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DYNAMICAL SYSTEMS OF CHARACTERISTIC 0

RONALD A. KNIGHT

The purpose of this paper is to characterize planar dy-
namical systems satisfying certain stability criterion. These
flows are called dynamical systems of characteristic 0. Basi-
cally the set S of critical points of such a flow is shown
to be in one of three categories: S=0; S consists of at most
two Poincar§ centers; or S = R2.

1* Introduction* In § 2 we give the basic concepts used through-
out the paper. In §3 we give examples of flows of characteristic 0+

and 0~ that are not of characteristic 0. We also give examples of
flows of characteristic 0 which are not of characteristic 0+, 0~, or 0*.
Further, by Examples 2 and 3 we show that the set S of critical
points in Theorem 4.8 may actually consist of one or two local Poincare
centers. In §4 we give necessary and sufficient conditions for a flow
(R2, π) to have characteristic 0.

2* Definitions, notations, and basic theorems- We shall denote
the real numbers, nonnegative real numbers, nonpositive real numbers,
and Euclidean plane by R, R+, R~, and R2, respectively. We shall
use R2* to designate the one point compactification of it!2.

A pair (X, π) consisting of a topological space X and a continuous
mapping π: X x R—>X from the product space X x R into Xis called
a dynamical system or (continuous) flow whenever the following con-
ditions are satisfied.

1. Identity axiom: π(x, 0) = x for each x e X.
2. Homomorphism axiom: π(π(x, t), s) = π(x, t + s) for each xe X

and t, se R.
3. Continuity axiom: π is continuous on X x R.
In this paper X will always be Hausdorff.
We shall let π(x, t) = xt for brevity. For each x e X, C(x) = xR,

C+(x) = xR+, and C~{x) = xR~ are called the trajectory (or orbit),
positive semi-trajectory, and negative semi-trajectory through x, respec-
tively. A point x G X is called a critical or rest point if xR = x. If
x is not critical and xt — x for some t > 0, then x is called periodic.
For MdX, M is said to be invariant if C(M) = M and positively
{negatively) invariant if C+(M) = M (C~(M) = M).

We shall denote the boundary, interior, and closure of a set M e X
by dM, M\ and M, respectively. For any simple closed curve C in
R2 we shall denote the bounded and unbounded components of R2 — C
by int C and ext C, respectively. We shall let η(x) and r)(M) denote
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t h e n e i g h b o r h o o d filters oΐ xeX a n d Mc X, r e s p e c t i v e l y .
The sets CΪxj', C+(x), and ~CΓ(x) shall be denoted by K(x), K+(x),

and K~(x), respectively. The positive (negative) limit set of xe X is
L+(x) = ΓiteRK+(xt)(L~(x) = f\teRK~(xt)). The limit set of xeX is
L(x) = L+(x) U L~(x).

A set Λ ί c X is called positively (orbitally) stable if for every
Ue 7]{M) there exists a F e ^(Jlf) such that F - C+(F) c U. Negative

and bilateral stability are defined by replacing C + (F) above by C~(V)
and C(F), respectively. One can easily verify that a set itf is bilater-
ally stable if and only if M is both positively and negatively stable.
When we write stable we shall mean positively stable.

For each xe X, the positive (negative) prolongation of x is given
by

D+(x) = Π C+(M) (D-(x) = Π
Meη(x) Me-η(x)

The prolongation of x is D(x) = D+(x) U D~(x). The positive (negative)
prolongational limit set of α? is given by

e/ \*k/ — I I ±J \*l/ϋ} \d \«̂ / — I I IS \wOJJ .
teR teR

The prolongational limit set is J(x) — J+(x) U J~(x).
The following theorem which we shall use several times in this

paper is due to Ura (see [6] and [11]).

THEOREM 2.1. Let X be locally compact and dM be compact. Then
Mis stable (negatively stable) if and only if D+(M) = M(D~(M) = M.)
Furthermore, M is bilaterally stable if and only if D(M) — M.

A flow (X, π) is called parallelίzable if it is isomorphic to a parallel
flow; that is, if there is a flow (Y x R, πf) such that (y, t)s = (y, t + s)
for each y e Y and t, se R and a homeomorphism / : X—> Y x R such
that f(xt) = f(x)t for each xe Xand teR. We shall use the following
characterization of a parallelizable flow. For a proof see [3] and [4].

THEOREM 2.2. Let X be a locally compact separable metric space.
A flow (X, π) is parallelίzable if and only if for each xe X, D+(x) = C+(x)
(D~(x) — C~(x)) and there are no rest points or periodic orbits.

A flow (X, π) is said to have characteristic 0+(0~) if D+(x) =
K+(x)(D~(x) — K~{x)) for each xe X. A flow having both characteristic
0+ and 0~ is said to have characteristic 0±. A flow (X, π) is said to
have characteristic 0 if D(x) = K(x) for each xe X. The flow (X, π)
has characteristic 0+(0~) if and only if J+(x) = L+(x) (J~(x) = L~(x))
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for each xεX. The corresponding statement does not hold for flows
of characteristic 0 (J(x0) Φ L(x0) in Example 2).

The basic properties of dynamical systems used in succeeding
sections are contained in [5], [6], and [7].

3* Flows of characteristic 0 in R2. The characteristic 0+ and
0~ concepts were introduced by Ahmad in [1]. He classified such
systems on the plane in terms of their critical points. In [8] necessary
and sufficient conditions are given for a flow (R2, π) to have charac-
teristic 0+ or 0~ in terms of the set S of critical points. Ahmad showed
that a flow (R2, π) has characteristic 0± if and only if S = 0 and
(R2, π) is parallelizable, S = R2, or S — {s0} is a global Poincare center
(that is, all trajectories in R2 — {s0} are periodic orbits surrounding s0).

It seems natural to ask whether there is a connection between
flows of characteristic 0 and flows of characteristic 0+, 0~", or 0±. Since
D+(x) = K+(x) and D~(x) = K~{x) for each xeR2 implies D{x) = K(x),
any flow of characteristic 0* is a flow of characteristic 0. A flow
which has characteristic 0+ (0") but not characteristic 0 is given below
in Example 1. Examples 2 and 3 consist of flows of characteristic 0
that are not of characteristic 0+, 0", or 0±.

EXAMPLE 1. The system of differential equations

y = -v

defines a flow of characteristic 0+ in which the origin is a proper node.
Note, however, that D((0, 0)) - R2 Φ {(0, 0)} - K((0, 0)) so that the
flow does not have characteristic 0.

Similarly, the flow defined by x = x and y — y is of characteristic
0" but not of characteristic 0.

EXAMPLE 2. Let a flow be defined by the system

r — — r2 sin θ
( 1 )

for r ^ 0. Figure 1 illustrates the trajectories of the flow.
This flow is of characteristic 0 but not characteristic 0+, 0", or

0±. For let x0 be a point on the parabolic boundary of the region
consisting of the pole and the periodic orbits surrounding the pole.
Then D(x0) = D+(x0) = D~(x0) = C(x0) = K(xQ) implies t h a t D+(xQ) Φ

K+(x0) and D~(x0) Φ K~(x0).

EXAMPLE 3. The flow defined by the system of differential equations



450 RONALD A. KNIGHT

FIGURE 1

( 2 )
y =

FIGURE 2

X = — xy

x — 1 — y2 for x ^ 0

— x — 1 — y2 for x < 0

is of characteristic 0. After changing system (1) to Cartesian coordi-
nates, system (2) can be obtained by translation and reflection. The
phase plane of (2) is illustrated in Figure 2.

4* Characterization of flows having characteristic ()• The pur-
pose of this section is to give necessary and sufficient conditions for
a flow (R2, π) to have characteristic 0. Unless otherwise specified we
shall let (R2, π) be a fixed flow of characteristic 0 and S be the set
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of critical points. We shall first prove a few lemmas.

LEMMA 4.1. If L+(x) Φ 0 (L~(x) Φ 0 ) for some xeR2, then x is
either periodic or critical.

Proof. Let yeL+(x). Then xeJ~(y) since yej+(x). Hence,
xeD(y) — K(y) c L+(x). Seibert and Tulley have shown in [10] that
a point is positively (negatively) Poisson stable if and only if it is
either a critical point or a periodic point. The result for L~(x) φ 0
follows similarly.

LEMMA 4.2. / / xeS or x is periodic, then C(x) is bilaterally

stable.

Proof. The proof follows from Theorem 2.1 since D(xt) = K(xt) =
K(x) = C(x) for each t in R implies D(C(x)) = C(x).

NOTATION. For any s e S w e shall henceforth let

Ns = {x e R2: x = s or x is periodic and S Π int C(x) = {s}} .

LEMMA 4.3. // sQ is an isolated point of S, then sQ is a Poincare
center and NSo is an unbounded connected open set. If NSo Φ R2, then
dNSQ is a single trajectory and NSo is a simply connected component of

Proof. Let C be a simple closed curve with S f] int C — {s0}. By
virtue of Lemma 4.2 there exists a Veη(sQ) such that G{V)a int C.
Since L+(x) Φ 0 for each xeV, V — {s0} consists of periodic points.
If x e V - {s0} then 0 Φ S Π int C(x) c S Π int C = {s0}. Thus, V con-
sists of s0 and periodic orbits surrounding s0 implying that s0 is a
Poincare center.

Let xeNSQ- {sQ} and ye (int C(x)) - {sQ}. Since L+(y) Φ 0 , y is
periodic. We have 0 Φ S Π int C(y) c S Π int C(x) = {s0} so that y e NSo.
Hence, int C(x) c NSo. Furthermore, NSQ is connected since iVSo =
U*e^S oint C(x) is the union of connected sets each containing the
point sQ.

If dN8o — 0 then NSo = R2 and s0 is a global Poincare center.
Suppose dNSΰ Φ 0 . Note that dNSn is invariant since iVSo is invariant.
We shall show that in this case dNS(] contains no critical points or
periodic points. First, suppose s e 3NSQ Π S. There is an open simply
connected neighborhood U in η(s) such that s0 ί U. By Lemma 4.2
there exists a VΊeηis) such that C(V^a U. Let xe VΊΓi NSQ. Then
C{x)(Z U. Since U is simply connected, soe mtC(x)(Z U which is a
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contradiction. Hence, S ΓΊ dNSQ — 0 . Next, suppose there is a periodic
point x in dNSύ. Let So = S Π int C{x). There is a simply connected
neighborhood Ueη(C(x)) such that SΓ\ U= So. By Lemma 4.2 there
is a V2e η(C(x)) such that C(F2) c U. For 7/ € (N8lί ΓΊ F2) - {s0} we have
C(y)d F 2. Since U is simply connected, int C(y) c £7". Hence, s o eSΠ
U=S0. The sets So and S — So are closed, so there are simple closed
curves d and d contained in int C(x) and ext C(x), respectively, such
that S Π (ext d ) Π (int C2) = 0 . By Lemma 4.2 there is a F 3 e ?̂(C(x))
such that C(F3) c (ext d ) Π (int C2). Now JVβ0 is connected with sQ e NSQ

and C(x) c 3iVSo, so that we can select a point y from JV.O Π F 3 Π int C(x).
Thus, So Π int C(y) Φ 0 , SQ c int d , and (%) c F 3 c ext d imply So c
int C(y). Hence, So — {s0} and xe NSo. Finally, for any point ze V3f)
ext C(x), L+(z) Φ 0 implying z is periodic. Since C(z) c C(V3) c int d
we have S Π int C(s) = So. The point 2; is in iVSo and C(x) c i n t C(z) c iVs°0.
This contradicts x e dNSQ. Therefore, the points of dNSo are neither
periodic nor critical.

By virtue of Lemma 4.1 and the fact that dNSo contains no periodic
or rest points, L±(α;) = 0 for each xe dNSQ. Thus, dNSQ is not bounded
and hence JVSo is an unbounded open set.

We now show that dNSo is a single trajectory. Let x and y be
distinct points of dNSQ. Let d and d be simple closed curves such
that x e int d , V £ int C2, and int d Π int d — 0 For z in iVSo Π int d

we have int C(z) c NSQ, and so ext C(z) e )y(i/). Thus, (int d ) Π
(ext C(«)) € η(y) and (int d ) Π (ext (C(z)) Π NSQ Φ 0 . Let w 6 (int Q Π
(ext C(z)) Π iVSo. Then C(z) c int C(w) c NSo. We have 2 e int C(w) and
x G ext C(w). Since α;, 2 e int d and int d is connected, it follows that
C(w) Π int d Φ 0 Hence, we can find nets (Wi) and (w<ίi) converging
to y and a?, respectively. In other words, xeD(y) = iΓ(2/) = C(?/).

Suppose NSQ is not a component of R2 — dNSQ. Since NSo is con-
nected, it is a subset of some component B. If JVβ0 ^ B, then 3iVSo Π
B Φ 0 contradicting BCLR2 — 3iVSo. Hence, JVβ0 is a component of
R2 - dNS0.

Finally, let R2 Φ NSQ. Suppose that C is a simple closed curve
lying in NSQ with int C ς£ NSQ. Then int C connected and NSQ Π int C Φ
i n t C imply that dNSo Π int C Φ 0 . Furthermore, 3JVSo Π ext C Φ 0
since dNSo is unbounded. Thus, Cf]dNS:)Φ 0 contradicting CaNSo.
Therefore, Ns is simply connected.

LEMMA 4.4. If So = S f) int C(#o) /or some periodic point x0, then
So consists of exactly one Poincare center.

Proof. Let N = {xe int C(x0): x is periodic and So = SΠ int C(a?)}
and Z> = f)XQNmt C(x). At least xoeN, so that D Φ 0. Also, D is
the intersection of closed invariant sets containing So so that D is a
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closed invariant set and So c D. It also follows that 3D is invariant.
In order to facilitate the argument we show that Veη(C(y))

implies V Π N Φ 0 for all ye 3D. Suppose V Ω N = 0 for some
Veη(C{y)). By Lemma 4.2 there is a connected set Ueη{C{y)) such
that C(U) aV. For x e N, UΠ C(x) = 0 . Since # G int C(x) and ?7 is
connected we have Ua int C(&) The point x was arbitrary, so that
UczD. But this implies yeD° which contradicts ye 3D.

Suppose that D is not a singleton. We first show that there
exists a point yeN such that D = int C{y). If D = intC(x0) then
we are done. Assume D Φ int C(x0) and choose points x in D and ?/
in 3D such that x Φ y. Either yeS0oryis periodic. Suppose there
exists a simple closed curve C such that x e ext C and C(j/) c int C.
By Lemma 4.2 there is a FG)?(CM> such that C(V)cz int C. We
have shown that F Π iV Φ 0 . Let 2 e F Π iSΓ. Then C(z)ciC(V)c: int C.
But this implies that x e int C(z) c int C contradicting x e ext C. Thus,
y is periodic and xe int C(y). Since α? was an arbitrary point of D,
we have D c int C(y). Furthermore, C(y) a 3D a int C(z) for each « G N
implying int C(y) c f\zeN int C(̂ ) = D. Hence, D = int C(?/).

Since So is compact there exists a simple closed curve C c int C(τ/)
with SQ c int C. By Lemma 4.2 there is a Ve η{C{y)) such that C(F) c
ext C. Each point z in V f] int C(?/) is periodic by Lemma 4.1, and so,
So Π int C(z) ^ 0 . Since C(s) c ext C, int C(z) ΓΊ int C Φ 0 , and int C
is connected, we have So c int C c int C(z) and z e N. Thus, D c int C(z)
and C(«) c int C(?/) imply that D c int C(τ/) which contradicts yeD.
Consequently, D must be a singleton.

Finally, 0 Φ Soc:D implies that D is composed of an isolated
critical point. By Lemma 4.3, So consists of a Poincare center.

LEMMA 4.5. I/SΦ0 and S Φ R2, then S consists of Poincare
centers.

Proof. Let So denote the set of Poincare centers. We can select
a point s from 3S since S Φ 0 and S Φ R2. For any compact set
Ueη(s) there exists a Veη(s) such that C(V)aU by Lemma 4.2.
For any x e V Π (R2 — S), L+(x) Φ 0 implying that x is periodic. Thus,
Lemma 4.4 implies So Φ 0 .

Suppose sed(S — So). Since s is bilaterally stable, ^(s) contains
a compact connected simply connected invariant set F. Either F
contains a regular point or a center. If it contains a regular point
a?, then x must be periodic so that intC(α ), and hence F, must con-
tain a center. Therefore, we can assume that F contains a center
s0. Now, for each α e NSQ — {sQ}, s0 e int C(x) and, by Lemma 4.4,
s e ext C(x). Thus, F must meet C(x) = 3 int C(x) since it is connected.
But this implies C(x) c F and hence N8Q c F, contradicting Lemma
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4.3. Therefore, d(S - So) = 0 , and so S = So.

LEMMA 4.6. If S Φ 0 and S Φ R2, then S consists of at most
two Poincare centers.

Proof. Suppose sly s2, and s3 are distinct points of S. We shall
show that this supposition leads to a countable collection of mutually
disjoint closed sets whose union is R2 which is impossible. Unless
explicitly stated, the remainder of the proof will be considered rela-
tive to the extended dynamical system on lϋ2*. We denote the closure
of the trajectory through x in the extended system by K*(x).

Since the sets Ns are disjoint and open relative to R2, A = R2 —
UsesNs is nonempty. For each xe A, K*(x) = C(x) U {°°} is a simple
closed curve. Let M = {x e A: NSl c Ax and NS2 U Ns^ c Bx where Ax and
Bx are the components of 222* - K*(x)}. By Lemma 4.3, Mφ 0 since
dNSl - {oo} c M. Note that ~AX = Ax (J K*(x) and let F8l = \JxeM A^.
Each set ~A~X is connected and contains JVβl, and so JPSI is connected.

For any point pι in dFH — {oo} we have F8ί = A^. For let p1

and gΊ be distinct points in dFSl — {co} and let d and C2 be simple
closed curves in R2 surrounding pγ and qί9 respectively, such that
int d Π int C2 = 0 . There exists a point p for which Ap Γi int C19 and
hence C(p) Π int CΊ, are nonempty sets. Since Bp Π int C2 € ^(^x) there
exists a point g such that Aq f]Bp Π int C2 ̂  0 ; hence, C{q) Π int C2Φ®:
Now, Ag meets Ap and 5 P , so that Ap c Aff. Thus, Aq is a connected
set which meets both int C1 and ext d implying that C{q) Π int d Φ 0 .
We can find nets (x{) and fe^) converging to q1 and ^^ respectively;
hence, p,e D(qt) = iΓfeJ = Cfe) and 3FS l - {oo} = C(pj. Now, C(pύ<£N,
for any s in S since Ns 0 FSlΦ 0 implies there exists an x in M such
that C(pdaN.<zAxc:F!1 contradicting C(pdc:dF8l. Thus, C(pOcA.
Since F S l is an invariant set, either C{p^dFSl or CO^) Π JP8I = 0 .
Suppose C^O ί l F S l ^ 0 . Then F S l — {oo} is the connected set F^,
and so it is a component of iϋ2* — ϋΓ*^) = lϋ2* — dί7^. Also, iVS2 U
^ 3

C ΠxeM Bx = J?2* - F S l which means pxeFSl, contradicting C(p,)f)
FSί = 0 . Hence, F β l = APl.

Analogously, for s2 and s3 there exists points p2 and pz in A and
sets FS2 and F S 3 such that F8z = A;2 and F S 3 = A"3. Note that F β l =
APl and F S 2 c BPl. If 3FS l - ίΓ*(P l) = K*(p2) - 3FS2 then FSl U F S 2 = i?2*
which contradicts 8z$F9l\J F92. Hence, FSl f) FS2 = {oo}. Similarly,
F . 1 n F . 8 = ί τ

f I nf τ . 8 = {oo}.
Let F = ULi F β i . Obviously, i22* ^ F, and so Jξ2* - JP ̂  0 . Sup-

pose that A Π CR2* - ί7) = 0 . Then i22* - F must consist of periodic
and rest points, so that N$ c it!2* — F for some s e S. Furthermore,
dNs - {oo} c A implies that dNs adF = U U K*(P<) By letting dNs =
K*(Pk) we have iϋ2* = iSΓs U i^SA; since Ns and J P ^ are components of
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i?2* — K*(pk). But this implies that s{ e FS]c for i Φ k which is clearly
not possible. Therefore, A Π C#2* - F) Φ 0.

For each point x in A Π (iϋ2* — F) one component i22* — K*(x)
contains F since K*(x) does not separate any of the sets NSl, NS2, and
NS3 from the other two. Denote the components of R2* — K (x) by
Gx and Hx where FczHx. For any point y in A Π (# 2 * - F), let
If, - {x e A Π (.ff2* - F): Gy c GU. Note that My Φ 0 since y e My.
Let Fy = Uxei/^ Ĝ^ By arguing as we did for FSl, we can find a point
w in 3F; Π A such that FJ = Gw. For each point p i n i f l (i?2* - i*7)
for which Ff

v = JPJ, select a point #0 in C(w) and denote Fr

v by i*7^.
Let I' be the index set for all the FVQ sets and let I = I ' U {Si, s2, s3}.

If # and 2; are distinct points in /, then Fx Π Fz — {co}. For sup-
pose F , Π ί 7 ,^ {^}. The sets Fx° and ί7,0 are components of i?2* - 3 ^
and iϋ2* — 3i^z, respectively, where dFx and 9i^2 are simple closed
curves each consisting of {00} and a single trajectory. Thus, either
dFx - {00} c Fl dFz - {00} c Fi, or F°x Π Fz° = 0 . The first two state-
ments imply that Fx — Fz, and hence x = z, contradicting x Φ z. The
third statement implies that Fx (J Fz = R2* which is impossible. There-
fore, Fxf]Fz = {co}.

Next, J?2* = \JχeiFx. For let z belong to iί2* - E where E =
U β e z ^ Since AaE, there is a point δ in S such that zeN8. For
some point 7/ in E, K*(y) = diV .̂ Furthermore, there is a point x in
J such that K*(y) = dFx since K*{y)adE. The sets ΛΓS and Fx° are
disjoint components of i?2* — K*(y), and so i?2* = Ns U ̂  This im-
plies i ^ = ί7, and thus Si^Fx for ΐ = 1, 2, 3, which is clearly impos-
sible. Hence, i22* = # .

The set {Fx: xe 1} is a countable collection of closed sets such that
Fxf]Fz~ {00} for x Φ z. Hence, {Fx — {00}: xel} is a countable col-
lection of mutually disjoint sets closed in R2 and R2 = \Jx€i (Fx — {00}).
This is not possible as we indicated at the outset of our argument.
Therefore, sl9 s2, and s3 are not distinct.

LEMMA 4.7. Let S Φ R2. Then the flow restricted to R2 - \JseS Ns

is parallelizable.

Proof. Let Y — R2* — \JsesNs. The set {co} is compact and in-
variant. According to Theorem 2 p. 151 of [9], J(x) = °° for each x
in Y-{oo}. Thus, relative to Γ - { ^ } , J(x) = 0 and D+(x) = C+(x).
The result follows by Theorem 2.2.

THEOREM 4.8. A flow (R2, π) has characteristic 0 if and only if
one of the following holds.

( 1 ) S = 0 and (R2, π) is parallelizable.
( 2 ) S consists of at most two Poincare centers. For each se S,
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either s is a global Poincare center or Ns is unbounded and dNs is a
single trajectory. The restriction of the flow to R2 — [JseS Ns is paral-
lelizable.

(3) S = R\

Proof. The necessity of the conditions follows from the lemmas.
Conversely, Theorem 2.2 shows that condition (1) is sufficient. Simi-
larly, if condition (2) holds, we get D{x) = K(x) for each xe R2 —
[JSesNs. For each seS, Ns is a component of R2 — dNs since dNs is
a single trajectory. Thus, Ns is a connected simply connected set.
Obviously, xe Ns implies D(x) — K(x). Hence, condition (2) is sufficient.
Condition (3) is trivially sufficient.

COROLLARY 4.9. A flow (R2, π) has characteristic 0 if and only
if D(x) = C(x) for each x e R\

REMARK. That there are six basic types of planar flows (up to
dynamical isomorphism) having characteristic 0 follows from Theorem
4.8. These are

(1) parallelizable flows,
(2) flows having a global Poincare center,
( 3 ) flows similar to Example 2,
( 4 ) flows similar to Example 3,
( 5) flows similar to Example 3 except that dNs = dNt where S =

{s, t}9 and

( 6 ) flows having only critical points.
Note that only the flows in (1), (2), and (6) have characteristics 0, 0+,
0", and 0± and that the flows in (3), (4), and (5) have only characteristic 0.

The author is grateful to his Ph. D. research advisor, Professor
Shair Ahmad, for suggesting that he characterize flows of character-
istic 0 as part of his thesis research. This paper is based on Chapter
3 of the thesis.
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