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ON A REPRESENTATION OF A STRONGLY
HARMONIC RING BY SHEAVES

KWANGIL KOH

A ring R is strongly harmonic provided that if Mu M2

are a pair of distinct maximal modular ideals of R, then there
exist ideals Stf and & such that Szf % Mu & % M2 and
S/έ% — 0. Let ^^(JR) be the maximal modular ideal space of
R. If Me ΛT{R\ let 0{M) = {reR\for some y&M, rxy = 0
for every xeR}. Define &(JR) = U {RI0(M) \ Me^f(R)}.
If i£ is a strongly harmonic ring with 1, then R is isomorphic
to the ring of global sections of the sheaf of local rings
&(R) over ^(R). Let Γ^{R),&{R)) be the ring of
global sections of &(JR) over ^#(R). For every unitary
(right) iίί-module A, let AM = {a e A | aRx = 0 for some x£M)
and let A - \J{AIAM I Me ̂ T(S)}. Define ά{M) = a + AM and
r(ikΓ) = r -f O(Jlf) for every aeA,reR and m e ^(R). Then
the mapping f A: α i-̂  a is a semi-linear isomorphism of A
onto ΓθT(i?)), ^CR))—module Γ(^f(R), A) in the sense
that fA is a group isomorphism satisfying ?A(α?Λ) = ar for
every α e A and reR.

1* If JB is a ring with 1, ί? is called harmonic (or regular) if
the maximal modular ideal space, say ^(R), with the hull-kernel
topology, is a Hausdorff space (refer [5]). A ring R is strongly
harmonic provided that for any pair of distinct maximal modular
ideals M19 M2 there exist ideals jy, & in R such that S*f g£ M^
^ g ikf2 and Ssf & — 0. For any nonempty subset S of a ring R
define (S)1 = {r e i? | sr = 0 for every seS} and if ae R let aRι be
the principal right ideal generated by α. If M is a prime ideal of
a ring ij let O(M) = {reR\ (rR,)1 g Λf}. An ideal J ^ of a ring R
is called M-primary for some maximal modular ideal M oΐ R provided
that MjSsf is the unique maximal modular ideal of R/J^f and if
J ^ ' is an ideal of R such that J ^ ' S <^ and J * " ^ J ^ then R/J&"
is no longer a local ring (here by a local ring we mean a ring with
the unique maximal modular ideal). The principal results in this
paper are as follows: Let R be a ring such that if R/S is a local
ring for some ideal S of R then R/S has a unit. Then R is strongly
harmonic if and only if O(M) is M-primary for every maximal
modular ideal M of R. If R is a strongly harmonic ring with 1
then R is isomorphic to Γ{^ί(R\ &(R)) the ring of global sections
of the sheaf of local rings &p(R) = U {R/0(M) \ Me ΛT(R)} over

and if A is a unitary right J?-module then the mapping
a is a semi-linear isomorphism of A onto
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module Γ(^(R), A) in the sense that ξΛ is a group isomorphism
satisfying ξA{ar) — a r for aeA, reR where d(M) = a + AM, r(M) =
r + O(M) for Me ̂ £(R) and A = U {A/A3f | Me ^t(R)}f the disjoint
union of the family of right 2?-modules AjAM) indexed by ^f(R),
and AM = {aeA\ (aR)1 §£ M). If R is a ring with 1 such that it
contains no nonzero nilpotent elements then R is biregular (see [2:
p. 104] for definition) if and only if every prime ideal of R is a
maximal ideal. Our results here generalize S. Teleman's result
that in case le R, a strongly semi-simple harmonic ring or a von
Neumann algebra can be represented as a ring of global sections of
the sheaf of local algebras over its maximal modular ideal space
(refer [5], [6] and [7]). The author wishes to express his gratitude
to Professors K. H. Hofmann and S. Teleman for their many in-
valuable suggestions for the preparation of this paper.

2* Let R be a ring and A be a right iϋ-module. For each prime
ideal M of R, define AM = {ae A | (aR,)1 g M) where aR, is the sub-
module of A which is generated by the element a and (aR,)1 =
{reR\aR,r = 0}.

PROPOSITION 2.1. AM is a submodule of A.

Proof. Let a,beAM. Then (a - b)R, S aR, + bR, and ((α - b)R,)1 3
(aR, + bR,)L = {aRy Π {bRx)

L 2 (aR^ibR,)1. Hence if α - δ g A* then
(aR^ibR,)1 S Λf and either (α^) 1 S ΛΓ or (bR,)1 £ ikf since M is a
prime ideal of J?. Hence either aίAM or δ ί AM. This is impossible.
Thus a — be AM. Now if r 6 R and α G i f then arR, £ αi?! and
(αrJSi)1 a (αiy 1 . Since (αiϊO1 S M, (arR,)1 g ikf and α r e i ^ .

COROLLARY 2.2. // A is R, whose module multiplication is given
by the ring multiplication, then AM is an ideal of R which is con-
tained in M for any prime ideal M of R. In this case, we denote
AM by O(M).

Proof. 0 { M ) i s a l r e a d y a r i g h t i d e a l o f R b y 2 . 2 . L e t r e R
and a e 0{M). Then {raRx)

L 3 (aR,)1. Since (aR,)1 g M, (raR,)1 g M
and raeO(M).

PROPOSITION 2.3. If A is a right R-module for some ring R
then A0(M) u AM for any prime ideal M of R.

Proof. Since AM is a submodule of A, it suffices to show that if
aeA and x e O(M) then ax e AM. But this is immediate since (axR,)1 2
(xR,)1 and (xR,)1 g M.
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THEOREM 2.4. Let R be a ring such that if & is a proper
ideal of R then there is a maximal modular ideal M in R such that
& £ M. Let A be a right R-module such that if aR = 0 for some
ae A then a = 0. Then Π {AM I M is a maximal modular ideal of
R) is zero.

Proof. Let α e f l {AM \ M is a maximal modular ideal of R] such
that a Φ 0. Then (aR,)1 Φ R, for if (aR,)1 = R then aR = 0 and
a — 0. Since (aR)1 Φ R, (aR,)1 is a proper ideal of R. Hence there
is a maximal modular ideal M in R such that (aR,)1 Q M. This
means that a£AM and α g Π {Ax | M is a maximal modular ideal of
R). This is a contradiction.

COROLLARY 2.5. // i? is a ring with 1 and A is a unitary
right R-module, then Π {A0(M) \ M is a maximal ideal of R) is zero.

Proof. By 2.4, fl {^ | M is a maximal ideal of #} = 0. Since
A0(M) S Ajf for any prime ideal of iϋ by 2.3, the conclusion now
follows.

DEFINITION 2.6. We say that a ring iϋ is strong harmonic
provided that for any pair of distinct maximal modular ideals M19

M2 there exist ideals jy; & in R such that
and J ^ ^ = 0.

PROPOSITION 2.7. // R is strongly harmonic, then ^£(R) is
Hausdorff.

Proof. If M,} M2 are distinct maximal modular ideals of R, then,
by definition, there exist ideals Sf and & such that Szf g Λflf

^ g Λί2 and J ^ ^ = 0. Therefore, two open sets {ilί e
and {ΛίG ^//(R) \ & £ M) are disjoint.

EXAMPLE 2.8. Let 22 be a strongly semi-simple ring, that is a
ring in which the intersection of maximal modular ideals is zero.
If the maximal modular ideal space, ^jf(β) with the hull-kernel
topology, is a Hausdorff space, then R is strongly harmonic.

EXAMPLE 2.9. If R is a ring with 1 such that it is strongly
harmonic then it is harmonic. However, if 1 g R then a strongly
harmonic ring may not be harmonic. For example, let R be the
algebra of sequences (αΛ)Λ^0 of 2 x 2-matrices over the field of complex
numbers C, such that an—> (~ A for n—» oo for some XeC. Then
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the intersection of the maximal modular ideals of R is zero and
^(Έt) is Hausdorff. Hence R is strongly harmonic; however, it is
not harmonic.

EXAMPLE 2.10. Let R be a von Neumann algebra. Then for
any distinct pair of maximal ideals M19 M2 there exist central
idempotents ely e2 in R such that eλ g Mί9 e2 ί M2 and such that e^e2 — 0.
Hence R is strongly harmonic.

EXAMPLE 2.11. Let Q be the field of rational numbers and let
Pi> V21 9 Vι be a finite number of distinct prime numbers. Let
R — {m/n eQ \n is not divisible by any pi9 1 ̂  i ^ I}. Then ^(R)
consist of I points and it is a Hausdorff space. However, since R is
an integral domain, R is not strongly harmonic if ϊ > 1.

DEFINITION 2.12. Let R be a ring and M be a maximal modular
ideal of R. An ideal & in R is said to be M-primary, for some
maximal modular ideal M of R, provided that & £ M, i?/^5 is a
ring with a unique maximal modular ideal Mjέ?, and if P is an
ideal of R such that P £ ^ and P Φ <^, then ϋί/P is not a local
ring. Here, by a iocαϊ rm<7 we mean a ring with a unique maximal
modular ideal.

PROPOSITION 2.13. Let R be a ring and M be a maximal modular
ideal of R. If an M-primary ideal, say &*, exists, then it is unique.

Proof. Let ^ be a ikΓ-primary ideal of R. If either & s a?
or & ϋ & then, by definition, & = ̂ . So assume ^ Π ̂  is
properly contained in ^ or ^ . Then the ideal &&> is properly
contained in ^ and Rl&έ^ is not a local ring. Hence there is a
maximal modular ideal N in R such that N Φ M and ^ ^ S JV.
Since JV is a prime ideal, this means that either & ϋ N or ^ £ ΛΓ.
In either case, this means that & or ^ is not M-primary. This
is a contradiction.

PROPOSITION 2.14. Let R be a ring such that if R/^ is a local
ring for some ideal & in R, then R\έ? has a unit. If RjO(M) is a
local ring for some maximal modular ideal M in R, then O(M) is
M-primary.

Proof. Observe that O(M) S M. Hence M/0(M) is the unique
maximal modular ideal of the local ring R/0(M). Let & be an
ideal of R such that & £ O(M), & Φ O(M) and R/&* is a local
ring. Let t e O(M) such that t € 3*. Then (tR,)1 £M. If & + (tRy Φ
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R then there is a maximal modular ideal N in R such that & + (ίi2i)1£
JV", since Rj& has a unit. Since {tR^L §£ M, this means that MΦ N.
This is impossible. Hence R = ̂  + (ί-Bi)1. Let β + ̂  be the
identity of R/&* for some eeR. Then β = p + s for some pe ^
and se (tRL)L. Hence te = tp and ί — te — t — tpe &>. This means
that t e & and this is a contradiction. Thus O(M) must be M-
primary.

THEOREM 2.15. Let R be a ring such that if R\& is a local
ring for some ideal έ?, then it has a unit. Then R is strongly
harmonic if, and only if, O(M) is M-primary for every maximal
modular ideal M in R.

Proof. Assume R is strongly harmonic. By 2.14, it suffices to
show that R/O(M) is a local ring for each maximal modular ideal M
of R. If R/O(M) is not a local ring for some maximal modular
ideal M, then there is a maximal modular ideal N in R such that
N Φ M and O(M) g N. Since R is strongly harmonic, there exist
ideals S^ and & such that Sf £ N, & §£ M and Jzf'& = 0. This
means that Ssf S O(M). Since O(M) S iV, J^f ^ N. This is a con-
tradiction. Conversely, assume O(M) is M-primary for each maximal
modular ideal M of R. Let M^ M2 be two distinct maximal modular
ideals or R. Then O(Mλ) §£ ikf2 and O(ikf2) g ilίi Hence there exist
αeO(ilίΊ) such that αgikΓ2 and beO(Mz) such that bgM,. Then (6),
the ideal generated by 6, is not contained in M. Let J ^ = (δ) and
let & = (bR,)1. Then J / g ^ , ^ g l 2 and j * ^ = 0.

REMARK 2.16. If R is a strongly semi-simple ring with 1 such
that ^ί(R)j the maximal modular ideal space of R, is a Hausdorff
space, then by [5: Theorem 6.5] and [5: Theorem 6.15], the ikf-primary
ideal exists for each maximal modular ideal M in R. In this case, the
M-primary ideal p(M) is given by the set {x e R \ supp (RxR) Π {M} —
φ), where supp (RxR) = {Me ΛT{R) \ RxR g M} by [5: Theorem
6.14].

3* If Ssf is an ideal of a ring R, let

supp

k{F) = Π {Λίe ΛT(R) \MG F} .

THEOREM 3.1. Let R be a ring and let

έe(R) = \J {R/0(M) I Me

the disjoint union of a family of rings {R/0(M) \ Me ^£(R)). For
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each reR define r to be the function from ^/ί\R) into &{R) such
that r{M) = r + O(M) for each Me ^€(R). Let τ = {f(U)\reR and
U is an open set in ^€(R)\. Let p be a family of sets consisting
of arbitrary unions of the members of τ. Then (&(R), p) is a
topological space and each point r(M) of &{R), reR and Me ^^(R),
is contained in an open set which is homeomorphic to an open set
of ^/f(R) under the canonical projection'. r(M) \ —* M, that is,
is a sheaf of rings over

Proof. In η e f±( U) Π f2( V) for some rt,r2eR and some open
sets U, V in ^€{R) then there is Me UΠ V such that rλ — r2e0(M).
Hence ((rx - r2)R^L £ M. Let W = U Π V ΓΊ supp ((rx - r^R,)1). Then
Me W and rjef1(W)Sr1(U)Γif2(V). Since W is an open set of
^/ί{R), f1(W)eτ and hence (&(R), p) is a topological space. In
view of [1: 2.2 p. 151], it suffices to show that if f(M) — 0 for some
reR and Me^£{R) then there exists an open set U of M such
that f (U) = 0. But this is immediate since if r(M) = 0 then r e 0{M)
and (rR,)1 gΞ M. Therefore, if we let U= supp ((rR,)1) then r(U) = 0
since r e f| {O(M) | Λf€ [7}.

THEOREM 3.2. Lei R be a strongly harmonic ring. If F is a
compact subset of ^£(R) and Mo£ F for some Mo e ^(R) then there
exist ideals S^f and <S£? such that S?f & = 0, MQe supp (J&) and
F g supp(^ ) .

Proof. Since R is strongly harmonic, for any MeF there exist
ideals J^ ' , &?f in R such that M"oe supp (J^")> ikfesupp(^ r) and
Stf"££' — 0. Since î 7 is compact, there exist a finite number of
ideals, say j ^ , j^ζ, , JK, -^, -^, , - ^ such that

Mo e fΐ supp (JK ) = supp {,s^Sϊf2

and F g U L i supp (0^ = supp Σ?=i - ^ such that s/^i = 0 for all
i = 1, 2, , w, and ( J ^ J ^ JKXΣIU ^<) = 0.

THEOREM 3.3. Let R be a strongly harmonic ring. If F is a
compact subset of ^£{R) then F = h(f\ {O(M) | Me F}).

Proof. Since ΠMeF O(M) c k(F), F £ A(Πjfe^ O(M)). Suppose
there is Moe h{f\MeF 0{M)) such that M0$F. Then by 3.2 there
exist ideals s/, & in R such that MQe supp (J$O, F S s u p p ( ^ )
and Jtf^ = 0. Hence if J l ίeF then .^ £ M and J ^ £ O(M).
Thus A £ ΠϋfeίΌ(Jlf). Since Moe λ(Πϋfeί O(Jkf)), this means that

£ Mo and this is a contradiction.
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THEOREM 3.4. Let R be a strongly harmonic ring with 1 and
let &{R) be the sheaf of local rings over ^/?(R), which is described
in 3.1. If Fo is a compact subset of ^/€(R) and σ is a section from
Fo into &(R), then there is reR such that f \FQ = σ.

Proof. If MoeFQ then there exists an open set U in
which contains Mo and reR such that if MeUΓ)F0 then σ(M) =
r(M). Let UQ = ^//(R)\F0. Since ^//{R) is Hausdorff by 2.7, Fo is
a closed set. Hence Uo is an open subset of ^/?(R). There exist a
finite number of points Mlf M2, , Mn in Fo, open sets U19 U2, , E7*
such that Mie Ui, i — 1, 2, , n, and r1? r2, , rn in R such that
σ(M) = n(ikf) for every M e UiΓ\ Fo for every i = 1, 2, •••,%. Further-
more, F o S U?=i ^ a n ( i -^(JB) = Uί^o Ui. Let ^ = ^/f(R)\Ui and
let /̂  = OMSF O(M) for each i = 0, 1, 2, , n. Since 2^ is a closed
subset of a compact space, it is compact. Hence Ft — h(Ii) for each
i = 0, 1, 2, . , n by 3.3. Since φ = f|Γ=o ^ = Γ\U HI,) = h(ΣU /<),
JS = Σ?=o ί* a n ^ 1 = Σ?=i e* f° r some €<€/<, i = 0, 1, 2, , n. If
Λίe ^ n FQ, then n(ikf)β,(M) = O(Λf) - σ(M)ei(M). If M e Z7* Π FQ,
then f ί W e ^ M ) - σ(M)ei(M). Hence, for every M e Fo, f^M
σ{M)βi{M). Thus if we let r = eQ + Σ?=i r ^> then for every

M e F o f (M) - eo(M) + Σ

COROLLARY 3.5. If R is a strongly harmonic ring with 1 then
R = Γ

Proof. By 2.5, r i—> f is a monomorphism from i? into
Since ^{R) is a compact space, by 3.4 if σ e

then there is r e i ϋ such that σ — r. Thus r ^ f is an iso-
morphism of R onto Γ(^/?(R),

DEFINITION 3.6. We say that a sheaf & over the space X is
soft provided that if F is a compact subset of X and σ e Γ(F,
then there is σ e Γ(X, &) such that σ\p = σ.

THEOREM 3.7.1 Let R be a strongly harmonic ring with 1. Then
the sheaf &(R) of local rings which is constructed in 3.1 is soft.
Conversely, if & is a soft sheaf of local rings over a Hausdorff
compact space ^/ft then Γ(^/f, &) is a strongly harmonic ring.

The author is indebted to Professor S. Teleman for this theorem.
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Proof. By 3.4, ,^{R) is soft if R is a strongly harmonic ring
with 1. Suppose now that & is a soft sheaf of local rings over a
Hausdorίf compact space ^f. Let R = Γ{^9 ^g5). By Theorem 11
of [6: p. 712], ^€ is homeomorphic to ^y/Z(R). Hence we may take
R = Γ{^//{R), &). Since ^/Z is Hausdorff, if Ml9 M2e^f(R) such
t h a t ilίi Φ M2 then there exist open sets Ui9 i = 1, 2, in ^ ^ ( i ? ) such

t h a t M"L e C7Ί, M2 G Ϊ72 and £/t Π U2 = φ. lί σ e # , define

I σ I = {ilf e ^ ( 2 2 ) I σ{M) Φ 0} .

Let Ai = {σ e R\\σ\ ξΞ= Ui}, i = 1, 2. Clearly, A1? A2 are ideals of iϋ

and AiA2 = 0 = A2Aγ since UιΓ\ U2 — φ. There exists compact sets

K19 K2 such that M{ e K, and K, £ Ui9 i - 1, 2. Let i^ - ^t(R)\Ui.
Since ^ is soft there exist σ{ in Γ(^^(J?), ^ ) such that σ^Ki) = 1
and σ^FJ = 0, i = 1, 2. Hence Aι (£ Mi for i = 1, 2. Thus i2 is
strongly harmonic.

REMARK 3.8. Let J? be a ring and A be a right iί-module. We
will associate with A a sheaf if ^(ί?)-modules over ^€(R) (refer
[4] for definition). For Me ΛT{R), denote A = \J {A/AM | Me
the disjoint union of a family of .β-modules AjAM indexed by
Let π:Av^ ^f/{R) be given by π~\M) = A/AiX. For α e i and
ΛίG^f(i2), let ία(M) be the image of a, under the natural homo-
morphism of A onto A/AM. Topologίze A by taking all sets ta(U),
with aeA, U is an open set in ^€{R), as a basis for the open sets.
Then A becomes a sheaf of ,^(ί?)-modules over ^/Z(R). The justi-
fication of this statement and proof of this result require only slight
modifications of 3.1.

THEOREM 3.9. Let R be a strongly harmonic ring with 1 and
let A be a unitary right R-module. Then the mapping ζΛ: av-*ta is a
semi-linear isomorphism of A onto the Γ(^/f(R)9 &(R))-module
Γ(^/f(R), A) in the sense that ξA is a group isomorphism satisfying
ζA(ar) = ta f for aeA, reR where ta(M) = a + AM for all m e ^fί(R).

Proof. We omit the proof because it is only a variant of the
proof of 3.4. However, it is worth noting that the full strength of
2.4 is needed here to prove that ζΛ is an injection,

4. A ring is called biregular if every principal ideal of the ring
is generated by a central idempotent. In [2], Dauns and Hofmann
proved that if R is a ring with 1 then R is biregular if and only
if R is isomorphic to the ring of all global sections of a sheaf of
simple rings over a Boolean space. By applying this theorem, we
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will show that if R is a ring with 1 such that it contains no nonzero
nilpotent elements then R is biregular if, and only if, every prime
ideal of R is a maximal ideal of R.

PROPOSTION 4.1. If R is a biregular ring then every prime ideal
M of R is a maximal ideal of R.

Proof. If R is biregular then so is the ring RJM for any ideal
M of R. Hence if M is a prime ideal then R/M is a prime biregular
ring. Therefore, R/M contains no proper principal ideal for if R/M
contains a proper principal ideal, then R/M would have two nonzero
ideals whose product is zero. Thus R/M is a simple ring and M is
a maximal ideal of R.

PROPOSITION 4.2. Let R be a ring and M be a prime ideal of
R. Define OM = {x e R \ xy = 0 for some y ίM}, If R contains no
nonzero nilpotent elements then OM — O(M).

Proof. Clearly 0{M) S OM. If x, y are elements of R such that
xy == 0 then yx is zero since yxyx — 0 and R contains no nonzero
nilpotent elements. Furthermore, if reR, xry = 0 since xry xry — 0.
Thus O(M) = OM.

PROPOSITION 4.3. Let R be a ring without nilpotent elements.
If every prime ideal of R is maximal, then M — O(M) for every
prime ideal M of R.

Proof. If every prime ideal of R is maximal, then every prime
ideal is a maximal prime ideal. Hence by [3: 2.4], M ~ OM for each
prime ideal M of R. Thus by 4.2 M = O(M).

PROPOSITION 4.4. If R is a ring with 1 such that R contains no
nonzero nilpotent elements and if every prime ideal of R is maximal,
then ^f(R) is a Boolean space.

Proof. This is a direct consequence of [3: 2.5].

THEOREM 4.5. Let R be a ring with 1 such that it contains no
nonzero nilpotent elements. Then R is biregular if, every prime
ideal of R is maximal.

Proof. If R is biregular then by 4.1, every prime ideal is
maximal. Conversely, suppose that every prime ideal of R is maximal.
Since R is a ring without nilpotent elements, the intersection of
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prime ideals of R is zero. Since ^(Ή) is a Hausdorίf space by 4.4,
if Mu M2 are two distinct elements in ^(R), then there exist ideals
Sf and & such that Szf g£ M19 ^ g l 2 and Stf'& = 0. Hence
O(M) is M-primary for every Me^f(R) by 2.13 and thus R =
Γ(^T(JB), j$?(i2)) by 3.5. Since ^T(/e) is a Boolean space by 4.4
and M = O(M) by 4.3, R is a biregular ring by [2: 2.19, p. 108].
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