THE EMBEDDING OF HOMEOMORPHISMS OF THE PLANE IN CONTINUOUS FLOWS

Gary D. Jones

Abstract

A study of fundamental regions of the plane under an orientation preserving, fixed point free, self-homeomorphism of the plane is made under the conditions that there are finitely many fundamental regions R_{i} under f, if $x \in R_{i}-$ Int R_{i}, then $x \in C \subset R_{i}-\operatorname{Int} R_{i}$ where C is a proper flowline, and if x_{1} and x_{2} are in Int R_{i}, then $x_{1} \sim x_{2} \bmod \operatorname{Int} R_{i}$. The topological structure of the fundamental regions is determined. Using these results, it is shown that in certain cases the embedding problem can be reduced to a problem of extending a continuous flow defined on an open set to the closure of the set.

In the last section, sufficient conditions for self-homeomorphisms of the plane and the closed unit disc with one fixed point to be embedded in continuous flows are given.

Let X be a topological space and let G denote a topological group. The ordered triple (X, G, π) is a dynamical system if (1) $\pi: X \times G \rightarrow X$ is continuous, (2) $\pi\left(\pi\left(x, g_{1}\right), g_{2}\right)=\pi\left(x, g_{1}+g_{2}\right)$, and (3) $\pi(x, e)=x$ for every $x \in X$. If G is the additive group of real numbers, then (X, G, π) is called a continuous flow. If G is the additive group of integers, then (X, G, π) is a discrete flow.

This paper is concerned with the following problem. If G is a given topological group and (X, G^{*}, π^{*}) is a given dynamical system, where G^{*} is a subgroup of G with the relative topology, then find a dynamical system (Y, G, π) such that (1) $\pi\left(y, g^{*}\right)$ for $g^{*} \in G^{*}$ is invariant on a subset Z of Y, (2) Z is homeomorphic to X, and (3) π on $Z \times G^{*}$ is topologically equivalent to π^{*} on $X \times G^{*}$, i.e. there is a homeomorphism $h: X \rightarrow Z$ such that $h^{-1}\left(\pi\left(h(x), g^{*}\right)\right)=\pi^{*}\left(x, g^{*}\right)$. If G is the additive group of real numbers and G^{*} is the additive group of integers, then the problem is that of embedding a selfhomeomorphism in a continous flow.

If the space X is allowed to be enlarged in order to accommodate π, the problem is referred to as the unrestricted problem. If $X=$ $Y=Z$ the problem is referred to as the restricted problem [5].

If G is the additive group of real numbers and G^{*} is the integers, then the unrestricted problem is easily solved [5], [7], [8] for any topological space X and any self-homeomorphism.

The restricted problem is only partially solved. Fine and Schweigert [2] and Fort [6] proved that a self-homeomorphism T of an interval can be embedded in a continuous flow if and only if it is order pre-
serving. Utz [11] gave a constructive proof of this theorem.
Foland and Utz [5] solved the restricted problem where T is an orientation preserving self-homeomorhism of a circle. Foland [3] has shown that if T is an almost periodic, orientation preserving selfhomeomorphism of a closed 2 -cell, then T can be embedded in a continuous flow on the 2 -cell. Moreover, if T is almost periodic but not periodic, then the embedding is unique.

Andrea [1] has given sufficient conditions for a fixed point free self-homeomorphism of the Euclidean plane to be embedded in a continuous flow.
2. Fundamental regions of the plane. In this section numerous properties of fundamental regions of the plane will be given, and using these properties it will be possible to give a description of the plane when it consists of n fundamental regions.

In this section f will be a self-homeomorphism of the plane which is orientation preserving and which has no fixed points.

Definition 1. [1]. If p and q are points in the plane, then $p \sim q$ if p and q are endpoints of some curve segment C (the homeomorph of the closed unit interval) for which $f^{n}(C) \rightarrow \infty$ as $n \rightarrow \pm \infty$.

Theorem 1. [1] The relation \sim is an equivalence relation.
Definition 2. [1] The fundamental regions of the plane under f are the equivalence classes of the equivalence relation \sim.

Definition 3. If A is a subset of the plane, then $x \sim y \bmod A$ if x and y are endpoints of some curve segment $C \subset A$ such that for every compact set K in the plane there is a natural number N such that $f^{n}(C) \cap K=\phi$ when $|n|>N$.

Definition 4. [1]. A proper flowline for f is a subset F of the plane such that
(a) $f(F)=F$,
(b) F is a one-to-one continuous image of the real line, and
(c) $F \cup\{\infty\}$ is a Jordan curve on the sphere $R^{2} \cup\{\infty\}$.

The following three conditions will be assumed in this section and in $\S 3$.
(1) There exists exactly n fundamental regions R_{i} under f.
(2) If $x \in R_{i}-\operatorname{Int} R_{i}$, then $x \in C \subset R_{i}-\operatorname{Int} R_{i}$ where C is a proper flowline.
(3) If $x_{1}, x_{2} \in \operatorname{Int} R_{i}$, then $x_{1} \sim x_{2} \bmod$ Int R_{i}.

We will let R or R with a subscript denote fundamental regions of
the plane under f.
It follows from the following remark that each fundamental region is f-invariant.

Remark 1. [1]. Suppose that $\left\{E_{i}\right\}$ is a finite collection of disjoint arcwise connected sets. If each $f\left(E_{i}\right)=E_{j}$, then $f\left(E_{i}\right)=E_{i}$ for every i.

Remark 2.

(a) R is arcwise connected,
(b) R is unbounded, and
(c) if C is a simple closed curve contained in R, then $\operatorname{Int}(C) \subset R$.

Proof. (a) and (b) follow directly from the definitions. Suppose that (c) does not hold. Then there is $x \in \operatorname{Int} C$ such that $x \notin R$. Suppose $x \in S$ where S is a fundamental region under f. Since $f^{n}(x) \rightarrow$ ∞, as $n \rightarrow \infty, f^{n}(x) \notin C \cup \operatorname{Int} C$ for some n. But $f^{n}(x) \in S$ and S is arc wise connected. Therefore, there is an arc L joining x and $f^{n}(x)$ where $L \subset S$. But that is not possible since $L \cap C \neq \phi$.

Remark 3. If there exists $x \in R_{i}-\operatorname{Int} R_{i}$, then $x \in C$, where C is defined by (2), and C divides the plane into two open half planes H_{1} and H_{2} such that
(a) $x_{1}, x_{2} \in \operatorname{Int} R_{i}$ implies x_{1} and x_{2} are in the same half plane,
(b) if Int $R_{i} \neq \phi$ and if $x \in C$, then there is a neighborhood U of x such that $U \cap H_{1} \subset \operatorname{Int} R_{i}$ where Int $R_{i} \subset H_{1}$, and (c) if Int $R_{i}=\phi$, then $R_{i}=C$.

Proof. (a) Let x_{1} and $x_{2} \in \operatorname{Int} R_{i}$. Let $x_{1} \in H_{1}$ and $x_{2} \in H_{2}$. By (3), there is an arc A joining x_{1} and x_{2} such that $A \subset \operatorname{Int} R_{i}$. Therefore, $A \cap C \neq \phi$, which is impossible since $C \subset R_{i}-\operatorname{Int} R_{i}$.
(b) Let $x \in C$. Let $x_{1} \in \operatorname{Int} R_{i}$. Then there is a curve $L \subset R_{i}$ such that x_{1} and y are endpoints of L, where $y \in C$, and $L \cap C=\{y\}$. Since $f(C)=C$ and f is fixed point free, there are integers m and n such that $f^{n}(y)$ and $f^{m}(y)$ are separated on C by x.

If $f^{n}(L) \cap f^{m}(L) \neq \phi$, let L_{1} be the smallest closed subsegment of $f^{n}(L)$ that contains $f^{n}(y)$ such that $L_{1} \cap f^{m}(L) \neq \phi$. Let L_{2} be the smallest closed subsegment of $f^{m}(L)$ that contains $f^{m}(y)$ such that $L_{2} \cap L_{1} \neq \phi$. If C_{1} is the closed subsegment of C from $f^{m}(y)$ to $f^{n}(y)$, then $C_{1} \cup L_{1} \cup L_{2}$ forms a simple closed curve. Let $\varepsilon=\min \left\{d\left(x, L_{1}\right)\right.$, $\left.d\left(x, L_{2}\right)\right\}$. Then if $S=\{z: d(z, x)<\varepsilon\}, S \cap H_{1}$ is contained in the simple closed curve $C_{1} \cup L_{1} \cup L_{2}$, which, by Remark 2, is contained in R_{i}.

There is an arc $K \subset \operatorname{Int} R_{i}$ such that $f^{n}\left(x_{1}\right)$ and $f^{m}\left(x_{1}\right)$ are its endpoints. If $f^{n}(L) \cap f^{m}(L)=\phi$, let L_{1} be the smallest closed subsegment of $f^{n}(L)$ containing $f^{n}(y)$ such that $L_{1} \cap K=\left\{z_{1}\right\}$. Let L_{2} be the
smallest closed subsegment of $f^{m}(L)$ containing $f^{m}(y)$ such that $L_{2} \cap$ $K=\left\{z_{2}\right\}$. Let K_{1} be the subsegment of K such that z_{1} and z_{2} are its endpoints. Now $C_{1} \cup K_{1} \cup L_{1} \cup L_{2}$ is a simple closed curve. Let $S=$ $\{u: d(x, u)<\varepsilon\}$ where $\varepsilon=\min \left\{d\left(x, K_{1}\right), d\left(x, L_{1}\right), d\left(x, L_{2}\right)\right\}$. Then $S \cap H_{1}$ is contained in the simple closed curve $C_{1} \cup L_{1} \cup L_{2} \cup K_{1}$ which is contained in R_{i}.
(c) If $x \in R_{i}$, then by (2) there is a proper flowline C such that $x \in C$. If $y \in R_{i}-C$ then there is a proper flowline C^{\prime} such that $y \in C^{\prime}$.

If $C \cap C^{\prime} \neq \phi$, let L_{1}^{+}be the closed half line from y containing $f(y)$ and L_{1}^{-}the closed half line from y containing $f^{-1}(y)$. Let C_{1} and C_{2} be the smallest closed subsegments of L_{1}^{-}and L_{1}^{+}respectively such that $C_{i} \cap C=\left\{x_{i}\right\}$ for $i=1,2$. Such segments do exist because $C^{\prime} \cap$ $C \neq \phi, y \notin C$, and the properties of f. Thus the segment from x_{1} to x_{2} on C, C_{1} and C_{2} form a simple closed curve and every point in its interior must be in R_{i}, which is not possible.

If $C \cap C^{\prime}=\phi$, we can join C to C^{\prime} by a segment $A \subset R_{i}$ such that $A \cap C=\left\{x_{1}\right\}$ and $A \cap C^{\prime}=\left\{x_{2}\right\}$. Let C_{i} be the closed subsegments of C and C^{\prime} respectively from x_{i} to $f\left(x_{i}\right)$ for $i=1$, 2 . Let A_{1} be the smallest closed subsegment of $f(A)$ such that $A_{1} \cap\left(A \cup C_{2}\right) \neq \phi$. Now C_{1}, A_{1}, and $\left(A \cup C_{2}\right)$ from x_{1} to $A_{1} \cap\left(A \cup C_{2}\right)$ is a simple closed curve and the result follows.

Remark 4. If C_{1} and C_{2} contained in R_{i} are curves defined as in (2) such that $C_{1} \neq C_{2}$, then $C_{1} \cap C_{2}=\phi$. Also, if C_{1} is a curve defined as in (2), then R_{i} is contained in the closed half plane defined by C_{1} containing Int R_{i}.

Proof. Suppose $C_{1} \neq C_{2}$, but $C_{1} \cap C_{2} \neq \phi$. Suppose $y \in C_{1}-C_{2}$. Let A be a closed subsegment of C_{1} containing y such that x_{1} and x_{2} are endpoints of A, x_{1} and $x_{2} \in C_{1} \cap C_{2^{\prime}}$ and $\left(A-\left\{x_{1}, x_{2}\right\}\right) \cap C_{2}=\phi$ for $i=1,2$. Now A together with the subsegment of C_{2} from x_{1} to x_{2} forms a simple closed curve K. Let $z \in$ the interior of K. Now $f^{n}(z) \rightarrow \infty$ as $n \rightarrow \infty$, thus $f^{n}(z) \in$ the interior of $f^{n}(K)$ but $f^{n}(z) \notin$ interior K for some integer n. Now z and $f^{n}(z) \in \operatorname{Int} R_{i}$ by Remark 2, but z and $f^{n}(z)$ can not be connected by an arc in Int R_{i} which is contrary to (3).

Suppose there is $x \in R_{i}$ but in the opposite open half plane, determined by C_{1}, from Int R_{i}. Then by the above paragraph and (2), there is a proper flowline C_{2} such that $x \in C_{2}$ and $C_{1} \cap C_{2}=\phi$. Now the proof of Remark 3c can be applied to show that there must be a point in the same half plane as x which is in Int R_{i}, which is not possible.

Theorem 2. [1]. The self-homeomorphism f is equivalent to a
translation if and only if it has exactly one fundamental region.

Remark 5. Let C be a proper flowline of f. Then there is a homeomorphism g such that $\left.g\right|_{c}=\left.f\right|_{c}$ and such that g is topologically equivalent to a translation.

Proof. Since C is a proper flowline of f there is a selfhomeomorphism h of the plane where $h(C)=L$ and where L is the y-axis. Define $T: P \rightarrow P$, where P is the plane, by

$$
\begin{aligned}
& T(0, y)=h f h^{-1}(0, y), \text { where }(0, y) \in L \\
& T(x, y)=\left(x,\left(h f h^{-1}(0, y)\right)_{y}\right) \text { where }(x, y) \notin L
\end{aligned}
$$

and where $\left(h f h^{-1}(0, y)\right)_{y}$ denotes the y coordinate of $h f h^{-1}(0, y)$. Then T is an orientation preserving self-homeomorphism of the plane with no fixed points and with exactly one fundamental region. Therefore, $g=h^{-1} T h$ has this property, $\left.g\right|_{c}=\left.f\right|_{c}$, and g is equivalent to a translation by Theorem 2.

Remark 6. If R - Int R contains two distinct proper flow lines C_{1} and C_{2}, then R is the closed strip bounded by C_{1} and C_{2}.

Proof. By Remark 3, if C_{1} and C_{2} are distinct proper flow lines in R-Int R, then Int $R \neq \phi$. Let H_{j}^{1} and H_{j}^{2} be the two closed half planes defined by C_{j}. By Remark 4, it can be assumed that $R \subset H_{1}^{2}$. Therefore, $C_{2} \subset H_{1}^{2}-C_{1}$. Let H_{2}^{1} be the half plane containing H_{1}^{1}. Then, $R \subset H_{2}^{1}$ and therefore $R \subset H_{2}^{1} \cap H_{1}^{2}$. Let $x_{3} \in H_{2}^{1} \cap H_{1}^{2}-\left(C_{1} \cup C_{2}\right)$. Let B be a closed segment joining C_{1} and C_{2} such that $x_{3} \in B, B \cap C_{1}=$ $\{y\}$, and $B \cap C_{2}=\{z\}$. Since $y \sim z$, there is an arc $A \subset R$ joining y and z such that $f^{n}(A) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Let A_{1} be a closed subsegment of A such that $A_{1} \cap C_{1}=\left\{y_{1}\right\}$ and $A_{1} \cap C_{2}=\left\{z_{1}\right\}$. There is an integer $N>0$ such that if $n>N, f^{n}\left(y_{1}\right)$ and $f^{-n}\left(y_{1}\right)$ are separated on C_{1} by y, and $f^{n}\left(z_{1}\right)$ and $f^{-n}\left(z_{1}\right)$ are separated on C_{2} by z. Since $f^{n}\left(A_{1}\right) \rightarrow$ ∞ as $n \rightarrow \pm \infty$, there is an $M>N$ such that $f^{M}\left(A_{1}\right), f^{-M}\left(A_{1}\right)$, and the closed subsegments of C_{1} and C_{2} from $f^{M I}\left(y_{1}\right)$ to $f^{-M}\left(y_{1}\right)$ and $f^{M}\left(z_{1}\right)$ to $f^{-3 L}\left(z_{1}\right)$ respectively form a simple closed curve which contains x_{3} in its interior. But that implies $x_{3} \in \operatorname{Int} R$.

Remark 7. If $x \in\left(R_{i}-\operatorname{Int} R_{i}\right) \cap \bar{R}_{k}$, then there is an arc A joining a point of R_{k} to x, where $A-\{x\} \subset R_{k}$. Further, if $x \in C$, where C is defined as in (2), then for every $w \in C$, there is a neighborhood U of w such that $U \cap\left(H^{\prime}-C\right) \subset R_{k}$, where H^{\prime} is the closed half plane defined by C which contains R_{k}.

Proof. Let $x \in C_{i}$, where C_{i} is defined by (2). Let the closed half planes defined by C_{i} be H_{i}^{1} and H_{i}^{2}. Suppose $R_{k} \subset H_{i}{ }^{2}$. By Remark 6 , there are at most $2 n$ distinct curves C_{j} defined as in (2). Let $\alpha=$ $\min _{C_{j} \subset\left(H_{i}^{2}-C_{i}\right)}\left\{d\left(x, C_{j}\right)\right\}$. Consider the open disc S with center at x and radius $\alpha / 2$. Since $x \in \bar{R}_{k}$, there exists $y \in R_{k} \cap S$. Suppose $z \in$ $S \cap\left(H_{i}^{2}-C_{i}\right)$, where $z \notin R_{k}$. Since $\left(\cup_{j} R_{j}\right) \cap S=S$, there exists $z_{0} \in$ $S \cap\left(H_{i}^{2}-C_{i}\right)$ where $z_{0} \in R_{k_{0}}-\operatorname{Int} R_{k_{0}}$. But then there would exist a curve $C_{k_{0}}$ defined by (2), where $C_{k_{0}} \cap S \cap\left(H_{i}^{2}-C_{i}\right) \neq \phi$, which is not possible. The proof of the last part is similar to the proof of Remark 3b.

Remark 8. If C is an arcwise connected component of $\bar{R}-\operatorname{Int} R$, then C is a proper flow line contained in exactly one fundamental region.

Proof. Let $x \in C$. Then $x \in\left(R_{j}-\operatorname{Int} R_{j}\right) \cap \bar{R}_{k}$ for some fundamental regions R_{j} and R_{k}. If Int $R_{j} \neq \phi$, by Remarks 3 and 7 , there is a neighborhood U of x such that $U \subset R_{j} \cup R_{k}$. Thus, R is R_{j} or R_{k}. Let $x \in C_{1}$, where C_{1} is given by (2). Remarks 3 and 7 imply $C_{1} \subset C$. If $w \in C-C_{1}$, there must be an arc in $\bar{R}-\operatorname{Int} R$ from w to C_{1}, which is not possible by Remarks 3 and 7. If Int $R_{j}=\phi$ and if $R_{j}=R$ the result follows from Remark 3. Otherwise if $x \in C$, then $x \in R_{j} \cap \bar{R}$. Now applying Remark 7, it follows that $C_{1}=C$.

Theorem 3. [1] The plane under f can not have exactly two fundamental regions.

The notation $\#(R)$ will be used to represent the number of arcwise connected components of $\bar{R}-\operatorname{Int} R$.

Remark 9. If $\#(R)=1$, then R is a proper flow line or a closed half plane.

Proof. If Int $R=\phi$, then R is a proper line by Remark 2. If Int $R \neq \phi$, then by Remarks 3, 7 and $8, R$ is an open half plane or a closed half plane.

Suppose R is not closed. Then $\bar{R}-\operatorname{Int} R \subset R_{2}$. Thus, there exists $x \in\left(R_{2}-\operatorname{Int} R_{2}\right) \cap \bar{R}$. Let $x \in C$, where C is defined as in (2). Let H_{1}^{2} and H_{1}^{1} be the closed half planes defined by C. By Remark 2, it can be assumed that $R \subset H_{1}^{1}$, and then, by Remarks 3 and $4 R_{2} \subset$ H_{1}^{2}. Using Remark 5, define g such that $\left.g\right|_{c}=\left.f\right|_{c}$. Define $F: P \rightarrow$ P, where P is the plane, by

$$
F(x)= \begin{cases}f(x) & \text { if } x \in H_{1}^{1} \\ g(x) & \text { if } x \in H_{1}^{2}\end{cases}
$$

Then F is an orientation preserving self-homeomorphism of the plane with no fixed points, and the plane under F has exactly one funda-
mental region, since, by Theorem 3, it can not have two fundamental regions. Let A be any arc joining $y \in R$ to x, where $A \subset H_{1}^{2}$. Then $f^{n}(A)=F^{n}(A) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Therefore, $x \in R$, and it follows that R is closed.

Remark 10. If $\#(R)=2$, then R is either an open strip or a closed strip.

Proof. Let C_{1} and C_{2} be the two arcwise connected components of \bar{R} - Int R. It follows that the interior of the strip bounded by C_{1} and C_{2} is contained in R, and that R is contained in the closed strip bounded by C_{1} and C_{2}.

Suppose $x_{1} \in R$ - Int R. Then $x_{1} \in C_{1}$ or $x_{1} \in C_{2}$. Suppose $x_{1} \in C_{1}$. By Remark 8, $C_{1} \subset R$.

Using Remark 5, define g_{i} where g_{i} agrees with f on $C_{i}, i=1,2$. Define $F: P \rightarrow P$, where P is the plane, by

$$
F(x)= \begin{cases}g_{1}(x) & \text { if } x \in \text { closed half plane defined by } C_{1} \text { not con- } \\ & \text { taining Int } R \\ f(x) & \text { if } x \in \text { closed strip bounded by } C_{1} \text { and } C_{2} \\ g_{2}(x) & \text { if } x \in \text { closed half plane defined by } C_{2} \text { not con- } \\ & \text { taining Int } R .\end{cases}
$$

Then F is an orientation preserving self-homeomorphism of the plane, and the plane has at most two fundamental regions under F. Therefore, by Theorem 3, it has exactly one. It now follows that $C_{2} \subset R$.

Remark 11. If $\#(R) \geqq 3$, then either R is open or else R contains just one of the components of $\bar{R}-\operatorname{Int} R$.

Proof. If R contains at least two of the components of \bar{R} - Int R, then by Remark 6, $\#(R)=2$.

Consider the homeomorphism defined in Figure 1. Each point x lies on a curve. Let $f(x)$ be in the direction of the arrow along the curve one unit. The homeomorphism f satisfies (1), (2), and (3), and $\#\left(R_{4}\right)=3$ but R_{4} is not open.

Remark 12. If R_{1} and R_{2} are not separated and R_{2} and R_{3} are not separated, then R_{1} and R_{3} are separated by R_{2}.

Proof. Since R_{1} and R_{2} are not separated, either there exists $x_{2} \in$ $\left(R_{2}-\operatorname{Int} R_{2}\right) \cap \bar{R}_{1}$, or there exists $x_{2} \in\left(R_{1}-\operatorname{Int} R_{1}\right) \cap \bar{R}_{2}$.

Case I. Suppose $x_{2} \in\left(R_{2}\right.$ - Int $\left.R_{2}\right) \cap \bar{R}_{1}$. Let $x_{2} \in C_{2}$, where C_{2} is defined by (2). Let H_{2}^{\perp} and H_{2}^{2} be the closed half planes defined by

Figure 1
C_{2}. Suppose for definiteness that $R_{1} \subset H_{2}^{\perp}-C_{2}$ and then by Remark $3, R_{2} \subset H_{2}^{2}$. By Remark 7, for every $w \in C_{2}$, there is a neighborhood U of w such that $U \cap\left(H_{2}^{1}-C_{2}\right) \subset R_{1}$. Since R_{3} and R_{2} are not separated, $R_{3} \subset H_{2}^{2}-C_{2}$. Therefore, R_{1} and R_{3} are separated by R_{2}.

Case II. The proof is similar to Case I.
Theorem 4. Suppose R_{i} and R_{i+1} are not separated for $i=1,2$, $\cdots, n-1$. Then
(a) R_{i} and R_{k} are separated for $k \neq i-1, i+1$,
(b) R_{1} and R_{n} are closed half planes,
(c) $R_{2 k-1}$ is closed, $R_{2 k}$ is open for $k=1,2, \cdots$, and
(d) n is odd.

The proof of this theorem follows easily from the above remarks.
The above remarks can be applied to describe the plane if there are n fundamental regions.

For example, suppose the plane $P=R_{1} \cup R_{2} \cup R_{3}$. Since P is connected, suppose R_{1} and R_{2} are not separated. Then either R_{1} and R_{3} or R_{2} and R_{3} are separated. Suppose R_{2} and R_{3} are not separated.

By Remark 12, R_{1} and R_{3} are separated by R_{2}. Thus, by Remark 9 , R_{1} and R_{s} are closed and $R_{i}-\operatorname{Int} R_{i}=C_{i}$, where C_{i} is a proper flowline, for $i=1,3$. Therefore, R_{2} is open.

In the case $n=4,5$, or 6 , there are respectively 1,3 , or 4 possible arrangements of the fundamental regions.
3. Self-homeomorphism of the plane with no fixed points. In this section it will be shown that in certain cases, the embedding problem can be reduced to a problem of extending a continuous flow defined on an open set to the closure of the set. Sufficient conditions for this extension will be given. Some properties of the homeomorphisms on the fundamental regions will also be given.

In order to show that an open connected subset B of the plane is homeomorphic to the plane, it is enough to show that every simple closed curve in B separates B and at least one of the components has compact closure in B [12]. Thus, Theorem 5 follows.

Theorem 5. If R_{i} and R_{i+1} are not separated for $i=1,2, \cdots, k-1$, then $\operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$ is homeomorphic to the plane.

Proof. By the earlier remarks, we can assume that R_{1} and R_{k} have nonempty interior, for otherwise R_{1} or $R_{k} \leftrightarrows \operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$. By (3), Int R_{j} is connected. Since R_{i} and R_{i+1} are not separated, suppose for definiteness that there exists $x \in\left(R_{i}-\operatorname{Int} R_{i}\right) \cap \bar{R}_{i+1}$. By Remarks 3 and 7, there is a neighborhood U of such that $U \subset R_{i-1} \cup R_{i} \cup R_{i+1}$ if $i \neq 1$ or $R_{i} \cup R_{i+1}$ if $i=1$. Therefore, $x \in \operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$. Thus, $\operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$ is connected.

Let B be a simple closed curve such that $B \subset \operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$. Let $x \in \operatorname{Int} B$. Since $f(x) \rightarrow \infty$ as $n \rightarrow \infty$, it follows that there is an integer n such $f^{n}(x) \notin B \cup \operatorname{Int} B$. But, since $x \sim f^{n}(x)$, there is an arc A, where $A \subset R_{i}$ if $x \in R_{i}$ and where A joins x and $f^{n}(x)$. Therefore, $\{x\}$ and $A \cap B$ are in the same fundamental region. Thus, $B \cup \operatorname{Int} B \subset$ $\operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$. It follows that $B \cup \operatorname{Int} B$ is compact in $\operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$. Therefore, $\operatorname{Int}\left(\cup_{j=1}^{k} R_{j}\right)$ is homeomorphic to the plane.

Theorem 6. Suppose R_{i} and R_{i+1} are not separated for $i=1, \cdots$, $k-1$. Then, there is a homeomorphism $g: \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right) \rightarrow P_{2}$, where P_{2} is a plane, and P_{2} under gfg^{-1} has at most k fundamental regions.

Proof. The homeomorphism g exists by Theorem 5.
Let $x_{1}, x_{2} \in R_{j} \cap \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$. If $R_{j} \subset \operatorname{Int}\left(\bigcup_{i=1}^{k} R_{i}\right)$, then by definition of R_{i}, there is a curve segment $L \subset \operatorname{Int}\left(\mathrm{U}_{i=1}^{k} R_{i}\right)$ joining x_{1} and x_{2} for which $f^{n}(L) \rightarrow \infty$ as $\pm n \rightarrow \infty$. Since $\operatorname{Int} R_{j} \subset \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$, if $x_{1}, x_{2} \in$

Int R_{j}, then by (3), there is a curve segment $L \subset \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$ for which $f^{n}(L) \rightarrow \infty$ as $n \rightarrow \pm \infty$. If $x_{1} \in R_{j}$ - Int R_{j}, then by (2), $x_{1} \in C_{1} \subset R_{j}-$ Int R_{j}. By Remarks 3 and 7, $C_{1} \subset \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$. Let $y \in R_{j}$ such that $y \notin C_{1}$. Since $x_{1} \sim y$, there is an arc L_{1} joining x_{1} and y such that $f^{n}\left(L_{1}\right) \rightarrow \infty$ as $n \rightarrow \pm \infty$. By Remark 3, there is a subarc L of L_{1} such that L joins x_{1} to an interior point of R_{j} and such that $L \subset$ Int $\left(\cup_{i=1}^{k} R_{i}\right)$. Therefore, if $x_{1}, x_{2} \in R_{j} \cap \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$, then there is a curve $L \subset \operatorname{Int}\left(\cup_{i=1}^{k} R_{i}\right)$ which $f^{n}(L) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Let C be any compact set in P_{2}. Then, $g^{-1}(C)$ is a compact set in P_{1}. Thus, there is a natural number N such that if $|n|>N$, then $f^{n}(L) \cap g^{-1}(C)=\phi$. Now, $g(L)$ is a curve segment joining $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ in plane P_{2}. Since $f^{n}(L) \cap g^{-1}(C)=\phi, g f^{n} g^{-1} g(L) \cap C=\phi$. Therefore, $g\left(x_{1}\right)$ and $g\left(x_{2}\right)$ are in the same fundamental region.

Corollary. If $k=2$, then P_{2} has exactly one fundamental region under $g f g^{-1}$.

The following two embedding theorems can be considered as a continuation of the work started by Andrea [1].

Theorem 7. If the plane under f has exactly one fundamental region and if C is a proper flowline, then f can be embedded in a continuous flow Π, such that $\Pi(C, R)=C$.

Proof. The homeomorphism f is topologically equivalent to a translation. Hence, there is a curve K such that K separates the plane, $f^{n}(K) \cap f^{m}(K)=\phi$ for $n \neq m$, if z is a point of the plane $f^{n}(z)$ is in the strip bounded by K and $f(K)$ for some unique integer n, and $K \cap C=\left\{x_{0}\right\}$. The plane, P_{1}, is homeomorphic to another plane P_{2} under a homeomorphism h such that $h(K)$ and ($h f$) K are parallel straight lines and $h(C)$ from $h\left(x_{0}\right)$ to $(h f) x_{0}$ is a straight line. Now if $x \in K$ and if $0 \leqq t<1$ define

$$
\Pi_{1}(x, t)=y
$$

where $h(y)=(1-t) h(x)+t(h f) x$. If $x \in K$ and t is any real number, define

$$
\Pi_{2}(x, t)=f^{n}\left(\Pi_{1}(x, s)\right)
$$

where $n+s=t, n$ is an integer, and $0 \leqq s<1$. If x is in the interior of the strip bounded by K and $f(K)$ or if $x \in K$, and if t_{1} is any real number, define

$$
\Pi_{3}\left(x, t_{1}\right)=\Pi_{2}\left(y, t_{2}+t_{1}\right)
$$

where $h(x)=\left(1-t_{2}\right)(h f) y+t_{2} h(y)$ and $y \in K$. If $x \in P_{1}$ and t is any
real number, define

$$
\Pi(x, t)=\Pi_{3}\left(f^{-m}(x), t+m\right)
$$

where $f^{-m}(x)$ is in the strip bounded by K and $f(K)$. It follows that Π is a continuous flow and that $\Pi(x, n)=f^{n}(x)$ for every $x \in P_{1}$ and every integer n.

Theorem 8. Suppose R_{1} and R_{i} are not separated for $i=2, \cdots$, n. Then
(a) R_{1} is open
(b) $\left.f\right|_{R_{1}}$ can be embedded in a continuous flow, and
(c) if $\left.f\right|_{\bar{R}_{1}}$ can be embedded in a continuous flow Π_{1}, then f can be embedded in a continuous flow Π, where $\Pi(x, r)=\Pi_{1}(x, r)$ if $(x, r) \in \bar{R}_{1}$ X Reals.
(d) If $\left.f\right|_{R_{1}}$ can be embedded in a continuous flow Π_{1}, such that Π_{1} restricted to $R_{1} \times[0,1]$ is uniformly continuous, then f can be embedded in a continuous flow Π.

Proof. (a) By Remark $12, R_{j}$ and R_{k} are separated for $j \neq k$ and $j, k \neq 1$. Thus by Remark $9, R_{j}$ is closed for $j \neq 1$. Thus, $R_{1}=$ Plane $-\left(\cup_{j=2}^{n} R_{j}\right)$ is open.
(b) By Theorem 5, there is a homeomorphism $g: R_{1} \rightarrow P_{2}$ where P_{2} is a plane. By Theorem 6, P_{2} has exactly one fundamental region under $g \mathrm{fg}^{-1}$. Thus, $g \mathrm{fg}^{-1}$ is topologically a translation and thus can be embedded in a continuous flow. Therefore $\left.f\right|_{R_{1}}$ can be embedded in a continuous flow.
(c) If $x \in\left(R_{2}-\operatorname{Int} R_{2}\right) \cap \bar{R}_{1}$ then $x \in C_{2} \subset R_{2}-$ Int R_{2}, where C_{2} is a proper flowline. By Remarks 3 and 7, $C_{2} \subset \operatorname{Int}\left(R_{1} \cup R_{2}\right)$. It follows that Int $\left(R_{1} \cup R_{2}\right)=R_{1} \cup R_{2}$, and from the proof of Remark 9 that $R_{2}-\operatorname{Int} R_{2}=C_{2}$. From Theorem 5, $R_{1} \cup R_{2}$ and plane P_{2} are homeomorphic, under a homeomorphism g. By the corollary to Theorem 6, P_{2} has exactly one fundamental region under $g \mathrm{fg}^{-1}$. Therefore, $\mathrm{gf} \mathrm{g}^{-1}$ can be embedded in a continuous flow σ such that $\sigma(g(C), R)=g(C)$, by Theorem 7. It also can be shown that we can choose σ such that $\Pi_{1}(x, r)=g^{-1}\left(\sigma(g(z), r)\right.$ for $g(z)=x \in C$. Now define $\Pi_{2}^{\prime}:\left(R_{1} \cup R_{2}\right) \times$ $R \rightarrow\left(R_{1} \cup R_{2}\right)$ by

$$
\Pi_{2}^{\prime}(z, r)=g^{-1}(\sigma(g(z), r))
$$

Then Π_{2}^{\prime} is a continuous flow and $\Pi_{2}^{\prime}(z, n)=f^{n}(z)$, where $z \in R_{1} \cup R_{2}$. Define $\Pi_{2}:\left(R_{1} \cup R_{2}\right) \times R \rightarrow\left(R_{1} \cup R_{2}\right)$ by

$$
\Pi_{2}(z, r)= \begin{cases}\Pi_{2}^{\prime}(z, r) & \text { if } z \in R_{2} \\ \Pi_{1}(z, r) & \text { if } z \in \bar{R}_{1}\end{cases}
$$

Then Π_{2} is a continuous flow on $R_{1} \cup R_{2}$ since Π_{2}^{\prime} and Π_{1} agree on C_{2}. In the same way, define $\Pi_{i}:\left(R_{1} \cup R_{i}\right) \times R \rightarrow\left(R_{1} \cup R_{i}\right)$ for $i=2,3, \cdots$, n. Define $\Pi: P_{1} \times R \rightarrow P_{1}$ by

$$
\Pi(z, r)=\Pi_{i}(z, r) \text { if } z \in R_{i} \text { for } i=1,2, \cdots, n
$$

The fact that Π is a continuous flow follows from the fact that R_{i} and R_{j} are closed and separated for $i \neq j ; i, j \neq 1$.
(d) It is enough to show that $\left.f\right|_{\bar{R}_{1}}$ can be embedded in a continuous flow. Define $\Pi: \bar{R}_{1} \times$ Reals $\rightarrow \bar{R}_{1}$ by

$$
\Pi(x, r)=\lim _{n \rightarrow \infty} f^{k}\left(\Pi_{1}\left(x_{n}, s\right)\right),
$$

where $x_{n} \rightarrow x$ as $n \rightarrow \infty, x_{n} \in R_{1}$, and $r=k+s$, where k is an integer and $0 \leqq s<1$.

Let (x, r) and $\varepsilon>0$ be given. Then $r=k+s$, where k is an integer and $0 \leqq s<1$. Let $x_{n} \rightarrow x$ as $n \rightarrow \infty$, where $x_{n} \in R_{1}$. By the uniform continuity of Π, on $R_{1} \times[0,1]$, there is a $\delta>0$ such that if $d\left(x_{n}, x_{m}\right)<\delta$, then $d\left(\Pi_{1}\left(x_{n}, s\right), \Pi_{1}\left(x_{m}, s\right)\right)<\varepsilon$. Since $x_{n} \rightarrow x$, there is a natural number N such that if $n, m>N$, then $d\left(x_{n}, x_{m}\right)<\delta$. Therefore, $\left.\lim _{n \rightarrow \infty} f^{k} \Pi_{1}\left(x_{n}, s\right)\right)=f^{k}\left(\lim _{n \rightarrow \infty} \Pi_{1}\left(x_{n}, s\right)\right)$ exists.

Suppose $x_{n} \rightarrow x$ and $\bar{x}_{m} \rightarrow x$, where $x_{n}, \bar{x}_{m} \in R_{1}$ for every n, m. Let $\lim _{n \rightarrow \infty} \Pi_{1}\left(x_{n}, s\right)=A$, and $\lim _{n \rightarrow \infty} \Pi_{1}\left(\bar{x}_{m}, s\right)=B$. By the uniform continuity of Π_{1} on $R_{1} \times[0,1]$, there is a $\delta>0$ such that if $d(y, \bar{y})<\delta$ then $d\left(\Pi_{1}(y, s), \Pi_{1}(\bar{y}, s)\right)<\varepsilon / 3$. Since $x_{n} \rightarrow x$ and $\bar{x}_{m} \rightarrow x$ as $n, m \rightarrow \infty$, there is a natural number N such that if $n, m>N$, then $d\left(x_{n}, x\right)<\delta / 2$ and $d\left(\bar{x}_{m}, x\right)<\delta / 2$. Therefore $d\left(x_{n}, \bar{x}_{m}\right) \leqq d\left(x_{n}, x\right)+d\left(\bar{x}_{m}, x\right)<\delta$ if $n, m>$ N. Thus, $d(A, B) \leqq d\left(A, \Pi_{1}\left(x_{n}, s\right)\right)+d\left(\Pi_{1}\left(x_{n}, s\right), \Pi_{1}\left(\bar{x}_{m}, s\right)+d\left(\Pi\left(\bar{x}_{m}, s\right)\right.\right.$, $B)<\varepsilon$ for large m and n. Since $r=k+s$, where k is an integer and $0 \leqq s<1$, is a unique representation, Π is well defined.

Since $\Pi_{1}\left(x_{n}, 0\right)=x_{n}$ if $x_{n} \in R_{1}, \Pi(x, 0)=x$ for all $x \in \bar{R}_{1}$.
Let $x_{n} \rightarrow x$ as $n \rightarrow \infty, r_{1}=k_{1}+s_{1}, r_{2}=k_{2}+s_{2}$, and $r_{1}+r_{2}=k_{3}+$ s_{3}, where k_{i} are integers and $0 \leqq s_{i}<1$ for $i=1,2,3$, and where $x_{n} \in R_{1}$. Then, $\Pi\left(x, r_{1}+r_{2}\right)=\lim _{n \rightarrow \infty} f^{k_{3}}\left(\Pi_{1}\left(x_{n}, s_{3}\right)=\lim _{n \rightarrow \infty} f^{k_{2}}\left(\Pi_{1}\left(x_{n}\right.\right.\right.$, $\left.s_{3}+r_{1}-s_{3}+s_{2}\right)=\lim _{n \rightarrow \infty} f^{k_{2}}\left(\Pi_{1}\left(x_{n}, r_{1}+r_{2}\right)\right)=\lim _{n \rightarrow \infty} f^{k_{2}}\left(\Pi_{1}\left(x_{n}, k_{1}+s_{1}+\right.\right.$ $\left.\left.s_{2}\right)\right)=\lim _{n \rightarrow \infty} f^{k_{2}}\left(\Pi_{1}\left(\Pi_{1}\left(x_{n}, k_{1}+s_{1}\right), s_{2}\right)=\lim _{n \rightarrow \infty} f^{k_{2}}\left(\Pi_{1}\left(f^{k_{1}}\left(\Pi_{1}\left(x_{n}, s_{1}\right)\right), s_{2}\right)=\right.\right.$ $\Pi\left(\Pi\left(x, r_{1}\right), r_{2}\right)$.

Let $(x, g) \in \bar{R}_{1} \times[0,1]$. Let $\varepsilon>0$ be given. Choose a neighborhood $N \times U$ of (x, g) in $\bar{R}_{1} \times[0,1]$ so that if $\left(x_{1}, g_{1}\right),\left(x_{2}, g_{2}\right) \in(N \times U) \cap\left(R_{1} \times\right.$ $[0,1])$ then $d\left(\Pi_{1}\left(x_{1}, g_{1}\right), \Pi_{1}\left(x_{2}, g_{2}\right)\right)<\varepsilon$. By the definition of Π, there exists $x_{1} \in R_{1} \cap N$ such that $d\left(\Pi_{1}\left(x_{1}, g\right), \Pi(x, g)\right)<\varepsilon$. Suppose $(\bar{x}, \bar{g}) \in$ $N \times U$. Then there exists $x_{2} \in R_{1} \cap N$ so that $d\left(\Pi_{1}\left(x_{2}, \bar{g}\right), \Pi(\bar{x}, \bar{g})\right)<\varepsilon$. Thus, $d(\Pi(x, g), \Pi(\bar{x}, \bar{g})) \leqq d\left(\Pi(x, g), \Pi_{1}\left(x_{1}, g\right)\right)+d\left(\Pi_{1}\left(x_{1}, g\right), \Pi_{1}\left(x_{1}, \bar{g}\right)\right)+$ $d\left(\Pi_{1}\left(x_{1}, \bar{g}\right), \Pi_{1}\left(x_{2}, \bar{g}\right)+d\left(\Pi_{1}\left(x_{2}, \bar{g}\right), \Pi(\bar{x}, \bar{g})\right)<\varepsilon+\varepsilon+\varepsilon=3 \varepsilon\right.$. Thus Π is continuous on $\bar{R}_{1} \times[0,1]$. Therefore, by continuity of f^{n} for every
integer n, Π is continuous on $\bar{R}_{1} \times$ Reals.
It follows from Theorem 8 and the remarks $\S 2$, that if the plane has either three or four fundamental regions under f, then the embedding problem is reduced to the problem of embedding $\left.f\right|_{R_{1}}$ in a flow that can be extended to \bar{R}_{1}.

Remark 13. If $B \subset R_{k}$ is a proper flowline and B separates R_{j} and $R_{i}, i \neq k \neq j$, then each closed half plane defined by B contains at least two fundamental regions other than R_{k}.

Proof. Use Remark 5 to define a homeomorphism g such that $g(x)=f(x)$ if $x \in B$ and such that g is topologically equivalent to a translation. Let H^{1} be the half plane defined by B that contains R_{j}, and let H^{2} be the half plane defined by B that contains R_{i}. Define $F: P_{1} \rightarrow P_{1}$, where P_{1} is the plane, by

$$
F(x)= \begin{cases}g(x) & \text { if } x \in H^{1} \\ f(x) & \text { if } x \in H^{2}\end{cases}
$$

Suppose that R_{i} is the only fundamental region other than R_{k} that has a point in H^{2}. Let $z \in H^{1}-B$, and let $x \in B$. Join z and x by a curve $J \subset H^{1}$. Then $F^{n}(J)=g^{n}(J) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Therefore, the plane has at most two fundamental regions under F, and thus it has exactly one. Now join $y \in R_{i}$ to $x \in B$ by a curve $K \subset H^{2}$. Then $f^{n}(K)=F^{n}(K) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Thus, x and y are in the same fundamental region under f.

Corollary. If $n=3$ or 4 , then B does not separate any two fundamental regions if neither contains B.

Remark 14. Suppose there are exactly three fundamental regions under f, and R_{i} and R_{i+1} are not separated for $n=1,2$. If $y \in R_{2}$, $z \in R_{1}$, and U is any open set such that $R_{3} \subset U$, then for every arc C connecting y and z, there is an integer N such that $f^{N}(C) \cap U \neq \phi$.

Proof. By Theorem 4, R_{2} separates R_{1} and R_{3}, and R_{2} is open. Thus, Int $\left(R_{1} \cup R_{2}\right)=R_{1} \cup R_{2}$. By Theorem 5, $R_{1} \cup R_{2}$ is homeomorphic to the plane. Suppose $g: R_{1} \cup R_{2} \rightarrow P_{2}$, where P_{2} is the plane and g is a homeomorphism. By Theorem 6, P_{2} has exactly one fundamental region under $g \mathrm{fg}^{-1}$. Suppose that for some $y \in R_{2}, z \in R_{1}$, and for some open set $U \supset R_{3}$, there is an arc C connecting y and z such that $f^{n}(C) \cap$ $U=\phi$ for every integer n. Let K be any compact set in P_{1}. Then $\left(P_{1}-U\right) \cap K$ is compact. Since $f^{n}(C) \cap U=\phi$ for every integer n, it follows that $f^{n}(C) \cap\left(P_{1}-U\right) \cap K=\phi$ implies $f^{n}(C) \cap K=\phi$. Now, $g f^{n} g^{-1}(g(C)) \rightarrow \infty$ as $n \rightarrow \pm \infty$. Since $\left(P_{1}-U\right) \cap K=K_{1} \subset R_{1} \cup R_{2}$,
$g\left(K_{1}\right)$ is compact in P_{2}. Thus, there is a natural number N such that if $|n|>N$, then $g f^{n}(C) \cap g\left(K_{1}\right)=\phi$. But that implies $f^{n}(C) \cap K_{1}=\phi$. Therefore, y and z are in the same fundamental region, which is a contradiction.

Remark 15. Suppose $C_{j} \subset R_{1}$, where C_{j} is a proper flowline for $j=1,2 ; H_{j}^{k}, k=1,2$, are the two closed half planes defined by C_{j}; and $C_{1} \subset \operatorname{Int} H_{2}^{1}$ and $C_{2} \subset \operatorname{Int} H_{1}^{2}$. Then $H_{2}^{1} \cap H_{1}^{2} \subset R_{1}$.

Proof. The proof is similar to the proof of Remark 6.
Remark 16. Suppose $C_{i} \subset R_{2}$, where C_{i} is a proper flowline for $i=1$, 2. If C_{1} separates R_{1} and R_{3}, then C_{2} separates R_{1} and R_{3}.

Proof. Suppose C_{1} separates R_{1} and R_{3}, but C_{2} does not. Let H_{i}^{k}, $k=1,2$, be the closed half plane defined by C_{i}. Suppose $R_{1} \subset H_{1}^{1}$ and $R_{3} \subset H_{1}^{2}$. Since C_{2} does not separate R_{1} and R_{3}, and since each R_{i} is arcwise connected, suppose R_{1} and R_{3} are contained in H_{2}^{1}. If $C_{1} \cap$ $C_{2}=\phi$, suppose $C_{2} \subset H_{1}^{2}$. Then $R_{3} \subset H_{2}^{1} \cap H_{1}^{2}$. By Remark 15, $R_{3} \subset$ $H_{2}^{1} \cap H_{1}^{2} \subset R_{2}$. If $C_{2} \subset H_{1}^{1}$, then $R_{1} \subset H_{1}^{1} \cap H_{2}^{1}$. By Remark 15, $R_{1} \subset H_{1}^{\perp} \cap$ $H_{2}^{\perp} \subset R_{2}$. If $C_{1} \cap C_{2} \neq \phi$, let $y \in C_{1} \cap C_{2}$. Then $f^{n}(y) \in C_{1} \cap C_{2}$ for every integer n. In this case there is a point $x \in R_{1} \cup R_{3}$, where x is in the region bounded by C_{1} and C_{2}. Since that is not possible, C_{2} separates R_{1} and R_{3}.

The following Remark easily follows from the above results.
Remark 17. Suppose R_{i} and R_{i+1} are not separated for $i=1,2$. Then, there is a homeomorphism g : Int $\left(\cup_{i=1}^{3} R_{i}\right) \rightarrow P_{2}$, where P_{2} is a plane. If P_{2} has exactly three fundamental regions under $g f g^{-1}$ if $y \in R_{2} \cap \operatorname{Int}\left(\cup_{i=1}^{3} R_{i}\right)$, if $z \in R_{1} \cap \operatorname{Int}\left(\cup_{i=1}^{3} R_{i}\right)$, and if U is any open set such that $R_{3} \subset U$, then for every arc $B \subset \operatorname{Int}\left(\cup_{i=1}^{3} R_{i}\right)$ connection y and z there is an integer N such that $f^{N}(B) \cap U \neq \phi$.

The above results gives us some information about the possible behavior of a self-homeomorphism of the plane with n fundamental regions. Consider, for example, the case where the plane $P_{1}=\cup_{i=1}^{4} R_{i}$, where R_{1} and R_{i} are not separated for $i=2,3,4$. By Corollary to Remark 13, R_{1} does not contain a proper flowline B such that B separates R_{j} and R_{k} for $j \neq k, j, k \neq 1$. By Theorem 5, Int ($R_{1} \cup R_{2} \cup$ $\left.R_{i}\right)=R_{1} \cup R_{2} \cup R_{i}$ is homeomorphic to the plane for $i=3,4$. By Remark 17, if $y \in R_{2}$ - Int R_{2}, if U is any neighborhood of y, and if V_{i} is an open set such that $V_{i} \supset R_{i}$, then there is an integer N such that $f^{N}(U) \cap V_{i} \neq \phi$.
4. Self-homeomorphisms of the plane and the closed disc with one fixed point. In this section sufficient conditions to embed selfhomeomorphisms of the plane and the closed disc will be given.

Theorem 9. Let f be an orientation preserving self-homeomorphism of the plane with one fixed point, x_{0}. Suppose $f^{n}(x) \rightarrow \infty$ as $n \rightarrow-\infty$ and $f^{n}(x) \rightarrow x_{0}$ as $n \rightarrow \infty$ for $x \neq x_{0}$. Then f can be embedded in a continuous flow.

Proof. The proof is an immediate consequence of the theorem by Homma and Kinoshita [10] that says that such a homeomorphism is topologically equivalent to $x^{\prime}=(1 / 2) x, y^{\prime}=(1 / 2) y$.

We conclude this paper with the following embedding theorem.
Theorem 10. Let f be an orientation preserving self-homeomorphism of the closed unit disc D. Suppose
(1) if $x \in D$, then $f^{ \pm n}(x) \rightarrow x_{0}$ as $n \rightarrow \infty$, where $x_{0} \in D-\operatorname{Int} D$ and $f\left(x_{0}\right)=x_{0}$, and
(2) if $x_{1}, x_{2} \in D-\left\{x_{0}\right\}$, there is an arc $A \subset D$ such that A joins x_{1} and x_{2} and $f^{ \pm n}(A) \rightarrow x_{0}$ as $n \rightarrow \infty$.

Then f can be embedded in a continuous flow.
Proof. Let L be a straight line tangent to the circle $C=D$ Int D at x_{0}. Let L_{1} be the ray along L from x_{0}. The subspace $P_{1}-$ L_{1} is homeomorphic to a plane P_{2}. Suppose g is a homeomorphism of $P_{1}-L_{1}$ onto P_{2} sending $C-\left\{x_{0}\right\}$ onto the y-axis of plane P_{2}. If $x \in \operatorname{Int} D$, let H_{1} be the closed half plane defined by the y-axis of plane P_{2} containing $g(x)$. It follows that $g^{-1}\left(H_{1}\right)=D-\left\{x_{0}\right\}$. Now define F : $P_{2} \rightarrow P_{2}$ by

$$
\begin{aligned}
F(x, y) & =\left(x,\left(g f g^{-1}(0, y)_{y}\right)\right. & & \text { if }(x, y) \in P_{2}-H_{1} \\
& =g f g^{-1}(x, y) & & \text { if }(x, y) \in H_{1} .
\end{aligned}
$$

F is orientation preserving self-homeomorphism of plane P_{2} with no fixed points. If $z \in P_{2}-H_{1}$, then clearly z is in the same fundamental region as the y-axis of P_{2}. Let $x_{1}, x_{2} \in H_{1}$ and let K be any compact set in P_{2}. Since $g^{-1}(K)$ is a compact set in P_{1} and $x_{0} \notin g^{-1}(K)$, it follows that there is an arc A joining $g^{-1}\left(x_{1}\right)$ and $g^{-1}\left(x_{2}\right)$ such that $f^{ \pm n}(A) \cap$ $g^{-1}(K)=\phi$ if $n>N$ for some N. But that implies $F^{ \pm n}(g(A)) \cap K=$ ϕ if $n>N$. Thus P_{2} has exactly one fundamental region under F, and consequently can be embedded in a flow Π which leaves the y-axis of P_{2} invariant by Theorem 7. It follows that $\Pi\left(H_{1}, r\right)=H$ for every real number r. Thus, f is restricted to $D-\left\{x_{0}\right\}$ can be embedded in a flow σ_{1}. Now define $\sigma: D \times R \rightarrow D$ by

$$
\begin{array}{ll}
\sigma(d, r)=\sigma_{1}(d, r) & \text { if } d \in D-\left\{x_{0}\right\}, r \in R \\
\sigma\left(x_{0}, r\right)=x_{0} & \text { if } r \in R
\end{array}
$$

σ is a continuous flow if it is continuous at x_{0}. Let U be an open neighborhood of x_{0} in D. Then $D-U$ is compact in P_{1}. Thus $g(D-U)$ is compact in P_{2}. There exists a compact set $K \subset P_{2}$ such that if
$x \in P_{2}-K$ and if $\left|t-t_{0}\right|<1$ then $\Pi(x, t) \in P_{2}-g(D-U)$. From that it follows that if $x \in\left[g^{-1}\left(P_{2}\right)-g^{-1}(K)\right] \cap D$ and if $\left|r-r_{0}\right|<1$, then $\sigma(x, r) \in U$. Thus, σ is continuous at $\left(x, r_{0}\right)$.

References

1. S. A. Andrea, On homeomorphisms of the plane which have no fixed points, Abhandlungen aus dem Mathematische Seminar der Universitat Hamburg, 30 (1967), 61-74.
2. N. J. Fine and G. E. Schweigert, On the group of homeomorphisms of an arc, Annals of Math. 62 (1955), 237-253.
3. N. E. Foland, An embedding theorem for discrete flows on a closed 2-cell, Duke Math. J. 33 (1966), 441-444.
4. —. An embedding theorem for contracting homeomorphisms, Mathematical Systems Theory, vol. 3, number 2 (1969), 166-169.
5. N. E. Foland and W. R. Utz, The Embedding of Discrete Flows in Continuous Flows, Ergodic Theory, Academic Press: New York, 1963.
6. M. K. Fort, Jr., The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc. 6 (1955), 960-967.
7. W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc., 64 (1958), 336-351.
8. W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., New York, 1955.
9. D. W. Hall and G. L. Spencer, II, Elementary Topology, John Wiley and Sons, Inc.: New York, 1955.
10. Tatsuo Homma and Shin'ichi Kinoshita, On the regularity of homeomorphisms of E^{n}, J. Math. Soc. of Japan, 5 (1953), 365-371.
11. W. R. Utz, The embedding of a linear discrete flow in a continuous flow, Colloquium Mathematicum, 15 (1966), 263-270.
12. E. R. Van Kampen, On some characterizations of 2-dimensional manifolds, Duke Math. J., 1 (1935), 74-93.

Received October 24, 1969 and in revised form October 19, 1971. This work is part of the author's University of Missouri doctoral dissertation under the direction of Professor W. R. Utz.

The author wishes to acknowledge the referee's many helpful comments.

Murray State University

