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PERIODIC //"-SEMIGROUPS AND ί-SEMISIMPLE
PERIODIC ^-SEMIGROUPS

MARY JOEL JORDAN, S. C.

An H-semigroup is a semigroup such that every right
and every left congruence is a two-sided congruence on the
semigroup. It is known that the set of idempotents of an
i7-semigroup form a subsemigroup. A semigroup is £-semi-
simple provided the intersection of all its maximal modular
congruences is the identity relation. Let S be a periodic
iJ-semigroup such that the subsemigroup E of idempotents
of S is commutative. In this paper it is shown that S is a
semilattice of disjoint one-idempotent H-semigroups, and that
every subgroup of S is a Hamiltonian group. Moreover, if
S is ί-semisimple, then S is an inverse semigroup such that
the one-idempotent I/-semigroups of the semilattice are the
maximal subgroups of S, and a complete characterization is
given.

If σ is an equivalence relation on a semigroup S and a is
equivalent to b, then we shall write aσb. The σ-class containing a
will be denoted by σa. An equivalence relation σ on a semigroup S
is a right (left) congruence if a, be Sand aσb imply (ac)σ(bc)((ca)σ(cb)).
If an equivalence relation is both a right and a left congruence, we
shall call it a two-sided congruence, or, more briefly, a congruence.
We use the natural partial ordering on relations and say that σ <£ p
if and only if a, be S and aσb imply apb. Clearly the identity re-
lation t and the universal relation v are congruences and t <Ξ σ ^ v,
for each congruence σ on S. A congruence σ Φ V is called maximal
if, for each congruence σf on S such that σ g σf rg v, either σ — &
or σr — v. A congruence σ on S is called modular if there is an
element e of S such that (ea)σa and (ae)σa for all a in S. The
element e is called an identity for σ. The intersection of all the
maximal modular congruences on S is called the ^-radical of S [4]
and it will be denoted by τ.

1* Preliminary definitions and results. In his initial paper on
H-semigroups, Oehmke [3] obtained several useful results. For
reference we summarize those results which are essential to this
work. The set E of idempotents of an ίf-semigroup S forms a sub-
semigroup. For each a e E, the subset Ra of E is the set of all
be E such that ab = b and ba = a. Similarly, the set La of E is the
set of all be E such that ba = b and ab = a. The collection of all
Ra(La) induces a decomposition of E and the corresponding equivalence
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relation is a right (left) congruence. The set of all Wa, where Wa =
LaRa, a e E, is a semilattice where the commutative multiplication
operation (denoted by o) is defined as Wa <> Wb = Wab, and where the
partial ordering relation is defined by Wa ^ Wb if and only if
Wa o Wb = Wa. If there is a minimal Wa in the set, then it is
unique. It follows that either Wa = La or Wa = Ra and, for all
a e E, either Wa is trivial, that is, Wa = {α}, or Wα is minimal. If
TΓα is minimal and Wa = Ra, then Rac = {ac}, for all ceS. If TΓα

is minimal and Wa = La, then for any c in S we have cLa — {ca}.
If there is no mimimal Wa, then each Wa contains a single element.
It then follows that E is commutative. These results yield the
following theorem.

THEOREM 1. Let Wa be minimal and Wa = {xt: iel}. Then S =
U{&: iel} where the Si are disjoint H-subsemigroups of S. If Ra —
Wa then SiSj = {Xj}, for i Φ j , and Si is the set of all b such that
RJ) = {χ.}m If La = Wa then SiSj = {α?J, for i Φ j , and Si is the set
of all b such that bLa = {%3). For any i, the set Et of idempotents
of Si is a commutative subsemigroup [3].

By Theorem 1, we can reduce the study of if-semigroups to the
study of those iJ-semigroups in which the idempotents form a com-
mutative subsemigroup.

An element b of a semigroup S is an inverse of an element a of
S provided aba = a and bab — b. Then e = ab is an idempotent of
S such that ea = a, and /•= ba is an idempotent of S such that
af — α. S is an inverse semigroup provided every element of S has
a unique inverse. The inverse of an element a of an inverse semi-
group S will be denoted by cΓ1 so that aa~xa = a and a~~xaa~γ — a~\

A left (right) zero of a semigroup S is an element a of S such
that as = a (sa — a), for each seS.

An element a of a semigroup S is regular provided a e aSa.
Then a has at least one inverse in S, namely δαδ, where aba — a.

All of the definitions following Theorem 1 are taken from [1].
Let T be the set of regular elements of an iϊ-semigroup S. Let

a, be T. Then there exist s19 s2 in S such that a — asLa, where as19

sλa e E, and b = bsjb, where 6s2, s2b e E. We assume that E is a
semilattice, that is, E is a commutative idempotent semigroup with
the induced ordering given by e ^ / if and only if ef — e. Then

Hence abe T and T is a subsemigroup of S. Since s ^ is an in-
verse of a in S, then s ^ is in T and αe aTa. Hence Γ is a regular
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semigroup. It follows that T is an inverse semigroup [1, p. 28].
Thus T is an inverse subsemigroup of S. Let c be a left zero of S.
Then ceT and c1 = c. Let se S. Then cscc — c and sccsc = sc
imply see T and c~ι = sc. Hence sc — c. Since s was arbitrary in
S, then c is a right zero of S. Analogously, if c is a right zero of
S, then c is a left zero of S. Hence S has at most one (left, right)
zero.

If S is an JSΓ-semigroup and I is a right (left) ideal of S, then
for 6 e S, 61S I(Ib S I) or bl = {c}, where c is a left zero (16 = {c},
where c is a right zero) [3]. Using this, we get that a right (left)
ideal of an iϊ-semigroup S such that E is commutative is a two-
sided ideal, and it follows that, for each e in E, for each a in S,
ea = a if and only if ae = a.

THEOREM 2. Let S be an H-semigroup such that the subsemigroup
E of idempotents of S is a semilattice. Then the set T of regular
elements of S is an inverse semigroup which is a semilattice of
disjoint groups.

Proof. Let ae T. Then there exists a unique element α"1 in T
such that aa~ιa = a and a~1aar1 = α"1. Since aa~\ a~ιa e E, we have
aiaa"1) = a and {a~ιa)a — a. Hence

It follows that T is a union of disjoint groups [1, ex. 10, p. 34].
Let Ge — {be T: bb~ι = e). Then Ge is a maximal subgroup of T and
T = U {Ge: e e 2£}, where GePιGf = 0 for e ^ /. As in [2], we get
that Γ is a semilattice of disjoint groups.

2* For the remainder of this work, unless otherwise indicated,
we assume not only that S is an if-semigroup such that the sub-
semigroup E of idempotents of S is a semilattice, but also that S
is a periodic semigroup [1, p. 20]. Let Pe = {se S: sn = e for some
positive integer n}. Let T be the inverse subsemigroup of regular
elements of S. Clearly PeΓί T = GeQ Pe. Let Pe - Ge = TΓe and
let ae We, where an = e. Then

(αβ)% = (αw + 1)% = (an)n+1 = e ==> aeePe ,

and

)% = ae2 = ae = > aee T.

Hence, ae = ααw = α%α = eaeGe and, for each 6 in Ge, αδ = αe6e
and δα = δeα e (τe, so that Ge, is an ideal in Pe. Let Γe = \J{P/ e ^
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LEMMA 3.1. aeeGe<=>ae Te.

Proof. Let a e Te. Then there exists f ^ e such that ae Pf and
afe Gf. Hence afe e Gfe, that is, ae e Ge. Conversely, if ae e Ge, then
there exists δ e Ge such that aeb = ab — e. Say a e Pf, where an = /.
Then fbn e Gef and

fbn = anbn = a^a

= α71""1^^"1 = = ααδδ = αeδ = αδ = e .

Thus / δ % G Gef Π Ge. But this implies ef = e so that e <ί / . Hence
ae Te.

LEMMA 3.2. For each e in E, Te is a subsemigroup of S, and
if a£ Te and there exists be S such that abe Te, then b& Te.

Proof. Let a,beTe, say a e Pf and bePh, where e ^f,h. Then
afeGf and bheGh imply that afbh = abfheGfh so that abeTfh.
Now ef = e and eh — e imply that e/& = e so that e ̂  //&. Hence
αδ G Γe and Γe is a subsemigroup of & Let S — Te = 27 and suppose
e is not minimum so that 27 Φ 0 . Let α ? Γ e and suppose there
exists be S such that αδe T,. Assume δe Te. Then αδee Ge and
δβ G Ge imply αδβ(δβ)"1 = αβ is in Ge so that a e Te, contradiction.

LEMMA 3.3. For each f in E, Tf is an H-semigroup of S, and
if f is not minimum in E, then T'f Φ 0 and T'f is an ideal of S.

Proof. Let feE. Let Ux = {be S: xbe Tf). Define σ on S by

aσb <—* Ua = Ub.

Clearly σ is a (right) congruence on S. Let a, be Tf. Then, using
Lemma 3.2, we have

x e Ua <=> ax e Tf <=> x e Tf <=~ bx e Tf <=> x e Ub .

Thus Ua = J76 and ασδ. Further, if aσb and αe Γ/, then, for each
x in Tf, x e Ua = £/&. In particular, α e Z7& so that δα e Tf and, using
Lemma 3.2, δ 6 Tf. Thus T/ is an equivalence class of σ. Since
fe Uf, UfΦ 0 . Let aeS.

xe Ua <==> axe Tf <=> faxe Tf ^=> xeUfa .

Then Ua = Ufa and (/α)σα, for each α in S. Let a; e ί7β/. Then
afxe Tf. Now (fx)σx implies (afx)σ(ax)9 so that αα?e Tf and XG Z7α.
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Then Uaf £ Ua. Let xe Ua. Then axeTf and (fax)σ(ax). As be-
fore, (fx)σx implies (afx)σ(ax). Hence, (fax)σ(afx) implies afxeTf

so that x e Uaf. Then Ua ϋ Uaf and (af)σa, for each α in S. There-
fore / is an identity for σ and σ is modular. Let p be any con-
gruence on S such that Tf is an equivalence class of p and assume
σ < p. Then there exist α, 5 in S such that apb and α ί̂>, that is,
there exists xe Ua such that x£ Ub, which implies that axe Tf and
bx g ϊ / . But apb implies (ax)p(bx) so that bx e Tfy contradiction.
Therefore, σ = p and σ is maximal with respect to having Tf as a
<7-class. Let a e T'f and assume x e Ua. Then αα; e ϊ7/. Thus we
have

(ax)σf = > (a2x)σ(af)σa ==» (

= > (α2α;2)(7/ = > (a3x2)σ(af)σa = > (α3^3)σ(

— > ( α V ) σ / = — * •••

==> (anxn)σf, for each positive integer

Let α* = &, where /̂  ί Γ/. Since α# e ϊ7/, then a? e ϊ7/. Let ^J' = k,
where k g Γ/# Then we have

(ai5xis)σf => (hk)σf => hkeTf.

But h, kg Tf implies hk$ Tf, contradiction. Hence, for each ae Tf

f1

JJa = 0 . It follows that T'f is a cr-class and T'f is an ideal of S.
Let p be any right congruence on Tf. Define pf on S by

α̂ o'6 <=^ a,beTf and α^6 or a,beTf.

Clearly pf is a congruence on S and the restriction of p' to Γ/ is p.
Thus ^ is a left congruence on Tf. By analogous proof, any left
congruence on Tf is a right congruence. Thus Tf is an ίf-semigroup
of S.

With the preceding lemmas, we are now in a position to prove
the main results of this section.

THEOREM 3. If S is a periodic H-semigroup such that the sub-
semigroup E of idempotents of S is commutative, then S is a semi-
lattice of disjoint one-idempotent H-semigroups. Moreover, every
subgroup of S is a Hamίltonian group.

Proof. First we show that for each e in E, Ge is a Hamiltonian
group. If e = 0, then Ge is trivially Hamiltonian. Assume e Φ 0.
Let σ be a right congruence on Gey let He be the subgroup of Ge

induced by σ and let a, be Te. Write



442 MARY JOEL JORDAN, S. C.

aσ

{e)b <=> (ea)σ(eb) .

By a straight-forward argument, σ{e) is an equivalence relation on
Te, so we need only show right compatibility. Accordingly, assume
aσ{e)b and c e Te. Then (eά)σ(eb) and ec e Ge imply (eaec)σ(ebec) so
that (eac)σ(ebc) and (ac)σ{e)(bc). Clearly, σ{β) restricted to Ge is σ.
Since Te is an iϊ-semigroup, then σ{e) is a congruence on Te. Hence
σ is a congruence on G> Similarly, any left congruence on Ge is a
congruence so that Ge is Hamiltonian.

We can now prove that, for each / in E, Pf is an ff-semigroup.
Let a, bePf. Since a, be Tf, then abe Tf. Assume ab£Pf. Then
abe Pk S Tk, where f < h, for some ke E, so that a, be T'k. But
then αδ e Tk, since T* is an ideal, contradiction. Therefore ab e Pf

and Pf is a semigroup of & Let σ be any right congruence on Pf.
Then α induces a normal subgroup if/ of Gf. Define σ' on TV by

aσ'b <=> a,bePf and αtfδ or

A straight-forward argument shows that σf is a congruence on Tf.
Similarly, any left congruence on Pf is a congruence. Therefore Pf

is an iϊ-semigroup.
Suppose there exists ae Pey be Pf such that ab £ Pef, say abe Pk,

for some ke E. Now ae Pe implies aeeGe, and be Pf implies bfe Gf

so that abefeGef and abeTef. Then ef < k. If αeΓ& or 6GJΓΛ',

then αδe Γ&, since Γλ' is an ideal. Thus we must have a, be Tk.
But then k ^ e, f so that & ̂  e/, contradiction. Thus ab e Pef. Since,
for each a in S, <α> has exactly one idempotent [1, p. 20], it follows
that Pe Π Pf — 0 for e Φ /. This completes the proof of Theorem 3.

The obvious corollary follows from Theorem 1.

COROLLARY 3.1. If S is a periodic H-semigroup, then either
the idempotents of S are commutative and S is a semilattice of dis-
joint one-idempotent H-semigroups; or the idempotents of S are not
commutative and S = \J{Sii ie I}, where the Si are disjoint, the
idempotents of each Si are commutative and each Si is a semilattice
of disjoint one-idempotent H-semigroups. Moreover, every subgroup
of S is a Hamiltonian group.

3* In this section we examine the ί-semisimple periodic H-
semigroups. However, our first result in this investigation is more
general.

THEOREM 4. If S is a t-semisimple H-semigroup, then the
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idempotents of S are commutative.

Proof. Let S be a ί-semisimple iϊ-semigroup and assume that
the idempotents of S are not commutative. Then S = \J{Sϊ.ieI},
as in Theorem 1. Let σ be a maximal modular congruence on S
with identity x. Say x e S*. Let s e S, say s e Sjf i Φ j . Since either
Sβj = {Xj}, where x5 is the zero of S3 , or SiS, = {Xi}, where xi is the
zero of S<, then (xs)σsσ(sx) implies xiσsσxj or xάσsσxim In either case,
for every modular congruence σ on S, Wa = {#<: ie 1} is contained
is a tf-class. Since S is ί-semisimple then Wa must be a singleton
set. But then the idempotents of S are commutative, contrary to
the assumption.

In identifying the maximal modular congruences on a periodic
ίZ-semigroup where E is a semilattice, we find the classification to
be quite similar to that of inverse iϊ-semigroups [2].

LEMMA 5.1. If σ is a maximal modular congruence on the
periodic H-semigroup S, where the idempotents of S are commuta-
tive, then either σ is cancellative or σ has exactly two equivalence
classes, one of which is an ideal of non-identities for a and the other
the semigroup of identities for σ.

Proof. Let σ be a maximal modular congruence on the periodic
iί-semigroup S where the idempotents of S form a semilattice. Let
a be an identity for σ, say a e Pf, where an — f. Then, for each s
in S,

(as)σs ==> (a2s)σ(as)σs ==> = > (ans)σs = > (fs)σs ,

and similarly (sf)σs. Hence / is an identity for σ.
Suppose σ is cancellative. Let e,feE, where e is an identity

for σ. Then

(ef)σf _ (ef)σ(ff) — eσf .

Hence E £Ξ σe, the tf-class containing e. Conversely, suppose E £ σe

and assume (ac)σ{bc) where c e Pf. Since e is an identity for σ and,
for each / in E, eσf, then (fs)σsσ(sf), for each s in S, so that each
idempotent is an identity for σ. Let cm = /. Then (ac)σ(bc) implies
{acm)σ(bcm) so that (af)σ(bf), and, since (af)σa and (bf)σb, then
aσb and σ is right cancellative. Similarly, a is left cancellative.

Suppose σ is not cancellative and let e e E be an identity for σ.
If h is an identity for σ, where he E, then hσ(eh)σe and heσe.
Since σ is not cancellative, there exists feE such that fίσe, so
that / is not an identity for σ. Let I = {/ e E: f is not an identity
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for σ). Let J= \J{Pf:feI}. It follows that I is an ideal in E, J
is an ideal in S and J' is a semigroup of S. Oehmke [4] has shown
that if σ is a maximal congruence on S and J is any ideal of S,
then either J is contained in a σ-class So (which is also an ideal of
S) or J contains an element of each cr-class. If xeσeΠ J then xσe
and xePf for some / in I, where xm = f. But

xσe => x2σ(xe) and (xe)σe ==> x2σe => xzσ(xe)

====> xzσe = > = > xmσe ==> fσe .

Then f$I, contradiction. Hence σe Π J — 0 and J g So. Suppose
there exists be So such that b g J, say be Ph, where hσe. Let / e / S
So. Then 6cr/ implies (bh)σ(fh) and (bf)σf and λtfe implies (fh)σf
so that (bh)σ(bf). But then (b^bKjσφ^bf) and Λσ(Λ/). It follows
that foj/ and / £ I, contradiction. Thus J = So. Since J is an ideal
and Jf is a semigroup, the relation σ*, defined by aσ*b ̂ > a, be J or
α, beJ', is a maximal modular congruence on S [2]. Clearly σ ̂  σ*.
Hence σ = σ*. Moreover, for each a in J', say aePey and for each
s in S, ασe implies (αs)σsσ(sα), so that J ' is the semigroup of iden-
tities for σ. And for each b in J, say bePf, b cannot be an identity
for σ, since then / would be an identity for σ.

Using Lemma 5.1, we can establish the following characterization.

THEOREM 5. A periodic H-semigroup S is t-semisίmple if and
only if S is an inverse semigroup such that for each pair of groups
Ge, Gf in the semilattice, with f ^ e, the homomorphism φfte on Gf

into Ge, defined by aφf,e = ae, is a monomorphism; and, for each e
in E, for each a Φ e in Ge1 there exists a subsemigroup Tp of S such
that a £ Tp and for each f in E, Tpf]Gf = Hf, where Hf — Gf or Hf

is a maximal subgroup of prime index p in Gf.

Proof. Define p on S by xpy if and only if there exists e in E
such that ex = ey. Clearly, p is a congruence on S. If σ is any
maximal modular cancellative congruence on S and x, ye S such that
xpy, then there exists e in E such that ex — ey. Hence (ex)σ(ey)
and xσy. Thus p ̂  a where a is the intersection of all the maximal
modular cancellative congruences on S. In view of Lemma 3.3, it
is clear that the intersection β of all the maximal modular non-
cancellative congruences of S separates S into its subsemigroups Pf,
where feE. Let e < / and define ψf>e from Pf into Pe by aff>e =
ea. Clearly, ψfye is a homomorphism from Pf into Ge. Suppose S is
ί-semisimple, that is, τ = t. If ψf>e is not a monomorphism then
there exist a Φ b in Pf with ea — eb so that apb. This implies aσb.
Since also aβb, then aτb and τ Φ c, contradiction. Thus if S is
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£-semisimple, then every homomorphism ψftβ is a monomorphism from
Pf into Ge. Suppose there exists e in E such that Ge c Pe. Then
there exists be We such that eb — ae Ge, that is, eb = ea. Then, as
before, aτb and τ Φ C, which is a contradiction. Hence, for each e
in E, Pe = Ge and S is an inverse semigroup. Considering the charac-
terization of ί-semisimple inverse ίf-semigroups in [2], the proof is
complete.

The corollaries parallel those in [2].

COROLLARY 5.1. S is a periodic H-semigroup all of whose maximal
modular congruences are cancellative if and only if S is a one-
idempotent periodic H-semigroup.

COROLLARY 5.2. S is a t-semisimple periodic H-semigroup all
of whose nontrivial maximal modular congruences are not cancellative
if and only if S is a semilattice.

COROLLARY 5.3. If S is a t-semisimple periodic H-semigroup,
then S is a semilattice of disjoint t-semisimple Hamiltonian groups.

COROLLARY 5.4. // S is a t-semisimple periodic H-semigroup,
then S is commutative.

COROLLARY 5.5. If S is a periodic H-semigroup with a minimum
idempotent e, then S is t-semisimple if and only if for each semi-
group Pf in the semilattice with f ^ e, the homomorphism ψfye on
Pf into Pe, defined by aijrfye = ae, is a monomorphism and Pe is t-
semisimple.

COROLLARY 5.6. // S is a t-semisimple periodic H-semigroup
with no nontrivial modular congruences, then S is either a cyclic
group of prime order or the unique semilattice of two elements.

COROLLARY 5.7. If S is a periodic H-semigroup with zero, then
S is t-semisimple if and only if S is a semilattice.
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