ON THE ZEROS OF A POLYNOMIAL AND ITS DERIVATIVE

Q. I. RAHMAN

Let all the zeros of a polynomial p(z) of degree n lie in $|z| \leq 1$. Given a complex number a what is the radius of the smallest disk centred at a containing at least one zero of the polynomial ((z-a)p(z))'? According to Theorem 1 the answer is (|a|+1)/(n+1) if |a| > (n+2)/n. Theorem 2 which states that if both the zeros of the quadratic polynomial p(z) lie in $|z| \leq 1$ and $|a| \leq 2$ then ((z-a)p(z))' has at least one zero in

 $|z-a| \leq \{3 | a | + (12-3 | a |^2)^{1/2}\}/6$

completely settles the case n = 2.

For $|a| \leq 1$ the question is equivalent to a problem in [1, (see problem 4.5)] which reads as follows: Is it true that if all the zeros z_1, z_2, \dots, z_n of the polynomial $p(z) = c \prod_{\nu=1}^n (z-z_{\nu})$ lie in the disk $|z| \leq 1$ then p'(z) has at least one zero in each of the disks $|z-z_{\nu}| \leq 1, \nu = 1, 2, \dots, n$? It has been shown by Rubinstein [2] that if all the zeros of the polynomial p(z) lie in $|z| \leq 1$ and p(1) = 0then at least one zero of p'(z) lies in the disk $|z-1| \leq 1$. On the other hand, the example $z^n - 1$ shows that a disk of radius less than 1 may not contain a zero of p'(z). Thus when |a| = 1 the answer to our question is 1.

If a is arbitrary the problem is trivial for n = 1 and the answer to the question is (|a|+1)/2 = (|a|+1)/(n+1).

For polynomials of arbitrary degree n we prove

THEOREM 1. If all the zeros of a polynomial p(z) of degree n lie in the closed unit disk then ((z-a)p(z))' has one and only one zero in $|z-a| \leq (|a|+1)/(n+1)$ provided |a| > (n+2)/n. The remaining n-1 zeros of ((z-a)p(z))' lie in $|z| \leq 1$. The example $p(z) = (z+e^{i\alpha})^n$ where α = arg a shows that the result is best possible.

The disk $|z-a| \leq (|a|+1)/(n+1)$ may contain more than one zero of ((z-a)p(z))' if |a| = (n+2)/n. That it contains at least one follows from the fact that the zeros of ((z-a)p(z))' are continuous functions of a.

The next theorem gives a solution of the problem when

Q. I. RAHMAN

$$|a| \leq (n+2)/n$$
 and $n=2$.

THEOREM 2. If both the zeros of the quadratic polynomial p(z) lie in $|z| \leq 1$ and $|a| \leq 2$ then ((z-a)p(z))' has at least one zero in

$$|z-a| \leq \{3 | a | + (12-3 | a |^2)^{1/2}\}/6$$
.

The example

$$p(z) = z^2 - 2 \left[\{3 - a(12 - 3a^2)^{1/2}\} / \{3a - (12 - 3a^2)^{1/2}\} \right] z + 1, \ 0 \leq a \leq 2$$

shows that the result is best possible.

For the proof of Theorem 2 we shall need the following lemma [3, p. 36].

LEMMA. If both the zeros of the polynomial

$$A(z)\,=\,a_{_{0}}\,+\,inom{2}{1}\,a_{_{1}}z\,+\,a_{_{2}}z^{_{2}}$$

lie in $|z| \geq r$ and those of

$$B(z) = b_{\scriptscriptstyle 0} + {2 \choose 1} b_{\scriptscriptstyle 1} z + b_{\scriptscriptstyle 2} z^{\scriptscriptstyle 2}$$

lie in |z| > s then both the zeros of the polynomial

$$C(z) \,=\, a_{_{0}}b_{_{0}}\,+\,inom{2}{1}a_{_{1}}b_{_{1}}z\,+\,a_{2}b_{2}z^{2}$$

lie in |z| > rs.

Proof of Theorem 1. Let

$$p(z) = c \prod_{\nu=1}^{n} (z-z_{\nu})$$

where by hypothesis $|z_{\nu}| \leq 1$, $\nu = 1, 2, \dots, n$. For a given z_0 with $|z_0| > 1$ the transformation $1/(z_0 - z)$ maps the closed unit disk onto some disk $D(z_0)$ in the finite plane. Thus all the numbers $1/(z_0 - z_1)$, $1/(z_0 - z_2), \dots, 1/(z_0 - z_n)$ belong to $D(z_0)$ and hence so does their arithmetic mean $\mu(z_0)$. But there exists a unique point $\phi(z_0)$ in the disk $|z| \leq 1$ such that $\mu(z_0) = 1/(z_0 - \phi(z_0))$. Consequently

$$p'(z_{\scriptscriptstyle 0})/p(z)\,=\,n/(z_{\scriptscriptstyle 0}\,{-}\,\phi(z_{\scriptscriptstyle 0}))$$
 .

Since z_0 in an arbitrary point outside the unit disk we get the representation

$$p'(z)/p(z) = n/(z-\phi(z))$$

where $\phi(z) = z - n \{ p(z)/p'(z) \}$ is holomorphic and of absolute value at most 1 in |z| > 1.

If |a| > 1 then

$$p'(z)/p(z) = n\psi(z)/\{(z-a)\psi(z)-1\}$$

where $\psi(z) = 1/(\phi(z) - a)$ is holomorphic in |z| > 1 and

$$(1) 1/(|a|+1) \leq |\psi(z)| \leq 1/(|a|-1).$$

Since

$$\{(z-a)p'(z) + p(z)\}/p(z) = \{(n+1)(z-a)\psi(z) - 1\}/\{(z-a)\psi(z) - 1\}$$

the zeros of ((z-a)p(z))' are the same as the zeros of $(n+1)(z-a)\psi(z)-1$. Now if |a| > (n+2)/n and (|a|+1)/(n+1) < |z-a| < |a| - 1 then from (1)

$$|(n+1)(z-a)\psi(z)| > 1$$
.

Hence by Rouché's theorem $(n+1)(z-a)\psi(z)-1$, $(n+1)(z-a)\psi(z)$ have the same number of zeros in $|z-a| \leq (|a|+1)/(n+1)$, namely 1. Given $\xi \in \{z: |z| \leq 1\} \cup \{z: |z-a| \leq (|a|+1)/(n+1)\}$ we can draw a contour *C* such that $\{z: |z-a| \leq (|a|+1)/(n+1)\}$ and the point ξ lie in C_i (the bounded domain determined by *C*) whereas $\{z: |z| \leq 1\}$ lies in C_i (the unbounded domain determined by *C*). According to the above reasoning ((z-a)p(z))' has one and only one zero in C_i . Since we know that the zero lies in $|z-a| \leq (a|+1)/(n+1)$ the point ξ cannot be a zero of ((z-a)p(z))'. Hence the remaining n-1 zeros of ((z-a)p(z))' lie in $|z| \leq 1$.

REMARK. Theorem 1 may be refined by observing that $(n+1)(z-a)\psi(z) - 1 \equiv (n+1)(z-a)(\phi(z)-a)^{-1} - 1$ can vanish only if $z - na/(n+1) = \phi(z)/(n+1)$. Hence in fact ((z-a)p(z))' has one and only one zero in $D = \{z: |z - na/(n+1)| \leq 1/(n+1)\}$. By considering $p(z) = (z - z_0)^n$ with an appropriate z_0 in the closed unit disk we see that any given point of D can be a zero of ((z-a)p(z))'.

Proof of Theorem 2. Without loss of generality we may suppose $0 \leq a \leq 2$. Let

$$p(z)=lpha_{\scriptscriptstyle 0}+lpha_{\scriptscriptstyle 1} z+lpha_{\scriptscriptstyle 2} z^{\scriptscriptstyle 2}$$

and put

$$egin{aligned} f(z) &= ((z\!-\!a)p(z))' = (lpha_{_0}\!-\!alpha_{_1}) + 2(lpha_{_1}\!-\!alpha_{_2})z + 3lpha_{_2}z^2 \ , \ s &= \{3a + (12\!-\!3a^2)^{1/2}\}/6 \ . \end{aligned}$$

We wish to prove that f(z) must vanish is $|z-a| \leq s$. If not, both the zeros of

$$B(z) = f(z+a) = lpha_0 + alpha_1 + a^2lpha_2 + {2 \choose 1}(lpha_1 + 2alpha_2)z + 3lpha_2 z^2$$

lie in |z| > s. Since both the zeros of

$$A(z) = 1 + {2 \choose 1} (1/2)z + (1/3)z^2$$

lie on $|z| = \sqrt{3}$ the lemma implies that both the zeros of the polynomial

$$C(z) = \alpha_0 + a\alpha_1 + a^2\alpha_2 + (\alpha_1 + 2a\alpha_2)z + \alpha_2 z^2 \equiv p(z+a)$$

lie in $|z| > \sqrt{3}s$, i.e., the polynomial p(z) does not vanish in $|z-a| \leq \sqrt{3}s$. We can therefore find a positive number ε such that the disk $|z - (a-2s)| \leq s - \varepsilon$ contains both the zeros of p(z). Now it can be easily deduced from Theorem 1 that ((z-a)p(z))' has one and only one zero in $|z-a| \leq s - \varepsilon/3$. This completes the proof of Theorem 2.

References

1. W. K. Hayman, *Research Problems in Function Theory*, The Athlone press of the University of London, London 1967.

2. Z. Rubinstein, On a problem of Ilyeff, Pacific J. Math., 26 (1968), 159-161.

3. G. Szegö, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., 13 (1922), 28-55.

Received January 28, 1971.

Université de Montréal

528