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PERIODIC H-SEMIGROUPS AND #SEMISIMPLE
PERIODIC H-SEMIGROUPS

MARY JOEL JorDAN, S. C.

An H-semigroup is a semigroup such that every right
and every left congruence is a two-sided congruence on the
semigroup. It is known that the set of idempotents of an
H-semigroup form a subsemigroup. A semigroup is f-semi-
simple provided the intersection of all its maximal modular
congruences is the identity relation. Let S be a periodic
H-semigroup such that the subsemigroup E of idempotents
of S is commutative. In this paper it is shown that S is a
semilattice of disjoint one-idempotent H-semigroups, and that
every subgroup of S is a Hamiltonian group. Moreover, if
S is t-semisimple, then S is an inverse semigroup such that
the one-idempotent H-semigroups of the semilattice are the
maximal subgroups of S, and a complete characterization is
given.

If o is an equivalence relation on a semigroup S and a is
equivalent to b, then we shall write aob. The o-class containing «
will be denoted by ¢,. An equivalence relation ¢ on a semigroup S
is a right (left) congruence if a, be S and acb imply (ac)o(be)((ca)o(ch)).
If an equivalence relation is both a right and a left congruence, we
shall call it a two-sided congruence, or, more briefly, a congruence.
We use the natural partial ordering on relations and say that ¢ < p
if and only if a,be S and acd imply apb. Clearly the identity re-
lation ¢ and the universal relation v are congruences and ¢ < o < v,
for each congruence ¢ on S. A congruence ¢ = v is called maximal
if, for each congruence ¢’ on S such that ¢ < ¢’ <y, either ¢ = ¢’
or ¢/ =v. A congruence ¢ on S is called modular if there is an
element ¢ of S such that (ea)sa and (ae)oa for all ¢ in S. The
element ¢ is called an identity for o. The intersection of all the
maximal modular congruences on S is called the ¢-radical of S [4]
and it will be denoted by <.

1. Preliminary definitions and results. In his initial paper on
H-semigroups, Oehmke [3] obtained several useful results. For
reference we summarize those results which are essential to this
work. The set E of idempotents of an H-semigroup S forms a sub-
semigroup. For each ae E, the subset R, of E is the set of all
be E such that ab = b and ba = a. Similarly, the set L, of E is the
set of all be F such that bo = b and ab = a. The collection of all
R.(L,) induces a decomposition of E and the corresponding equivalence
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relation is a right (left) congruence. The set of all W,, where W, =
L.,R,, ac E, is a semilattice where the commutative multiplication
operation (denoted by o) is defined as W, W, = W,;, and where the
partial ordering relation is defined by W,< W, if and only if
W,o Wy, = W,. If there is a minimal W, in the set, then it is
unique. It follows that either W, =L, or W, = R, and, for all
ac E, either W, is trivial, that is, W, = {a}, or W, is minimal. If
W, is minimal and W, = R,, then R, = {ac}, for all ¢ceS. If W,
is minimal and W, = L,, then for any ¢ in S we have cL, = {ca}.
If there is no mimimal W,, then each W, contains a single element.
It then follows that E is commutative. These results yield the
following theorem.

THEOREM 1. Let W, be minimal and W, = {x;: 1€ I}. Then S =
U(S;: te I} where the S; are disjoint H-subsemigroups of S. If R, =
W, then S;S; = {=,}, for i+ j, and S; is the set of all b such that
Rb={x}. If L,= W, then S;S; = {x;}, for ¢+ j, and S; 1s the set
of all b such that bL, = {x;}. For any t, the set E; of idempotents
of S; is a commutative subsemigroup [3].

By Theorem 1, we can reduce the study of H-semigroups to the
study of those H-semigroups in which the idempotents form a com-
mutative subsemigroup.

An element b of a semigroup S is an inverse of an element a of
S provided aba = a and bab = b. Then e = ab is an idempotent of
S such that ea = a, and f = ba is an idempotent of S such that
af = a. S is an inverse semigroup provided every element of S has
a unique inverse. The inverse of an element a of an inverse semi-
group S will be denoted by e~ so that aa™'a = @ and a™'aa™ = o™

A left (right) zero of a semigroup S is an element a of S such
that as = a (sa = a), for each se S.

An element a of a semigroup S is regular provided acaSa.
Then a has at least one inverse in S, namely bab, where aba = a.

All of the definitions following Theorem 1 are taken from [1].

Let T be the set of regular elements of an H-semigroup S. Let
a,be T. Then there exist s,, s, in S such that a = as,a, where as,,
s,ac E, and b = bs,b, where bs,, s;bc E. We assume that E is a
semilattice, that is, £ is a commutative idempotent semigroup with
the induced ordering given by ¢ < f if and only if ¢f = ¢. Then

ab = a(s,a)(bs;)b = a(bs,)(s,a)b = ab(s,s,)abd .

Hence abe T and T is a subsemigroup of S. Since sas, is an in-
verse of @ in S, then sas, is in T and acaTa. Hence T is a regular
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semigroup. It follows that 7T is an inverse semigroup [1, p. 28].
Thus T is an inverse subsemigroup of S. Let ¢ be a left zero of S.
Then ¢eT and ¢?=¢. Let seS. Then e¢scc =c¢ and sccsec = sc
imply sce T and ¢ = sc. Hence sc = c¢. Since s was arbitrary in
S, then ¢ is a right zero of S. Analogously, if ¢ is a right zero of
S, then ¢ is a left zero of S. Hence S has at most one (left, right)
Zero.

If S is an H-semigroup and I is a right (left) ideal of S, then
for be S, bI S I(Ib < I) or bl = {c}, where ¢ is a left zero (Ib = {¢c},
where ¢ is a right zero) [3]. Using this, we get that a right (left)
ideal of an H-semigroup S such that F is commutative is a two-
sided ideal, and it follows that, for each e in E, for each a in S,
ea = ¢ if and only if ae = a.

THEOREM 2. Let S be an H-semigroup such that the subsemigroup
E of idempotents of S is a semilattice. Then the set T of regular
elements of S is an inverse semigroup which is a semilattice of
disjoint groups.

Proof. Let aeT. Then there exists a unique element a™* in T
such that aa™'a = @ and a™'aa™* = a~. Since aa™, a'ac E, we have
a(aa™) = a and (¢'a)a = a. Hence

a’'a = ¢ (aea™) = (¢ 'aa)a™t = aa™" .

It follows that T is a union of disjoint groups [1, ex. 10, p. 34].
Let G, = {be T: b = ¢}. Then G, is a maximal subgroup of T and
T=U({G.:ecE}, where G,NG; = @ for e f. As in [2], we get
that T is a semilattice of disjoint groups.

2. For the remainder of this work, unless otherwise indicated,
we assume not only that S is an H-semigroup such that the sub-
semigroup E of idempotents of S is a semilattice, but also that S
is a periodic semigroup [1, p. 20]. Let P, = {se S:s" = ¢ for some
positive integer n}. Let T be the inverse subsemigroup of regular
elements of S. Clearly PN T=G., & P,. Let P,— G,= W, and
let ae W,, where a® = e. Then

(ae)" = (@) = (a")**' = e — qee P, ,
and
ae(ae)" '‘ae = (ae)(ae)” = ae* = ae =—aeec T .

Hence, a¢ = aa™ = a"a = ea ¢ G, and, for each b in G,, ab = aebe G,
and ba = beac G,, so that G,, is an ideal in P,. Let T, = U{P;:e < f}.
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LEMMA 3.1. aecG,=acT..

Proof. Let ac T,. Then there exists f = ¢ such that ae P, and
af e G;. Hence afee Gy, that is, aee G,. Conversely, if aec G,, then
there exists be G, such that aeb = ab =e. Say ae P;, where a" = f.
Then fb"e G,; and

fbn — anbn — an—labbn—l — an—-lebn—l

=a"H" ! = «e. =qabb =aeb =ab=c¢.

Thus fb"e G.; N G,. But this implies ¢f = ¢ so that ¢ < f. Hence
acT.

LEMMA 3.2. For each e in E, T, is a subsemigroup of S, and
if aé T, and there exists be S such that abe T,, then b¢ T,.

Proof. Let a,be T, say ac P; and be P,, where ¢ < f, h. Then
afe G, and bhe G, imply that afbh = abfhe Gs, so that abe T,
Now e¢f =e and ek = ¢ imply that e¢fh = ¢ so that e < fh. Hence
abe T, and T, is a subsemigroup of S. Let S — T, = T, and suppose
e is not minimum so that T/ . Let a¢ T, and suppose there
exists be S such that abe T,. Assume be T,. Then abec G, and
bee G, imply abe(be)™ = ae is in G, so that ae T,, contradiction.

LEmMmA 3.38. For each f in E, T, is an H-semigroup of S, and
iof £ is mot minimum in E, then T;+ @ and T; is an tdeal of S.

Proof. Let feE. Let U,={beS:2be T;}. Define ¢ on S by
agb —— Ua = Ub .

Clearly o is a (right) congruence on S. Let a,be T;. Then, using
Lemma 3.2, we have

reU, = axe T, xeT; beeTye=—2aecU,.

Thus U, = U, and aob. Further, if aocb and ae T,, then, for each
¢ in T, xe U, = U, In particular, ae U, so that baec T, and, using
Lemma 3.2, be T,. Thus T, is an equivalence class of o. Since
feU; Us+ @. Let ac8S.

relU,=——arve Ty — faxe T ——xc Uy, .

Then U, = U;, and (fa)oa, for each ¢ in S. Let xe U,,. Then
afxe T;. Now (fx)ox implies (afw)o(ax), so that axe T; and xze U,.
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Then U, S U,. Let xe U,. Then axe T, and (faz)o(ax). As be-
fore, (fx)ox implies (afx)o(ax). Hence, (fax)o(afx) implies afxe T,
so that e U,;. Then U, & U,, and (af)ca, for each a in S. There-
fore f is an identity for ¢ and ¢ is modular. Let o be any con-
gruence on S such that T, is an equivalence class of p and assume
0 < p. Then there exist a, b in S such that apb and agb, that is,
there exists xe U, such that «¢ U,, which implies that axe T, and
bre T,, But aob implies (ax)o(bxr) so that bxe T, contradiction.
Therefore, 0 = o and ¢ is maximal with respect to having T, as a
o-class. Let ae T} and assume ze U,. Then axe T;. Thus we
have

(ax)of — (d’x)o(af)oa — (a’x*)o(ax)
== (a’2})of = (®c))o(af)oa = (a’s*)o(ax)
s (a3q;3)o'f= cee

== (a"2z")of , for each positive integer = .

Let o' = h, where h¢ T;. Since axe T}, then xze T}. Let 2’ = £,
where k¢ T;. Then we have

(a¥2¥)of == (hk)of == hke T, .

But %, k¢ T, implies hk ¢ T,, contradiction. Hence, for each ae T/,
U,= @. It follows that T; is a o-class and T} is an ideal of S.
Let p be any right congruence on T;. Define o’ on S by

0p'b =—a,be T, and apbor a,bec T;.

Clearly o’ is a congruence on S and the restriction of o’ to T, is p.
Thus p is a left congruence on T,;. By analogous proof, any left
congruence on T is a right congruence. Thus 7, is an H-semigroup
of S.

With the preceding lemmas, we are now in a position to prove
the main results of this section.

THEOREM 3. If S is a periodic H-semigroup such that the sub-
semigroup E of idempotents of S is commutative, then S is a semi-
lattice of disjoint omne-idempotent H-semigroups. Moreover, every
subgroup of S is a Hamiltonian group.

Proof. First we show that for each ¢ in E, G, is a Hamiltonian
group. If e =0, then G, is trivially Hamiltonian. Assume e == 0.
Let ¢ be a right congruence on G,, let H, be the subgroup of G,
induced by o and let a,be T,. Write
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ag'®b <= (ea)d(ed) .

By a straight-forward argument, ¢ is an equivalence relation on
T,, so we need only show right compatibility. Accordingly, assume
aoc“b and ce T,. Then (ea)o(ed) and ece G, imply (eaec)o(ebec) so
that (eac)o(ebe) and (ac)o(bc). Clearly, o® restricted to G, is o.
Since T, is an H-semigroup, then ¢'® is a congruence on T,. Hence
o is a congruence on G,. Similarly, any left congruence on G, is a
congruence so that G, is Hamiltonian.

We can now prove that, for each f in E, P, is an H-semigroup.
Let a,be P;. Since a,be T;, then abe T,. Assume ab¢ P;. Then
abe P, < T,, where f <k, for some ke E, so that a,be T;. But
then abe Ty, since Ty is an ideal, contradiction. Therefore abe P;
and P, is a semigroup of S. Let ¢ be any right congruence on P;.
Then ¢ induces a normal subgroup H; of G;. Define ¢’ on T, by

a0’b == a,be P, and aob or Hya = H;b.

A straight-forward argument shows that ¢’ is a congruence on T;.
Similarly, any left congruence on P; is a congruence. Therefore P;
is an H-semigroup.

Suppose there exists ae P,, be P, such that ab¢ P,;, say abe P,
for some ke E. Now ac P, implies aec G,, and be P; implies bf e G,
so that abefeG.; and abe T,;, Then ef <k. If acT{ or be T,,
then abe T}, since T} is an ideal. Thus we must have a,be T,.
But then k < ¢, f so that k < ¢f, contradiction. Thus abe P,;. Since,
for each @ in S, {a)> has exactly one idempotent [1, p. 20], it follows
that P, N P; = @ for e = f. This completes the proof of Theorem 3.

The obvious corollary follows from Theorem 1.

COROLLARY 3.1. If S is a periodic H-semigroup, them either
the idempotents of S are commutative and S is a semilattice of dis-
joint one-idempotent H-semigroups; or the idempotents of S are mot
commutative and S = J{S;:iel}, where the S; are disjoint, the
idempotents of each S; are commutative and each S; is a semilattice
of disjoint one-idempotent H-semigroups. Moreover, every subgroup
of S is a Hamiltonian group.

3. In this section we examine the ¢-semisimple periodic H-
semigroups. However, our first result in this investigation is more
general.

THEOREM 4. If S 1is a t-semisimple H-semigroup, then the
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idempotents of S are commutative.

Proof. Let S be a t¢-semisimple H-semigroup and assume that
the idempotents of S are not commutative. Then S = UJ{S:: 7¢I},
as in Theorem 1. Let ¢ be a maximal modular congruence on S
with identity . Say xeS;,. Letsec S, say seS;, ¢+ j. Since either
S;S; = {»,;}, where x; is the zero of S;, or S;S; = {v;}, where x; is the
zero of S;, then (ws)oso(sx) implies x,0s0%; or x;0s0%;. In either case,
for every modular congruence ¢ on S, W, = {x;: 1€} is contained
is a o-class. Since S is ¢-semisimple then W, must be a singleton
set. But then the idempotents of S are commutative, contrary to
the assumption.

In identifying the maximal modular congruences on a periodic
H-semigroup where E is a semilattice, we find the classification to
be quite similar to that of inverse H-semigroups [2].

LEMMA 5.1. If o s a maximal modular congruence on the
periodic H-semigroup S, where the idempotents of S are commuta-
tive, then either o 1is cancellative or o has exactly two equivalence
classes, one of which is an ideal of mon-identities for o and the other
the semigroup of identities for o.

Proof. Let o be a maximal modular congruence on the periodic
H-semigroup S where the idempotents of S form a semilattice. Let
a be an identity for ¢, say ac P;, where a® = f. Then, for each s
in S,

(as)os == (a’s)o(as)0s = +++ = (a"s)os = (fs)0s ,

and similarly (sf)os. Hence f is an identity for o.
Suppose ¢ is cancellative. Let e, fe E, where ¢ is an identity
for 0. Then

(ef)of == (ef)o(ff) = eof .

Hence E < 0., the o-class containing e¢. Conversely, suppose E & o,
and assume (ac)o(bc) where ce P;. Since e is an identity for ¢ and,
for each f in E, eof, then (fs)oso(sf), for each s in S, so that each
idempotent is an identity for o. Let ¢™ = f. Then (ac)o(bc) implies
(ac™)o(be™ so that (af)o(bf), and, since (af)oa and (bf)ob, then
acb and o is right cancellative. Similarly, o is left cancellative.
Suppose ¢ is not cancellative and let ec E be an identity for o.
If » is an identity for ¢, where he E, then ho(eh)oe and heo,.
Since ¢ is not cancellative, there exists fe E such that f¢o,, so
that f is not an identity for 0. Let I = {f e E:f is not an identity
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for o}. Let J=U{P,:fel}. It follows that I is an ideal in E, J
is an ideal in S and J’ is a semigroup of S. Oehmke [4] has shown
that if o is a maximal congruence on S and J is any ideal of S,
then either J is contained in a o-class S, (which is also an ideal of
S) or J contains an element of each o-class. If xeo,NJ then zoe
and ze P, for some f in I, where z™ = f. But

xoe = ’o(xe) and (xe)de —— x’0e —— 2’0 (Xe)

xoe oo x"ge = foe .

Then f¢lI, contradiction. Hence o¢,NJ = @ and JE S, Suppose
there exists be S, such that b¢J, say be P,, where hoe. Let fel <
S, Then bof implies (bh)o(fh) and (bf)of; and hoe implies (fh)of
so that (bh)o(bf). But then (b*'bh)o(db™*bf) and ho(hf). It follows
that hof and f¢ I, contradiction. Thus J = S,. Since J is an ideal
and J’ is a semigroup, the relation ¢*, defined by ac*b = a,beJ or
a, beJ’, is a maximal modular congruence on S [2]. Clearly ¢ < o*.
Hence o = 0*. Moreover, for each a in J’, say ac P,, and for each
s in S, aoe implies (as)oso(sa), so that J’ is the semigroup of iden-
tities for ¢. And for each b in J, say be P;, b cannot be an identity
for o, since then f would be an identity for o.

Using Lemma 5.1, we can establish the following characterization.

THEOREM 5. A periodic H-semigroup S is t-semisimple if and
only if S is an itnverse semigroup such that for each pair of groups
G., G; in the semilattice, with f = e, the homomorphism @, on Gy
mto G,, defined by ap,, = ae, is a monomorphism; and, for each e
in E, for each a + e in G,, there exists a subsemigroup T, of S such
that a¢ T, and for each f in E, T,N G, = H;, where H; = G, or H;
8 a maximal subgroup of prime index p in Gy.

Proof. Define o on S by zpy if and only if there exists ¢ in F
such that ex = ey. Clearly, p is a congruence on S. If ¢ is any
maximal modular cancellative congruence on S and %, y € S such that
2oy, then there exists e in E such that ex = ey. Hence (ex)o(ey)
and xoy. Thus o < a where a is the intersection of all the maximal
modular cancellative congruences on S. In view of Lemma 8.3, it
is clear that the intersection g of all the maximal modular non-
cancellative congruences of S separates S into its subsemigroups Py,
where fe E. Let e < f and define +,, from P, into P, by ay,, =
ea. Clearly, +r;, is a homomorphism from P; into G,. Suppose S is
t-semisimple, that is, ¢ =¢ If «,, is not a monomorphism then
there exist a # b in P, with ea = eb so that apb. This implies aob.
Since also aBb, then arb and 7 = ¢, contradiction. Thus if S is
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t-semisimple, then every homomorphism +,, is a monomorphism from
P, into G,. Suppose there exists e¢ in E such that G,c P,. Then
there exists be W, such that eb = ae G,, that is, ¢b = ea. Then, as
before, atb and 7 + ¢, which is a contradiction. Hence, for each ¢
in B, P, = G, and S is an inverse semigroup. Considering the charac-
terization of t-semisimple inverse H-semigroups in [2], the proof is
complete.
The corollaries parallel those in [2].

COROLLARY 5.1. S s a periodic H-semigroup all of whose mazimal
modular congruences are cancellative if and only if S is a one-
idempotent periodic H-semigroup.

COROLLARY 5.2. S 1is a t-semisimple periodic H-semigroup all
of whose nontrivial maximal modular congrusnces are not cancellative
if and only if S is a semilattice.

COROLLARY 5.3. If S is a t-semisimple periodic H-semigroup,
then S is a semilattice of disjoint t-semisimple Hamiltonian groups.

COROLLARY 5.4. If S is a t-semisimple periodic H-semigroup,
then S is commutative.

COROLLARY 5.5. If S is a periodic H-semigroup with a minimum
idempotent e, then S is t-semisimple if and only if for each semi-
group P; in the semilattice with f = e, the homomorphism s, on
P, into P,, defined by avr;, = ae, is a monomorphism and P, is t-
semisimple.

COROLLARY 5.6. If S 1is a t-semisimple periodic H-semigroup
with no nontrivial modular congruences, then S 1is either a cyclic
group of prime order or the unique semilattice of two elements.

COROLLARY 5.7. If S is a periodic H-semigroup with zero, then
S is t-semisimple if and only if S is a semilattice.
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