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ON THE ZEROS OF A POLYNOMIAL AND
ITS DERIVATIVE

Q. I. RAHMAN

Let all the zeros of a polynomial p(z) of degree n lie in
\ z\ ^ 1. Given a complex number a what is the radius of
the smallest disk centred at a containing" at least one zero
of the polynomial {{z—a)p{z))ιel According to Theorem 1 the
answer is (| a | + l)/(w+l) if | a \ > (n+2)ln. Theorem 2 which
states that if both the zeros of the quadratic polynomial
p{z) lie in | z \ ̂  1 and | a | ^ 2 then ((z—a) p(z))' has at least
one zero in

\z-a\ ^{S\a\ + (12-3!α|2)1/2}/6

completely settles the case n = 2.

For I a \ S 1 the question is equivalent to a problem in [1, (see
problem 4.5)] which reads as follows: Is it true that if all the zeros
zi> Zzy •••,£» of the polynomial p(z) = c Π?=i(3 — z») ^ e i n ^he disk
I 2; I <̂  1 then p'(2;) has at least one zero in each of the disks
I 2 — zu I ̂  1, v — 1, 2, , ni It has been shown by Rubinstein [2]
that if all the zeros of the polynomial p(z) lie in | z \ ̂  1 and p(l) = 0
then at least one zero of p\z) lies in the disk \z — l \ ^ l . On the
other hand, the example zn — 1 shows that a disk of radius less than
1 may not contain a zero of p'(z). Thus when | a | — 1 the answer
to our question is 1.

If a is arbitrary the problem is trivial for n — \ and the answer
to the question is ( | α | + l)/2 = (| a | + l)/(w + l).

For polynomials of arbitrary degree n we prove

THEOREM 1. // all the zeros of a polynomial p(z) of degree n lie
in the closed unit disk then {{z — a)p(z))r has one and only one zero
in \z — a\'^{\a\ + l)l(n + l) provided \a\> (n + 2)/n. The remaining
n — 1 zeros of ((z — a)p(z)Y lie in \z\^Ll. The example p(z) = {z + eia)n

where a = arg a shotvs that the result is best possible.

The disk \z — a\SL{\a\ + l)/(n + l) may contain more than one
zero of {{z — a)p{z))r if \a\ = (n + 2)/n. That it contains at least one
follows from the fact that the zeros of {(z — a)p{z))f are continuous
functions of a.

The next theorem gives a solution of the problem when
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\a\ ^ (n + 2)/n and n = 2 .

THEOREM 2. If both the zeros of the quadratic polynomial p(z)
lie in \ z | ^ 1 and \ a | ^ 2 then ((z — a)p(z)Y has at least one zero in

I z-a I ^ {3 I a | + (12-3 | a |2)1/2}/6 .

T%e example

p ( z ) = z2 - 2 [ { 3 - α ( 1 2 - 3 α 2 ) 1 / 2 } / { 3 α - ( 1 2 - 3 α 2 ) 1 / 2 } ] z + l , 0 £ a £ 2

shows that the result is best possible.

For the proof of Theorem 2 we shall need the following lemma
[3, p. 36].

LEMMA. // both the zeros of the polynomial

(2\

A(z) = a0 + I aγz + a2z
2

lie in \z\ ^ r and those of

B(z) = bo

lie in \ z \ > s then both the zeros of the polynomial
(2\

C(z) = aobo + I \afoz + a2b2z
2

lie in \z\ > rs.

Proof of Theorem 1. Let

p{z) = c Π (z-zv)

where by hypothesis | zv \ ̂  1, v = 1, 2, , n. For a given z0 with
I z01 > 1 the transformation l/(zo — z) maps the closed unit disk onto
some disk D(z0) in the finite plane. Thus all the numbers l/(z0—zj,
l/(20 — ̂ 2), •••, l/(^o—^) belong to D(J50) and hence so does their
arithmetic mean μ(zQ). But there exists a unique point ^(20) ^n ^ e

disk \z\ ^ 1 such that μ(z0) = l/(zo — φ(zo)). Consequently

P'(Zo)Mz) = n/(zo-ψ(zo)) .

Since z0 in an arbitrary point outside the unit disk we get the
representation
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pf(z)/p(z) = n/(z-φ(z))

where φ(z) = z — n{p(z)/p'(z)} is holomorphic and of absolute value at
most 1 in | z | > 1.

If I a I > 1 then

p'{z)lp{z) = nf{z)l{{z-a)ir{z)~l}

where ψ(z) — l/(ψ(z) — a) is holomorphic in | z | > 1 and

(1) ll{\a\+l)^\ψ{z)\ ^ 1/(| α 1-1).

Since

the zeros of ((z — a)p(z)Y are the same as the zeros of

Now if \a\> (n + 2)/n and
from (1)

a\ + ΐ)/(n + ΐ) < | z-a | <

z — a)ψ(z) — l.
α | - 1 then

Hence by Rouche's theorem (n + l)(z — a)ψ(z) — l, (n + ΐ)(z — a)ψ(z) have
the same number of zeros in \z — a\^(\a\ + l)/(n + l), namely 1.
Given f £ {z: \ z | ^ 1} (j {z: 12; —α | ^ (| α | + l)/(w + l)} we can draw a
contour C such that {2: | 2 — a\ ^ (| α | +ΐ)/(n + ΐ)} and the point ς lie
in Ci (the bounded domain determined by C) whereas {z: \ z \ ̂  1} lies
in Ce (the unbounded domain determined by C). According to the
above reasoning ((z — a)p(z))r has one and only one zero in Cίβ Since
we know that the zero lies in \z — a\ ^ (a\+l)/(n + l) the point <f
cannot be a zero of ((# — a)p(z))'. Hence the remaining n — 1 zeros
of ((2-α)2)(2))f lie in \z\ ^ 1.

REMARK. Theorem 1 may be refined by observing that
(n + l)(z — a)ψ(z) — 1 = (n + l)(z — a)(φ(z) — α)"1 — 1 can vanish only
if z — na/(n + 1) = Φ(z)/(n + 1) Hence in fact {{z — a)p(z))' has one
and only one zero in D = {z: | z — wα/(w + 1) | ^ l/(w + 1)}. By con-
sidering p{z) — (z — zo)

% with an appropriate z0 in the closed unit disk
we see that any given point of D can be a zero of {{z — a)p{z))\

Proof of Theorem 2. Without loss of generality we may suppose
0 ^ a ^ 2. Let

and put

p{z) =

8= {3α

^ ) + 2(a1-aa2)z

(12-3α2)1/2}/6 .
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We wish to prove that f(z) must vanish is | z—a | ^ s. If not, both
the zeros of

/2
B(z) = f(z+a) = a0 + aocι + a2a2 +

lie in | z | > s. Since both the zeros of

A(z) = 1

lie on | z \ = V 3 the lemma implies that both the zeros of the poly-
nomial

C(z) = aQ + aaL + a2a2 + (a1 + 2aa2)z + a2z
2 = p(z + a)

lie in | « | > τ / 3 s , i.e., the polynomial p(z) does not vanish in
I z — a\ ^ τ/3s. We can therefore find a positive number ε such that
the disk | z — (a — 2s) | ^ s — ε contains both the zeros of p(z). Now
it can be easily deduced from Theorem 1 that {{z — a)p{z))r has one
and only one zero in | z — a \ ̂  s — ε/3. This completes the proof of
Theorem 2.

REFERENCES

1. W. K. Hayman, Research Problems in Function Theory, The Athlone press of the
University of London, London 1967.
2. Z. Rubinstein, On a problem of Ilyeff, Pacific J. Math., 26 (1968), 159-161.
3. G. Szegό, Bemerkungen zu einem Satz von J.H. Grace ϋber die Wurzeln algebra-
ischer Gleichungen, Math. Z., 13 (1922), 28-55.

Received January 28, 1971.

UNIVERSITY DE MONTREAL




