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COMPLETELY ADEQUATE NEIGHBORHOOD SYSTEMS
AND METRIZATION

SEAN B. O'REILLY

In this paper, the notion of a completely adequate neigh-
borhood system for a topological space is defined and used to
obtain characterizations of discreteness and second counta-
bility. Certain conditions on the completely adequate neigh-
borhood system are given which yield collection wise normality
and paracompactness. The notion of a standardized topol-
ogical space is introduced (the class of standardized spaces
includes, among others, the separable spaces and the devel-
opable spaces) and the main theorem gives necessary and
sufficient conditions for the metrizability of standardized spaces
in terms of completely adequate neighborhood systems.

0* Introduction and preliminaries* A great deal of work has

been done in the area of metrization criteria for TΊ topological spaces.
Roughly speaking, these criteria generally fall into two broad cate-
gories which might be characterized as "indexed neighborhood" criteria
and "covering" criteria. In this paper, an "unindexed neighborhood"
criterion is developed, that is, a metrization criterion in which the set
algebraic conditions which the neighborhoods of points must satisfy
is separated from the indexing requirement.

Specifically, the set algebraic requirement is that the space have
a linearly ordered, completely adequate neighborhood system (defined in
§1), and the indexing requirement is that the space have a standard-
ization (defined in §2).

In what follows, all spaces are assumed to be Ti A "neighbor-
hood system" will always mean a mapping, ^% which assigns to each
x e X a neighborhood basis at x, denoted by ^(x). For any subset,
A, the closure of A will be denoted by Cl [A], and its interior by
Int[A]. Otherwise, notation and terminology will follow that of
Kelley [3].

1* Completely adequate neighborhood systems*

DEFINITION 1.1. A completely adequate neighborhood system
(henceforth abbreviated to C. A. system) is a map, 3^, which assigns
to each xeX a neighborhood basis, T>(x)f at x, satisfying:

Given xeX and 0 open, with x e 0, there exists an open set N[x; 0],
with x e N[x; 0] c 0, and such that each y e N[x; 0] has a neighborhood
V(y) e T{y) with the property that N[x; 0] c V(y) c 0.
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Ψ* will be called linearly ordered (resp. well-ordered) if T*(x) is
linearly ordered (resp. well-ordered) by inclusion at each xe X. Simi-
larly, T* will be called countable if Y*{x) contains only countably many
distinct neighborhoods for each xe X. Finally, it should be noted
that there is no loss of generality in assuming that each V(x) e T^(x)
is open, since the neighborhood system obtained by replacing each
V(x) by its interior is completely adequate as long as Ψ* is.

EXAMPLES 1.2. I. Let X be a metric space with metric p. Let
S(x, r) = {ye X\p(x, y) < r}, where r is any positive real number. If
D is any set of positive real numbers with inf [D] — 0, then we define,
for each xeX, T(x) by

T{x) = {S(x,d)\deD} .

Now, if 0 is open and xeO, then there exists d e D such that S(x, d)cθ.
Moreover, there exist p, qe D such that p < d/2 and q < p/2. It is
easily checked that if we take N[x; 0] = S(x, g), then N[x; 0] c S(y, p) c 0
for each y e N[x; 0]. Since S(y, p) e T(y), it follows that T is a C. A.
system. Note that, for any selection of D, Y* is a linearly ordered
C. A. system. If D is also well-ordered then 7Γ will be a well-ordered
C. A. system. In particular, if D — \\.\n\% — 1, 2, •••}, then °Γ will
be a countable, well-ordered C. A. system.

II. Let X be an arbitrary topological space and & a base for
the topology on X. Define <%f(x) = {0e ^\xe 0}, for each xeX. If
x is arbitrary and U is any open set containing x, then there exists
0 e & such that x e 0 c U. If we take N[x; U] = 0 = V(y), then it
is apparent that

N[x; U] c V(y) c U

for every yeN[x; U], and hence, the map Y*\ x — > T*(x) is a C. A.
system. Note that if & is countable (i.e. X is second countable)
then ^ is a countable C. A. system.

III. Let X be a set, II a uniform structure on X, ^ the as-
sociated uniform topology on X, and S3 a basis for U. If Ve%$, V[x]
denotes the set {y \ (α?, y) e V}. For each x e X, let T(x) = {V[x] \ Ve S3}.
We will show that the map, Ύ^'.x—>Jr(x) is a C. A. system for X.

Let 0 be open and xeO. Since S3 is a basis for IX, there exists
T7eS3 such that W[a;]cO Moreover, there exists Ve S3 such that
Vo 7 c W and there exists NeU such that N= N'1 and NoNa V.
Now, since Nc 7 c W, it follows that N[x] d f [ a ; ] c θ . Let y e N[x],
Since N — N~\ it follows that (y, x) e N. lίz is an arbitrary element
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of N[x], then (x,z)eN, so (y, z)e A/ΌJVc V, or zeV[y]. Hence,
N[x]a V[y] for each yeN[x\. Next, if we V[y]9 then we have that
(x, y) e Na V and (y, w) e V, so (x, w) e F° 7 c W. Hence, V[y] c W[x].
We have now shown that N[x] c V[y] c TΓ[a?] c 0 for each T/eiSΓf̂ ].
Finally, take N[x; 0] = Int [Λ/>]] and it follows that T is a G. A.
system.

It is easy to see that if the basis, 23, is linearly ordered by in-
clusion (resp. well-ordered by inclusion), then so is °Γ{x) for every
xeX. In this case, the associated map, Ύ, is a linearly ordered
(resp. well-ordered) C. A. system.

We now develop some of the basis properties of C. A. systems

LEMMA 1.3. Let X be a topological space and Y* a C. A. system

for X. If D is any dense subset of X, then the collection {J{Ύ(d) \de D}

is a base for the topology on X.

Proof. Let 0 c X be open and let x be an arbitrary element of
0. Since f is a C. A. system, there exists an open set N[x; 0]
satisfying the condition of the definition. Since D is dense in X,
N[x; 0]Π D Φ 0 and, hence, there exists dxQ D Π N[x; 0] and V(dx) e
T{dx) such that

x e N[x; 0] c V(dx) c 0 .

Hence 0 = \J{V(dx)\xe 0}, and so \J{T(d)\de D} is a base for the
topology.

Second countable spaces may now be characterized in terms of
C. A. systems.

THEOREM 1.4. X is a second countable space iff X is separable
and has a countable C. A. system.

Proof. It is well known that second countability implies separ-
ability. If & is a countable base for the topology on X, then defin-
ing Y* as in 1.2. II. yields a countable C. A. system.

Conversely, if D is a countable dense subset of X, and Ύ is a
countable C. A. system, then Ύ(d) is countable for each deD, and
hence, \J{T{d)\deD) is countable. By 1.3 \J{T{d)\deD) is a base
for the topology, so X is second countable.

Discrete spaces may also be characterized in terms of C. A. systems.

THEOREM 1.5. X is discrete iff every neighborhood system for X
is a C. A. system.

Proof. Let X be a discrete space and ^ an arbitrary neigh-
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borhood system for X. Since {x} is open, it follows that {x}
Hence, it is obvious that {x} — N[x; 0] satisfies the requirement in 1.1
for any open set 0 which contains x, so ^ is a C. A. system.

Conversely, if x is a non-isolated point of X, and ̂  is a neigh-
borhood system for X, define T* by

T(y) = {U(y) - {x} I U(y) e f/(y)} if x Φ y, and

T(x) = ^ ( )

Since X is T19 it follows that 3Γ is a neighborhood system for X, but
since $ £ V(y) for any ?/ Φ x, T* is not a C. A. system for X.

We now investigate the properties of linearly ordered and well-
ordered C. A. systems.

LEMMA 1.6. If X has a linearly ordered C. A. system then X
is collectionwise normal.

Proof. Let {Fa\aeA} be a discrete collection of closed subsets
of X. For aeA, l e tF* = \J{Fβ\βe A, β Φ a). Since the family
{Fa\ae A} is discrete, F£ is closed and Fa Π F* = 0 . Hence, X - F?
is open, and Faa X — F*. Thus, for each xeFa, there exists an
open set, N[x; X — jFα*], with the property that each of its points,
y, has a neighborhood V(y) 6 3̂ (2/) satisfying

N[x; X - F*] c V(y) c I - F ; .

Hence, define

Gα= \J{N[x\X-F*\\xsFa).

Since Gα is the union of open sets, it is open. Moreover, since
xG N[x; X — Fa] for each xeFβ, we have that FacGa, for every
aeA.

Now, suppose that Ga Π Gβ Φ 0 , for some a, βe A, where a Φ β.
Let z be any element of Gaf\Gβ. This entails the existence of points
x e Fa, and yeFβ such that z e N[x; X - F£] and z e N[y; X - Ff\.
But this holds only if there exist neighborhoods U(z), V(z) e Y*{z)
satisfying x e N[x; X - F*] c ϋ{z) a X - F? and y e N[y; X - Ff\ c
V(z) c X — JP*. Since, by hypothesis, T' is linearly ordered, either
U(z) c F(^) or V(z) c C7(̂ ). Since F α c F?, it follows that X - Ff c
X-Fa9 and since F ( 2 ) c l - F ; we get F ( 2 ) n F f f = 0 . But,
a? e J7(3) Π Fai so we conclude that V(z)aU(z). However, FβcF*,
so that X - FβZ)X - F*i) U(z), and thus U(z) Π Fβ = 0 . But this
contradicts τ/e F(«) ΓΊ ί7 .̂ Hence, GaΠ Gβ = 0 , and Xis collectionwise
normal.

Our next result makes use of the following, which may be found
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in [3, pp. 155-156].

DEFINITION. An open co\7er, ^ , of a topological space, X, is even
iff there exists a neighborhood, V, of the diagonal of X x X such
that the family {V[x]\xeX} refines έ?.

THEOREM. If X is a regular space, then X is paracompact iff
every open cover of X is even.

LEMMA 1.7. If X has a well-ordered C. A. system, then X is
paracompact.

Proof. Let έ? be an open cover of X, and let T be a well-ordered
C. A. system for X. For each x e X, let

= {V(oή 6 T{x) I V(x) c 0 for some 0 e ̂ } .

Since 7"{x) is well-ordered by inclusion, ^/{x) contains a least element,
U*(x). That is, U*(x)i)V(x) for every V(x)e%S(x). Now, \etD =
U{(», v)\ye U*(x), xeX}. Trivially, D[x] = {y\(x, y)eD}= U*(x)c 0
for some 0 e <*?, so the family {D[x\ \ x e X} refines ^. It remains to
show that D is a neighborhood of the diagonal, Δ. First, D Z) Δ since
(x, x) e {(x, y)Iye U*(x)} for each xeX. Next, note that since Y* is
C. A. system, there exists open N[x; U*(x)] such that xe N[x; U*(x)] c
U*(x). We also have that, for each ye N[x; U*(x)]9 there exists
V(y) e T{y) such that

N[x; U*(x)]c V(y)<z U*(x) .

But, since U*(x)czQ for some O e ^ , it follows that V(y)aO, so
V(y) e <?s(y) and, therefore, V(y) c J7*(i/). Hence, iSΓ[a?; Z7*(α?)] c Z7*(i/)
for each yeN[x; U*(x)]. Now, if (y, z) e N[x; 17*(α?)] x #[«; Z7*(α?)]
then, since ^eiV[.τ; U*(x)], N[x; U*(x)]a U*(y) and we have (y,z)e
{y} x Ϊ7*(2/) c J5. Hence, it follows that

(a?, a?) G iNΓ[®; U*(x)] x î [a?; C7*(«)] c D

for each x e X, so ^ is even.
Finally, we note that since T* is well-ordered, it is linearly

ordered, and thus X is collectionwise normal by 1.6. X is 2\, so it is
regular and the result follows.

If Y is any subspace of X and T is a C. A. system for X, define
^ by

Y\V(y)eT(y)}

for each | / e 7 . It is a routine matter to verify that 5̂ J is a C. A.
system for Y with the relative topology. Moreover, it is clear that
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if T is linearly ordered (resp. well-ordered) then so is 5*J. This
remark, along with the two preceding results supply the proof of
the next result.

THEOREM 1.8. If X has a linearly ordered {resp. well-ordered)
C. A. system then X is hereditarily collectionwise normal (resp.
hereditarily paracompact).

It was noted in 1.2. Ill that if X has a uniform structure with
a basis which is linearly ordered by inclusion, then X also has a
linearly ordered C. A. system and hence, by 1.8, X, with the associated
uniform topology, is hereditarily collectionwise normal. In this case,
however, the result can be improved.

THEOREM 1.9. Let X be a uniform space with uniformity II. If
U has a basis which is linearly ordered by inclusion, then X, with
the associated uniform topology is hereditarily paracompact.

Proof. Let 3S be a linearly ordered basis for U. By means of
a standard argument involving Zorn's Lemma, it is easy to show that
2δ contains a cofinal, well-ordered subfamily, SS. Since 33 is cofinal
in SB, it is easily verified that S3 is a basis for U. Hence, as noted
in 1.2. Ill, the associated map, °Γ, is a well-ordered C. A. system
for X, so the result follows from 1.8.

We are now in a position to give some metrization criteria for
certain classes of topological spaces.

THEOREM 1.10. Let X be a separable space. The following con-
ditions are equivalent:

(a) X is metrizable,
(b) X has a countable, well-ordered C. A. system, and
(c) X has a countable C. A. system and a linearly ordered C. A.

system.

Proof, (a) implies (b): This was done in 1.2. I. (b) implies (c):
Trivial, (c) implies (a): From 1.6 we have that X is collectionwise
normal. Since X is Tlf it follows that X is regular. From 1.4 we
have that X is second countable, so X is metrizable by Urysohn's
theorem [3, p 125].

DEFINITION. A topological space, X, is developable if there exists
a sequence of open coverings of X, {&n\n = 1, 2, •}, such that
{St (x, &n) I n = 1, 2, •} is a neighborhood basis at x, where St (x,
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THEOREM 1.11. Let X be a developable topologίcal space. The
following conditions are equivalent:

(a) X is metrizable,
(b) X has a countable, well-ordered C. A. system, and
(c) X has a linearly ordered C. A. system.

Proof, (a) implies (b): This was done in 1.2. I. (b) implies (c):
Trivial, (c) implies (a): Bing [1] has shown that every collectionwise
normal, developable space is metrizable. By 1.6, X is collectionwise
normal, so X is metrizable.

On the basis of the above two theorems, it would seem natural
to conjecture that having a countable, well-ordered C. A. system is
sufficient, in general, to guarantee metrizability. However, the next
example shows that this is not the case.

EXAMPLE 1.12. There exists a topological space, X, with a coun-
table, well-ordered C. A. system, 5^, (in fact, V(x, n) ZDC\ [V(X, n + 1)]
for each V(x, n)9 V(x, n + 1) e T{x) and each xe X.) but which is not
perfectly normal, and, hence, not metrizable.

Let X be the real numbers and Q the rational numbers. A
topology is defined on X as follows:

0 c X is open iff O = Ot (J O2, where Ox is open in the ordinary
(metric) topology on X, and O2a X — Q. This example appears in
[4], where it is shown that X is not perfectly normal, so all that is
necessary is to construct the required C. A. system.

Let V(x, n) = {y\d(x, y) < 1/n}, where d is the ordinary metric on
X. Now, let

T{x) = {V(x, n) I n = 1, 2, •}, if x e Q, and

T(x) = {V(x, n)\n = 1,2, . . , ω), if xe X - Q ,

where V(x, co) — {x}.
It is clear that the m.2φ7r'.x—>7r{x) is a neighborhood system

for X. To see that °Γ is completely adequate, let x e X be arbitrary
and 0 c X be open, with xeO.

If xe X — Q, then {x} is open and, hence, taking {x} = N[x; 0] =
V(y, ω), we have N[x; 0] c V(y, ω) c 0, for every y e N[x; 0].

If xeQ, then, since 0 = Ox U O2, where O2c X — Q, we have
x e O19 and Ot is open in the ordinary topology. Therefore, there
exists M such that V(x, M)cθ1c 0. Taking N[x; O] = V(x, 4M), we
have N[x; 0] c V(y, 2M) c 0, for each ye N[x; 0], and T is a C. A.
system having the required properties.

2. Standardizations* In the light of 1.12 it is clear that some
sort of additional condition is needed in order that a space with a
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suitable C. A. system be metrizable. From 1.10 and 1.11 it appears
that any such property ought to be a common generalization of sepa-
rability and developability. One condition that satisfies these re-
quirements is that the space have a standardization.

DEFINITION 2.1. A standardization of a topological space, X, is
a map, ^ , which assigns to each xeX a countable, nested family
of open sets, {U(x, n)\n — 1, 2, , •}, such that

(a) xe U(x, n) for each xe X and n — 1,2,
(b) If {zn\n — 1, 2, ••} is a sequence of distinct points, then

Int[Π{U(zn,n)\n= 1,2, . . . } ] = 0 .

(c) Int [Γ\{U(x, n)\n = 1, 2, •••}] = {x} if x is isolated and is
empty otherwise.

Included in the following examples are proofs that having a stand-
ardization is a common generalization of separable and developable
spaces.

EXAMPLE 2.2. Let X be a metric space with metric, d. If we
let %S(x) = {S(x, n)\n = 1, 2, •}, where, as usual,

S(x,n) = {y\d(x,y)

then it is easy to see that the m a p ^ : x-^^ix) is a standardization.

EXAMPLE 2.3. Let X be a separable space, with D a countable,
dense subset of X. Let {dly d2i •••} be an enumeration of D. If a? is
an isolated point of X, let U(x, 1) = U(x, 2) = = {x}. If a? is not
isolated, let

U(x, n) = X - {di I i = 1, 2, . . , n} if x ί D, and

Ϊ7O, n) = X - {dt.I i = 1, 2, , w; i Φ j} if a? = d ^ D .

It is clear that xe U(x, n) and that U(x, n) is open for each xe X
and w = 1, 2, . Furthermore, ^(x) — {U(x9 n)\n — 1, 2, •} is
nested and countable for each xe X.

If {Zi\i — 1, 2, •} is a sequence of distinct points and dfc is an
arbitrary element of D, then dk is equal to at most one of the zi9

say Zj. Let N — max {&, i + 1}. It follows that dk Φ ZN and hence
dkί U(zN, N). Therefore, dk ί Π ί ^ f e ΌK = 1> 2» •••}• Since dk was
arbitrary, it follows that no element of D is in Γ\{U{zh i)\i = 1, 2, •}
and hence Int [ Π ί ^ f e i ) | ΐ = 1, 2, •••}] = 0 .

Finally, if x is an isolated point of X, from the definition of
U(x, n) we have that Γl{U(x, n)\n — 1, 2, •} = {#}, so
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EXAMPLE 2.4. Let X be a developable space. For each x e X,
let 0{x, n) be any open set satisfying x e O(x, n) e &n. Then, let U(xy n) =
Γ){O(x, i)\i = 1, 2, •••, w}. It is clear that α e Z7(α?, w) and Ϊ7(a?, n) is
open for each n = 1, 2, and each «τe X. Also, the family, ^ ( # ) =
{U(x, n) I n — 1, 2, } is nested and countable for each xe X. Note
that U(x, n) c O(ί&, w) c St (#, &n) for each w = 1, 2, and each xe X,
so ^(SE) is also a neighborhood basis at x.

If {zji = 1, 2, •••} is an arbitrary sequence of (not necessarily
distinct) points of X, suppose that xe Int [C\{U(zif i)\i = 1, 2, •••}].
We have, for each n, x e U(zn, n) c O(zn, n) e &n. So,

O(zn, n)dSt(x9

Thus,

xelntlΓl{U(zn,n)\n = 1,2, -}]cn{O(^,w)|n= 1,2,

the last equality from the fact that {St (a?, . ^ ) | n = 1, 2, } is a
neighborhood basis at x, and that X is 2\. We conclude that {x} =
Int [ Π ί ^ ί w w)|w = 1, 2, •••}], so x is isolated. From this it follows
that there exists N such that {x} = St (x, &n) for every n ^ ΛΓ. From
above, we have O(zn, n) c St (.τ, . ^ ) = {x}, so 2Λ = ,τ, for n ^ iSΓ, and
therefore, the sequence {zjw = 1, 2, •••} is not composed of distinct
points.

Finally, since <%f(x) is a neighborhood basis at x, we have {x} =
Γ\{U(xyn)\n= 1,2, . . .}, so Int {f\{U{x, n)\n = 1,2, •••}] = {a?} iff a?
is isolated and is empty otherwise.

The following sequence of results will be useful in the proof of
the main theorem.

LEMMA 2.5. Let ̂  he a standardization for X. Then the map,
W, defined by

Ύ/^{x) — {{x}}, if x is isolated, and

Ύ/^ix) = 1Zf(x) otherwise,

is also a standardization.

Proof. The proof is routine, and will be omitted.

LEMMA 2.6. Let ̂  be a standardization for X, and let 0 be any
open set consisting of more than one point. Then, there exists N
such that OqL U(y, n) for any yeX and n ^ N.

Proof. If not, then there exists a sequence of points, {zn\n ~
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1, 2, } such t h a t 0 c U(zn, n), n = 1, 2, . Now, if {sΛ | w = 1, 2, }

contains a subsequence of dist inct points, {znk\k = 1,2, •••}, then,

since nk^>k, we have Oa U(znk, nk)a U(zn}c, k), so that Oap|{Uznk, k)\k =
1, 2, •}, and hence O c i n t [f\{U{znk, k)\k — 1, 2, •••}], which is a con-
tradiction. Hence, {zn\n — 1, 2, •••} contains a constant subsequence,
2Wyfc = x for some x e l . But, this entails 0 c Ϊ7(#, %) for % = 1, 2, ,
since Od U(x, nk)(Z U(x, n) for each n ^ nk. We conclude that
Ocz f]{U(x, n)\n = 1, 2, •} and, since 0 is open, that

n ) | r a = 1,2, . . . } ] .

But this happens only if 0 — {x}, contradicting the assumption that
0 consists of two or more points, completing the proof.

LEMMA 2.7. Let ^ be a standardization for X and let °F be a
linearly ordered neighborhood system-i.e. each °F{x) is linearly ordered
by inclusion. Then, X has a neighborhood system, "W, such that

(a) Ύ/^{x) — {W(x9 n)\n = 1, 2, •} is linearly ordered by inclu-
sion, and

(b) if V{x) e T{x) and V{x) c U(y, n) for some yeX, then V(x) c
W(x, n).

Proof. Let W(x, n) = U {V(x) eT(x)\ V(x) c U(y, n), for some
y e X}, and let Ύ^{x) = {W(x, n) \ n = 1, 2, }. Note that (b) follows
trivially. Next, if m > n, then U(y, m) c U(y, n) for each yeX, so
that if V(x) c U(y, m), then V(x) c U(y, n) and so W(x, m) c W(x, n),
and (a) holds. It remains to be shown that W(x) is a neighborhood
basis at each xe X.

First, suppose that x is isolated. By 2.5, we may assume that
^/(x) — {{x}}. Now, by an argument similar to that of 2.6, it can be
shown that there exists N such that x ί U(y, n) for any y Φ x and
n ^ N. Thus, if n ^ N and V(x) c ί7(τ/, n), it follows that y — x and
E%, ti) = {α;}. Hence, V(x) = {x}, so W(x, n) = {x} and ^^'(a;) is a
neighborhood basis at x.

If # is not isolated and 0 is any open set containing x, let
V(x) e T*(x) satisfy V(x) c 0. Since a; is not isolated, V(x) consists of
at least two points and therefore, by 2.6, there exists N such that
V{x)(£ U(y,n) for any yeX and n ^ N. Thus, if S(α?) 6 T{x) and
ίS(α ) c U(y, n) for some n ^ N, it follows that £(#) c V(x) since ^(α;)
is linearly ordered by inclusion. Thus, W(x, n) c F(a;) c 0 for each
n ^ N. Note that for each xe X and w = 1, 2, , W(x, n) Φ 0 since
there always exists V(x)eT%(x) satisfying xe V(x) c U(x, n). This
completes the proof.

It is well known that if a space is first countable then it has a
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neighborhood system which is linearly ordered at each point, 2.7 pro-
vides the following partial converse.

COROLLARY 2.8. Let X have a standardization. If X has a
neighborhood system linearly ordered at each point, then X is first
countable.

Proof. The neighborhood system, <Wy defined in 2.7 is countable
at each point, so X is first countable.

3* Metrization. We are now in a position to prove the main
theorem.

THEOREM 3.1. A topological space is metrizable iff it has a line-
arly ordered C. A. system and a standardization.

Proof. If X is metrizable then the required C. A. system was
obtained in 1.2.1. and the standardization in 2.2.

Conversely, let ^ be a standardization for X and T* a linearly
ordered C. A. system. Let S(x, n) = N[x; U(x, n)], where U(x, n) e <%f{x)
and N[x; U(x, n)] is as in 1.1. Let &n = {S(x, n) \ n = 1, 2, , x e X).
It will be shown that {&n \ n = 1, 2, } is a development for X.

Let xeX be arbitrary and let 0 be open, with xeO. By hypo-
thesis T is a linearly ordered C. A. system, so there exists a neigh-
borhood system, "W, satisfying the conditions (a) and (b) of 2.7.
Hence, there exists m such that W(x, m) c 0. Now, suppose that
xeS{y,m) for some yeX. This entails the existence of V(x)e7r(x)
such that

N[y; U(y, m)] - S(y, m) c V(x) c U(y, m) .

However, since V(x)a U(y, m), it follows that V(x)a W(x, m) by 2.7.
Thus, we have shown that if x e S(y, m) then

S(y, m) c V(x) c W(x, m) c 0 ,

so St (^ ^TO) c O, and hence, since 0 was arbitrary, {St (x, &n) | n —
1, 2, •} is a neighborhood basis at x. Thus, X is a developable space
and therefore, by 1.11, is metrizable.

In the light of 3.1, 1.10 and 1.11 may now be generalized as
follows.

THEOREM 3.2. Let X be a space with a standardization. The
following conditions are equivalent:

(a) X is metrizable,
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(b) X has a countable, well-ordered C. A. system, and
(c) X has a linearly ordered C. A. system.

In closing, we remark that a subsequent paper will deal with the
situation that arises when one weakens the requirement " N[x; 0] c
V(y) c 0 . " of 1.1 to " x e V(y) c 0 • ".
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