ON THE ZEROS OF A POLYNOMIAL AND ITS DERIVATIVE

Q. I. Rahman

Let all the zeros of a polynomial $p(z)$ of degree n lie in $|z| \leqq 1$. Given a complex number a what is the radius of the smallest disk centred at a containing at least one zero of the polynomial $((z-\alpha) p(z))^{\prime}$? According to Theorem 1 the answer is $(|a|+1) /(n+1)$ if $|a|>(n+2) / n$. Theorem 2 which states that if both the zeros of the quadratic polynomial $p(z)$ lie in $|z| \leqq 1$ and $|a| \leqq 2$ then $((z-\alpha) p(z))^{\prime}$ has at least one zero in

$$
|z-a| \leqq\left\{3|a|+\left(12-3|a|^{2}\right)^{1 / 2}\right\} / 6
$$

completely settles the case $n=2$.
For $|a| \leqq 1$ the question is equivalent to a problem in [1, (see problem 4.5)] which reads as follows: Is it true that if all the zeros $z_{1}, z_{2}, \cdots, z_{n}$ of the polynomial $p(z)=c \prod_{n=1}^{n}\left(z-z_{2}\right)$ lie in the disk $|z| \leqq 1$ then $p^{\prime}(z)$ has at least one zero in each of the disks $\left|z-z_{\nu}\right| \leqq 1, \nu=1,2, \cdots, n$? It has been shown by Rubinstein [2] that if all the zeros of the polynomial $p(z)$ lie in $|z| \leqq 1$ and $p(1)=0$ then at least one zero of $p^{\prime}(z)$ lies in the disk $|z-1| \leqq 1$. On the other hand, the example $z^{n}-1$ shows that a disk of radius less than 1 may not contain a zero of $p^{\prime}(z)$. Thus when $|a|=1$ the answer to our question is 1 .

If a is arbitrary the problem is trivial for $n=1$ and the answer to the question is $(|a|+1) / 2=(|a|+1) /(n+1)$.

For polynomials of arbitrary degree n we prove

Theorem 1. If all the zeros of a polynomial $p(z)$ of degree n lie in the closed unit disk then $((z-a) p(z))^{\prime}$ has one and only one zero in $|z-a| \leqq(|a|+1) /(n+1)$ provided $|a|>(n+2) / n$. The remaining $n-1$ zeros of $((z-a) p(z))^{\prime}$ lie in $|z| \leqq 1$. The example $p(z)=\left(z+e^{i \alpha}\right)^{n}$ where $\alpha=\arg a$ shows that the result is best possible.

The disk $|z-a| \leqq(|a|+1) /(n+1)$ may contain more than one zero of $((z-a) p(z))^{\prime}$ if $|a|=(n+2) / n$. That it contains at least one follows from the fact that the zeros of $((z-\alpha) p(z))^{\prime}$ are continuous functions of a.

The next theorem gives a solution of the problem when

$$
|a| \leqq(n+2) / n \quad \text { and } \quad n=2 .
$$

Theorem 2. If both the zeros of the quadratic polynomial $p(z)$ lie in $|z| \leqq 1$ and $|a| \leqq 2$ then $((z-a) p(z))^{\prime}$ has at least one zero in

$$
|z-a| \leqq\left\{3|a|+\left(12-3|a|^{2}\right)^{1 / 2}\right\} / 6 .
$$

The example

$$
p(z)=z^{2}-2\left[\left\{3-a\left(12-3 a^{2}\right)^{1 / 2}\right\} /\left\{3 a-\left(12-3 a^{2}\right)^{1 / 2}\right\}\right] z+1,0 \leqq a \leqq 2
$$

shows that the result is best possible.
For the proof of Theorem 2 we shall need the following lemma [3, p. 36].

Lemma. If both the zeros of the polynomial

$$
A(z)=a_{0}+\binom{2}{1} a_{1} z+a_{2} z^{2}
$$

lie in $|z| \geqq r$ and those of

$$
B(z)=b_{0}+\binom{2}{1} b_{1} z+b_{2} z^{2}
$$

lie in $|z|>s$ then both the zeros of the polynomial

$$
C(z)=a_{0} b_{0}+\binom{2}{1} a_{1} b_{1} z+a_{2} b_{2} z^{2}
$$

lie in $|z|>r$.
Proof of Theorem 1. Let

$$
p(z)=c \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)
$$

where by hypothesis $\left|z_{\nu}\right| \leqq 1, \nu=1,2, \cdots, n$. For a given z_{0} with $\left|z_{0}\right|>1$ the transformation $1 /\left(z_{0}-z\right)$ maps the closed unit disk onto some disk $D\left(z_{0}\right)$ in the finite plane. Thus all the numbers $1 /\left(z_{0}-z_{1}\right)$, $1 /\left(z_{0}-z_{2}\right), \cdots, 1 /\left(z_{0}-z_{n}\right)$ belong to $D\left(z_{0}\right)$ and hence so does their arithmetic mean $\mu\left(z_{0}\right)$. But there exists a unique point $\phi\left(z_{0}\right)$ in the disk $|z| \leqq 1$ such that $\mu\left(z_{0}\right)=1 /\left(z_{0}-\phi\left(z_{0}\right)\right)$. Consequently

$$
p^{\prime}\left(z_{0}\right) / p(z)=n /\left(z_{0}-\phi\left(z_{0}\right)\right) .
$$

Since z_{0} in an arbitrary point outside the unit disk we get the representation

$$
p^{\prime}(z) / p(z)=n /(z-\phi(z))
$$

where $\phi(z)=z-n\left\{p(z) / p^{\prime}(z)\right\}$ is holomorphic and of absolute value at most 1 in $|z|>1$.

If $|a|>1$ then

$$
p^{\prime}(z) / p(z)=n \psi(z) /\{(z-a) \psi(z)-1\}
$$

where $\psi(z)=1 /(\phi(z)-\alpha)$ is holomorphic in $|z|>1$ and

$$
\begin{equation*}
1 /(|a|+1) \leqq|\psi(z)| \leqq 1 /(|a|-1) . \tag{1}
\end{equation*}
$$

Since

$$
\left\{(z-a) p^{\prime}(z)+p(z)\right\} / p(z)=\{(n+1)(z-a) \psi(z)-1\} /\{(z-a) \psi(z)-1\}
$$

the zeros of $((z-a) p(z))^{\prime}$ are the same as the zeros of $(n+1)(z-a) \psi(z)-1$. Now if $|\alpha|>(n+2) / n$ and $(|\alpha|+1) /(n+1)<|z-a|<|a|-1$ then from (1)

$$
|(n+1)(z-a) \psi(z)|>1 .
$$

Hence by Rouché's theorem $(n+1)(z-\alpha) \psi(z)-1,(n+1)(z-\alpha) \psi(z)$ have the same number of zeros in $|z-a| \leqq(|a|+1) /(n+1)$, namely 1. Given $\xi \in\{z:|z| \leqq 1\} \cup\{z:|z-a| \leqq(|a|+1) /(n+1)\}$ we can draw a contour C such that $\{z:|z-a| \leqq(|a|+1) /(n+1)\}$ and the point ξ lie in C_{i} (the bounded domain determined by C) whereas $\{z:|z| \leqq 1\}$ lies in C_{e} (the unbounded domain determined by C). According to the above reasoning $((z-a) p(z))^{\prime}$ has one and only one zero in C_{i}. Since we know that the zero lies in $|z-a| \leqq(a \mid+1) /(n+1)$ the point ξ cannot be a zero of $((z-a) p(z))^{\prime}$. Hence the remaining $n-1$ zeros of $((z-a) p(z))^{\prime}$ lie in $|z| \leqq 1$.

Remark. Theorem 1 may be refined by observing that $(n+1)(z-\alpha) \psi(z)-1 \equiv(n+1)(z-\alpha)(\phi(z)-\alpha)^{-1}-1$ can vanish only if $z-n a /(n+1)=\phi(z) /(n+1)$. Hence in fact $((z-a) p(z))^{\prime}$ has one and only one zero in $D=\{z:|z-n a /(n+1)| \leqq 1 /(n+1)\}$. By considering $p(z)=\left(z-z_{0}\right)^{n}$ with an appropriate z_{0} in the closed unit disk we see that any given point of D can be a zero of $((z-a) p(z))^{\prime}$.

Proof of Theorem 2. Without loss of generality we may suppose $0 \leqq a \leqq 2$. Let

$$
p(z)=\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}
$$

and put

$$
\begin{aligned}
f(z)=((z-a) p(z))^{\prime} & =\left(\alpha_{0}-a \alpha_{1}\right)+2\left(\alpha_{1}-\alpha \alpha_{2}\right) z+3 \alpha_{2} z^{2}, \\
s & =\left\{3 a+\left(12-3 a^{2}\right)^{1 / 2}\right\} / 6 .
\end{aligned}
$$

We wish to prove that $f(z)$ must vanish is $|z-a| \leqq s$. If not, both the zeros of

$$
B(z)=f(z+a)=\alpha_{0}+a \alpha_{1}+a^{2} \alpha_{2}+\binom{2}{1}\left(\alpha_{1}+2 \alpha \alpha_{2}\right) z+3 \alpha_{2} z^{2}
$$

lie in $|z|>s$. Since both the zeros of

$$
A(z)=1+\binom{2}{1}(1 / 2) z+(1 / 3) z^{2}
$$

lie on $|\boldsymbol{z}|=\sqrt{3}$ the lemma implies that both the zeros of the polynomial

$$
C(z)=\alpha_{0}+a \alpha_{1}+a^{2} \alpha_{2}+\left(\alpha_{1}+2 a \alpha_{2}\right) z+\alpha_{2} z^{2} \equiv p(z+a)
$$

lie in $|z|>\sqrt{3} s$, i. e., the polynomial $p(z)$ does not vanish in $|z-a| \leqq \sqrt{3} s$. We can therefore find a positive number ε such that the disk $|z-(a-2 s)| \leqq s-\varepsilon$ contains both the zeros of $p(z)$. Now it can be easily deduced from Theorem 1 that $((z-a) p(z))^{\prime}$ has one and only one zero in $|z-a| \leqq s-\varepsilon / 3$. This completes the proof of Theorem 2.

References

1. W. K. Hayman, Research Problems in Function Theory, The Athlone press of the University of London, London 1967.
2. Z. Rubinstein, On a problem of Ilyeff, Pacific J. Math., 26 (1968), 159-161.
3. G. Szegö, Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., 13 (1922), 28-55.

Received January 28, 1971.
Université de Montréal

