemma follows from Lemma 2.1 and continuity considerations.

3* Major i?-dominance properties* Let $ be a compact subset
of an open set 9ϊ in #&&-space, and let 35 be an arbitrary subset of 9ΐ.
We suppose f(z, u) to be a continuous, real-valued function defined on
9ΐ. In a neighborhood of $ let f(z, u) have two continuous partial
derivatives with respect to the %-variables. We also suppose that the
^-variables are of the form (x, y) where x and y are elements in metric
spaces 3)' and ®" with metrics d'(x9 a?*) and d"(y, y*). Given a posi-
tive constant 3, % is defined to be the set of all (x, y, u) = (z, u) such
that for some y, (a?, y, u) is in $ and d'(̂ /, ̂ ) < δ. In applications we
sometimes consider 3)' or 35" to be the trivial space of one element.

This next definition is used to analyze situations in which some
form of a Weierstrass condition occurs. The set $ satisfies property
@ if there is a set ®* containing β with the two properties:

(i) Given a positive constant ε, there is a positive constant δ
such that for every (z, u) in %lδ, there is (z, u*) in 3)* with | u — u* \ < e.

(ii) There is a positive constant r such that for (z, %*) in 35*
and (z, v) in 35,

(3.1) Ef(z, u*, v) ^ τEL(u*, v) .

In particular we note that property @ is satisfied with 35* = %, if
there are positive constants δ and τ such that (z, u) in % and («, v)
in 3) imply

JE7/(S, W, V) ^ τEL(u, v) .

THEOREM 3.1. Assume property © αwd £&α£ ίΛβ matrix of second
partials of f(z, u) with respect to u is positive definite. There are
positive constants δ, τ, and ε such that (z, u) in 3lδ9 (z, v) in 3), and
17ΓI g e imply
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Ef(z, u + 7Γ, v) ;> τEL(u, v) .

This theorem follows by an argument similar to that of Hestenes
[4, p. 519].

The next theorem provides a connection between two possible
Weierstrass conditions which are stated below as (i) and (ii).

THEOREM 3.2. Let 3) be a subset of 9ΐ and suppose that the matrix
of second par Hals of f(z, u) with respect to u is positive definite. The
following two conditions are equivalent:

(i) There are positive constants τ and δ such that (z,u) in 3lδ

and (z, v) in 3) imply

Ef(z, u, v) ^ τEL(u, v) .

(ii) There are positive constants ε and δ such that (z, u) in 3lδ,
(z, v) in 3), and \ π | <£ ε imply

Ef(z, u + 7Γ, v) ^ 0

That (i) implies (ii) is trivial. The reverse implication follows in
the manner of Hestenes [2, pp. 151-152], that is, from the inter-
mediate value theorem and the identity

Ef(z, u, u + kπ) = Ef(z, u + π,u + kπ)

+ JcEf(z, u, u + π) + (k — l)Ef{z, u + π, u) .

The next theorem, which is important in applications to differ-
ential equation constraints, requires several new concepts. Let the
real-valued, nonnegative function h(z, u) be zero on $ and have the
same continuity and differentiability properties as f(z, u). We say
that f(z, u) satisfies the Legendre condition with respect to h(z, u) if
there is a positive constant hQ such that

/(s, u) + Kh(z, u)

has a positive definite matrix of second partial derivatives with respect
to u. We also define a subset @ of 3ΐ to be Cartesian with respect
to the x-variables if there is a subset 36 of #-space and 2) of τ/^-space
such that @ is the Cartesian product of £ and 2). The set @ is locally
Cartesian with respect to x if given (α?*, y*, u*) in @, there is a neigh-
borhood %l of x* in α -space such that the Cartesian product of 9Ϊ and
projyβ(@) is contained in @. We remark that if f(z, u) is continuous
on the closure of 91, then 3ϊ may be considered to be Cartesian with
respect to z.

THEOREM 3.3. Let ® be given by the set of zeros of h(z, u), and
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assume the strong condition of Legendre with respect to h(z, u). Sup-
pose there is a positive constant τ* such that (z, u) in B and (z, v) in ©
imply

Ef(z, u, v) ^ τ*EL(u, v) .

There exists a continuous, nonnegative function H(z, u) which is in-
finitely differentiable in its Euclidean arguments and a positive con-
stant τ such that if we define

F(z, u) = f(z, u) + H{z, u)h(z, u) ,

then for (z, u) in & and (z, v) in 9ΐ,

EF(z, u, v) ^ τEL(u, v) .

Furthermore if 3ΐ is locally Cartesian with respect to x, then H(z, u) =
H{x, y, u) may be taken to be a function of (y, u) alone.

Theorem 3.3 follows by an argument similar to that of Hestenes
[4, p. 520].

This last theorem is a criterion for determining when the function
H(z, u) in Theorem 3.3 may be taken as a constant.

THEOREM 3.4. Let ® be defined by h(z, u) as in Theorem 3.3.
Suppose that f(z, u) is defined on the closure of 3ΐ and that there are
constants a > 1, c > 0, and d such that for large \u\9

(3.18) f(z,u) ^d + c\u\« .

The conclusion of Theorem 3.3 holds with H(z, u) a constant. Further-
more if

(3.19) Σ I Λ < l < c on Λ,
i

then the conclusion holds with a = 1.

In order to prove this theorem, it suffices to show EF ^ 0 since
by Lemma 2.1, subtracting a small positive constant times L from
/ does not change the hypotheses. Let Sft be a neighborhood of &
which is bounded with respect to u and so large that (z, u) in & and
(z, v) in the exterior of 9ΐ imply by (3.19) (if a = 1) and (3.18),

Ef(z, u, v) = f(z, v) - f(z, u) - (v* - i^)fui(z9 u)
\ό.Δ\j)

^ d + c \ v \ a - f ( z , u) - (v* - u})fuι{z, u ) ^ 0 .

On the other hand, by continuity there are constants ε > 0 and b
such that for (z, u) in φ, (z, v) in ffl, and h(z, v) ^ ε,
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(3.21) Ef(z, u9v)>0

and for (z, u) in &, (z, v) in 9i, and h(z, v) > ε,

(3.22) Ef(z, u,v)>b.

Let H be a positive constant such that

(3.23) He + b > 0 .

By (3.21) we have that for (z, u) in $, (z, v) in Sft, and h(z, v) <; ε,

(3.24) Ef+Hh(z, u, v) = #,(«, u, v) + if/φ, t;) ^ 0 .

Also by (3.22) and (3.23) we have that for (z, u) in β, (z, v) in 5ft, and
h(z, v) > ε,

Ef+Hh(z, u, v) - ^ ( ί s , w, v) + JEΓΛ(«, v)

Combining (3.20), (3.24), and (3.25), we prove the theorem.
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