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ON RIGHT ZERO UNIONS OF COMMUTATIVE
SEMIGROUPS

ROBERT P. DICKINSON, JR.

Let F = {S,: r € R} be a disjoint family of semigroups. One
says that F has a right zero union (RZU) if there exists a
semigroup S which is a disjoint union of the S, where each
S. is a left ideal of S. This paper gives some theorems on
RZU of commutative semigroups with special emphasis placed
on commutative cancellative semigroups.

Suppose S is an RZU of commutative cancellative semigroups. It
is proven that S has a quotient right abelian group; thus S is left
commutative and left cancellative. Conversely, it is proven that if
a semigroup S is left commutative and left cancellative, then S is an
RZU of commutative cancellative semigroups. Suppose F' is a family
of commutative semigroups having an RZU; it is proven that a cer-
tain family of cancellative homomorphic images of F also has an RZU.
Finally, necessary and sufficient conditions are given for a family of
commutative cancellative semigroups to have an RZU.

The study of RZU 1is a special case of the study of “bands of
semigroups.” R. Yoshida has studied the dual problem of left zero
unions.

II. Some necessary conditions for RZU and an embedding
result. A semigroup S is left commutative if xyz = yxz for all 2, y,
and z in S.

LEMMA 2.1. The RZU of two commutative semigroups is left
commutative.

Proof. The symmetric conditions AB< B, BA < A, A and B are
commutative, are given. Let ac A, and let b, b,e B. Now abb, =
a(bb) = a(b,b) = (ab,)b = b(ab,)) = bab,. Other cases are proven similarly.

DEFINITION 2.2. Let C be a commutative cancellative semigroup.
The quotient group, G, of C is the smallest group into which C may
be injected. If C < T, a group, then G = {st™: s, e C}. Note G is
abelian. (For more on quotient groups see [1].)

A right abelian group is the direct product of a right zero semi-
group and an abelian group. A quotient right abelian group will
have the same meaning as quotient group; namely, the smallest right
abelian group into which a semigroup S can be injected.

The next lemma is proven using the following result of Petrich
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[2]: A semigroup S is a semilattice of semigroups each of which is
the Cartesian product of rectangular band and a group iff S is a union
of groups and its idempotents form a semigroup.

LEMMA 2.3. Let F = {G,: ac A} be a disjoint family of growps.
Then F has an RZU iff all the G, are isomorphic. If the RZU exists
then it is isomorphic to the right group G X A, where G, = G, and
where A is considered as a right zero semigroup.

Proof. Let S be an RZU of F. Certainly S is union of groups.
The idempotents of S are exactly the e,, where ¢, is the identity of
G.. Since ¢, is an identity and since G.G; S G5, we have (e,e5)(e.€5) =
e.(es(ea85)) = e.(e.65) = (e.8.)es = €. = €5, for e,e; is the idempotent of
Gs. Thus the idempotents of S form a right zero semigroup. This
semigroup is isomorphic to A, but also, by Petrich, to a semilattice
union U,.r L, X R,, and this implies that |I"| =1, |L,| =1, and R, =
A.

THEOREM 2.4. Let S be an RZU of F = {C,: x€ A}, where F 1is
a disjoint family of commutative cancellative semigroups. Let G, be
the quotient group of C,. We consider the G to be disjotnt. Then all
the G, are isomorphic, and they have an RZU, T.

T is isomorphic to G X A, where G, = G, and where A is con-
sidered as a right zero semigroup.

Furthermore, T is the quotient right abelian group of S in the
following sense. There exists an injection (isomorphism into) h from
S into T. If H X R is any right abelian group into which S can be
wnjected (by f, say), then there exists an injection k: T— H X R such
that the following diagram commutes:

T= UGagGXA

%

k
h
—P
S f HXR
Figure 1

Proof. Let F' = {G, «c A}, where G, is the quotient group of
C,, and where G.NG; = ¢ if « = 8. Each C, may be injected as a
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set of generators into G.. Let h, be such an injection: G, = {h.(s)h.(t) "
s, te Cl.

Let T = U.ses G.. We define a semigroup operation = on T. With
this operation T will be an RZU of F'. Let g = h(s)h.(t)™}, and let

= he(u)hs(v)™"

Let gxl = hy(sou)hs(tov)™, where o is the semigroup operation on
S.

Since s, t€ C, and u, ve C,, (sou) and (tov) are in C,. Thus these
quantities are in the domain of s,. We now verify = is well defined.

Suppose g = ha(8)ha(t) ™ = ha(@)h (D)7, a, b€ C,, and I = hy(u)hp(v)™ =
hs()hs(d)™, ¢, de C;. We would like to prove that: hs(sou)hs(tov)™ =
hs(acoc)hs(bod)™. Equivalently: hs(scu)hs(bod) = hs(aoc)hs(tov), or
hs((sow)o(bod)) = hs((@oc)e(tov)). We now verify that (sou)o(bod) =
(@oc)o(tow).

We are given h.(s)h.(t)™ = ho(a)h.(b)™'. Equivalently: %.(s)h.(b) =
ha(@)ho(t), Or hu(sob) = ho(act). Since h,is1 — 1: sob = aot. Similarly
wod = cov. Multiply left and right hand sides together: (sob)o(uod) =
(a@ot)o(cov). These products are taken in the subsemigroup C, U C; of
S. By Lemma 2.1, C, U C; is left commutative. Thus (sob)o(uod) =
(sou)o(bod), and (act)e(cov)=(acc)e(tov). Thus (sou)o(bod) = (acc)o(tov).

It is easily proven that = is associative, and that  restricted to
any G, is just the given group operation.

Since T is an RZU of groups, it follows from Lemma 2.8 that
T=G x A.

The h of the diagram is to be an injection of S = ... C, into
Uees Go. Recall that if a = B then G,NG;=¢ and C,NC; = g¢.
Define h by: h restricted to C, is h,. Since h, is 1 —1 A is 1 — 1.
Let 2€C,, ye C,. We now prove that h(zoy) = h(x)*xh(y), or hs(xoy) =
ho(@)xhs(y).  Now hy(x) = ho(Tox)ho(x)™ and hs(y) = hs(yoy)hs(y)™. Thus
ho(®@) xhs(y) = hs((om)o (yoy)hs(woy)™. By Lemma 2.1, (xox)o(yeoy) =
(xoy)o(xoy). Thus

ha(@)<hs(y) =Rs((Boy) o (@oy)) hs(@oy) ™ = ho(woy) ho(@oy) hs(xoy) ™ =hs(oy) .

Let f be an injection of S into another right abelian group H x
R. If f(x) = (g, r) define f(x)™ = (g7, ). One proves that f(xoy)'=
F@f ()™

We now define k of the diagram. Let xe€ G,. There exists s, t€C,
such that # = h.(s)h.(t)™*. Define k(x) = f(s)f ()"

We now verify that k is well defined. Suppose & = h.(s)h.(t)™ =
ho(Wha(v)™".  Then hy(s)h(v) = h(w)ha(t), OF ho(sov) = h,(uct). Since h,
isl — 1, sov = uot. Now f(sov) = f(uct), or f(s)f(v) = f(w)f{t). We
now show that f(s)f(t)™ = f(w)f(v)™"

Let 7 be the projection of H X R onto R, the right zero semi-
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group. Since C, is commutative, 7f(C, is commutative, but then
|tf(Cy| = 1. Thus f(C,) & H x {a'} = T, for some a’ in R.

Since s, t, u, v are in C,, f(s), f(t), f(u), f(v), fF(®)", and f(v)™* are
all in T,. Since T, is commutative, f(s)f(v) = f(w)f(t) implies
SO = fw)flv)™.

We now verify that the diagram is commutative. Let se€C,.
Then h(s) =ha(s) =ha(so8)ha(s)™".  k(h(s)) = f(s°8)f(8)™ = f()f(8)f(8)™ =
f(9).

We now verify that k& is a homomorphism. Let x = h,(s)h. ()7,
Y = ha(whs(v)™. Then k(z+y) = k(hs(scw)hs(tov)™) = f(sow)f(tov)™ =
f&)fw)fE)f(v)7'. Since a right abelian group is left commutative,
k@+y) = f&)f (@) f@)7 @)™ = f(&) @) f(w)f ()™ = k(x)k(y).

We now prove k is 1 — 1. We first prove k restricted to G, is
1—-1. Let 2= h()h(t)™!, ¥y = ho(who(v)™'. Assume Fk(z) = k(y).
Then f(s)f(t)™ = f(w)f(v)™". Since s, t, u, v, are in C,, f(s), £(t), f(u),
f@), f@&)* f(v)™* are in f(C,) = T, a commutative semigroup. Thus
FEFO™ = f(w)f(v)™ implies f(s)f(v) = f(w)f(t), or f(sov) = f(uot).
Since f is 1 — 1, sov = uot. Now h(sov) = h(uct), or h(s)h(v) =
ho(Wh(t). Thus z = y.

Let 2 = ho(8)h.(t), y = hs(w)hp(v)™.  Assume Fk(x) = k(y). We
prove that & = 8. Since k restricted to G, is 1 — 1, this will prove
x=1vy. Now f(s)ft)™ = f(u)f(w)™, wheres, teC,and u,veC;,. We
proved f(C,) & H X {a'}; similarly, f(C;) & Hx {8'}. Since f(s)f()™" =
Sy fw)y™, o =p. If a# L then f would be an injection of the
noncommutative semigroup C, U C, into the commutative semigroup
H x {&'}. Thus a = g.

COROLLARY 2.5. Let Sbe an RZU of F = {C,: a€ A}, where F 1is
a disjoint family of commutative cancellative semigroups. Then S 18
left cancellative and left commutative.

Proof. By Theorem 2.4, S can be thought of as a subsemigroup
of a right abelian group. Every subsemigroup of a right abelian group
is left cancellative and left commutative.

THEOREM 2.6. If a semigroup S is left commutative and left can-
cellative, then S has a quotient right abelian group.

Proof. Define a relation p on S by xzpoy if and only if there exist
¢, de S such that cx = dy. We prove that o is an r-congruence on
S(S/p is a right zero semigroup), and each congruence class is com-
mutative cancellative. Thus S is an RZU of commutative cancellative
semigroups and the result follows from the previous theorem.
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Now p is certainly reflexive and symmetric.

Suppose zpoy and ypz. There exist a, b, ¢, d in S such that: ax =
by and cy = dz. Now cax = c¢by, and bey = bdz. By left commuta-
tivity, ¢by = bey. Thus cax = bdz, or zpz. Easily, o is right com-
patible. Left compatibility follows from left commutativity.

Now zypy, for let ¢ be arbitrary, and let d = cx; then cay = dy.
Thus p is an r-congruence.

We now prove that each congruence class is commutative. Since
S is left cancellative, each congruence class will be commutative and
cancellative.

Let zoy. We have ¢z = dy. Thus caxdy = dycx. By left com-
mutativity edey = edyx. By left cancellativity xy = yx. Easily any
congruence class of an r-congruence is a semigroup.

REMARK. Since each congruence class of p is commutative, o is
the smallest r-congruence on S.

Every subsemigroup of a right abelian group is left commutative
and left cancellative. Thus the last theorem characterizes subsemi-
groups of right abelian groups.

LemMmA 2.7. Let S be a left commutative semigroup. Define
on S by: any if and only if there is an element b in S such that bx =
by. Then 0 is the smallest left cancellative congruence on S.

Proof. Using left commutativity one proves 7 is a congruence.
It is also easy to prove that S/» is left cancellative.

Let f be a homomorphism of S onto a left cancellative semigroup
S'. Suppose zny, or ax = ay for some ¢ in S; then f(ax) = f(ay), or
f@)f(xy = f(a)f(y). Since S is left cancellative f(x) = f(y). Let p
be the congruence induced by f. If 2ny then xpy, or n & p.

We now consider constructing an RZU of a family of homomor-
phic images given that the original family has an RZU.

THEOREM 2.8. Let S be an RZU of {C, ae A}, where C, are
commutative semigroups. Let w0, be the smallest left cancellative
congruence defined on C,. Then the family {C,/7.: « € A} has an RZU.

Proof. Let 7,[x] be a congruence class of C,, and let 7,[y] be a
congruence class of C,. Define 7,[z]on:[y] = p:[zy]. (zy is taken in
S.) If the operation is well defined, then it is associative, and it
defines an RZU of the C,/7,.

Suppose 7.[z] = n[a], and 7s[y] = 1,[b]. We would like to show
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that 7,[ab] = p:[azy]. Since 7,[x] = 7.[a] there exists d in C, such that
dx = da. Similarly, there exists w in C; such that wy = wb. Now
dxwy = dawb. All elements lie in the RZU of C, and C;. We invoke
Lemma 2.1. By left commutativity, dwzy = dwab. Thus n;[zy] =
7s[ad], because dwe C; as are xy and ab.

Since {C./7.:a€ A} has an RZU, by Theorem 2.4, the quotient
groups of the C,/7n, are isomorphic. This imposes another necessary
condition for a family of commutative semigroups to have an RZU.
If |A| = 2, using Lemma 2.1, then for 7 of Lemma 2.7: 7 = 7, U 75,
S/77 = 01/7?1 U Cz/772 RZU.

III. Necessary and sufficient conditions on commutative can-
cellative semigroups to have an RZU. This section begins by
relating the translational semigroup of a commutative cancellative
semigroup A with the quotient group of A.

DerFINITION 3.1. Let A be a commutative semigroup. A funec-
tion f, from A into A, is called a translation of A if f(ab) = f(a)db
for all @ and b in A. T(A) will denote the semigroup of all transla-
tions on A. Let ¢ be the mapping from A into T(A) given by i(a) =
f., where f, is the inner translation induced by ae€ A4: f,(x) = ax, for
all x in A. (A) is the semigroup of all inner translations on A.

Let A be a commutative cancellative semigroup. Let G be the
quotient group of A. Recall G is abelian. A may be injected into
G as a set of generators. Using this fact we relate G to T(A).

The following lemmas are easily proven.

LEMMA 3.2. Let A be injected by j as a set of generators into G.
Let feT(A). Define f* on j(A) by f*(5(a)) = 5(f(a)). f* can be ex-
tended to a tramslation on G as follows: ©f g€ G there exists j(a,) and
J(az) such that g = j(a)j(a)™". Define f*(g9) = f*(5(a)) j(a)™

LeEMMA 3.3. Let it A — T(A) given by: i(a) = f,. Let h: T(4A) —

T(A) h 7(G) k
A > »
i ;
J
A

Figure 2
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T(G) given by: h(f) = f*. Let k: T(G) — G given by: k(f*) = f*Q1),
where 1 is the identity of G. The above diagram commutes in the
sense that j(a) = k(h(i(a)) for all a€c A. FEach map is injective; k
18 onto.

COROLLARY 3.4. Let A be a commutative cancellative semigroup.
T(A) is a commutative cancellative semigroup. If fe& T(A) then f is
1-—-1 on A.

Proof. Since ki injects T(A) into an abelian group, 7(4) is com-
mutative and cancellative. Let fe€ T(A). Suppose that f(a) = f(a,).
Then 7(f(a) = j7(f(aw), or f*(J(a)) = f*(j(ay)). 7 is injective; also every
translation on a group is 1 — 1. Thus j(a) = j(a,), and a, = a,, or f
is 1 —1.

LEMMA 3.5. Let A be a commutative cancellative semigroup. Let
G be the quotient group of A. Let 7 be an injection of A into G as
a set of generators. Define TG(A) = {g€ G: gj(A) S j(A)}. Under the
injection kh of Lemma 3.3, T(A) = TG(A). Also i(A) is equal to
Rk (A))-

Proof. Let ge TG(A). Define f on A by f(a) = 77 (9j(a)), a € A.
Then f e T(A), and kh(f) = g. Thus TG(A) & kh(T(A)). To prove
the reverse inclusion, let f e T(A). Since f* is a translation, and
(@) = J(f(a)), we have f*(L)j(a) = f*(1-J(@) = f*({(a) = J(f(a)).
Thus f*(1)7(4) & j(4), or kh(f) € TG(A). The remaining part of the
lemma is proven by kh(i(4)) = j(A) (Lemma 3.3) and the fact that ki
is injective.

THEOREM 3.6. Let F = {S,:acl’} be a disjoint family of com-
mutative cancellative semigroups. Let acI”, and let P(x) be the fol-
lowing statement: there exists T, = {fs: g€ '}, a family of injections
(isomorphisms, into), where fz: Sy — T(S,) for all B in I', and where
F(S)fe(Ss) & £,(S)) N fe(S) for all v and B in I The following are
equivalent:

(a) F has an RZU.

(b) For any a,e I, Pla,) holds.

(¢) For some a,e ', Pla,) holds.

Furthermore, in (b) and (c) we may take f., to be i, the natural
map of S,, onto the inner translations of S,.

Proof. We first prove (a) implies (b). Let S be an RZU of F,
and let «, be a fixed but arbitrary member of I". For each z in S,
let 7, be the mapping of S, into S, given by f.(a) = za for all a in
S.. The range of f, is contained in S., because S, is a left ideal of
S. The following are true:
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(1) f.e T(S,)

(2) Let f be the mapping from S into T(S,) given by f(z) =
fe« f is a homomorphism and f restricted to any S,is 1 — 1. Note
that f restricted to S, is the map 1.

(3) f(S,) is an ideal of f(S) for all @ in I

(1) is easily checked as is the first part of (2). Let a be an
arbitrary member of I". We now prove that f restricted to S, is
1—-1. Let a and b be members of S,. Suppose f(a) = f(b). Then
av = by for all x€S,. But then ava = bza for all x€S,. Let z,¢
S, We have a(v,0) = b(x,0). Now a, beS,, and (v,a) € S, because S,
is a left ideal of S. Since S, is cancellative a« = b. We now prove
(3) by Corollary 3.4, T(S,) is commutaive. Thus f(S) is commutative.
Each S, is a left ideal of S. Since f is a homomorphism, f(S,) is a
left ideal of f(S). But all left ideals of a commutative semigroup are
ideals.

For each « in I', let f, be the restriction of f to S,. Then f,:
S.— T(S.). f.is an injection by (2). By (3) fu.(S.) and fs(S;) are
ideals of f(S). Thus fu(S.)fs(Ss) & fu(S.) N f5(Ss)- This completes the
proof of (a) implies (b).

Trivially (b) implies (c). We now prove (¢) implies (a). Let »(«,)
hold. Define a binary operation on F as follows: Letx¢ S, and ye S..

woy = f7' (fal@)f 5(¥))

yorr = fi ' (fs(y)fu(®))

where f,, f;€ T, The operation is well defined because f.(x)f3(y)e
Fu(S)f6(Ss) & fu(Se) N f5(Ss).  Thus fu(@)fs(y) €f5(S;), and we may apply
f7'. Similarly fo(y)fa(x) € fo(S.). The operation restricted to any S,
is the semigroup operation already given on S,. Let 2z, y€ S,. Then
oy = [ @) () = fa'(fulxy)) = xy. This is true because f, is an
injection. If the operation is associative, it certainly defines an RZU
of F.

Let x€8,,ye8; and z€S,. Then (woy)oz = (f5'(ful@)fs(y)))oz =
I (Fe(F (Fe@ s (2) = 7 ((fol@)fs(¥)f:(2)).  Similarly wo(yez) =
P (F@) (fs()f(2))).  Now (xoy)oz = wo(yoz) since [fu(2)(f(y)f:(2)) =
(fu(@)fs(¥))f(z). The above product is taken in the semigroup 7(S.),
and is in f,(S,).

REMARK. Let (@, 8) eI’ x I'. Because f.(S,) and f;(S;) are sub-
sets of the commutative semigroup T(S.,), fu(So)f5(Ss) & fo(S2) N f5(Ss)
implies the same condition for the pair (8, @). Thus we need only
consider one condition.

We restate Theorem 3.6 for two semigroups as follows: F' = {4, B}
has an RZU if and only if there exists an injection f from B into
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T(A) such that f(B)i(4) < f(B) N i(A).

COROLLARY 8.7. Let F = {S,:x € A} be a disjoint family of com-
mutative cancellative semigroups. If for some a,€ A each S, is iso-
morphic to an ideal of S, then F has an RZU.

Proof. To say S, is isomorphic to an ideal of S, means there
exists h,: S, — S, Where h, is an injection, and %,(S,) is an ideal of
S.- Let fu: S.— T(S,), given by f. = i.°h., where i,:S, — T(S,),
given by 4.,(x) = f.. {fa:ae A} satisfies (¢) of Theorem 3.6 because
f«(S.) is an ideal of 7,(S.,).

COROLLARY 3.8. Let A and B be two disjoint commutative can-
cellative semigroups having an RZU. If A is a group then B is a
group, and A = B.

Proof. Every translation of a group is inner; thus T(4) = i(4).
Now #(A4) is the regular representation of A; thus #(4) = A. By
Theorem 3.6, there exists an injection f of B into T(A) such that
f(Bi(A) = f(B) N1i(A). f is an injection into i(A4). Since T(4) is
commutative, f(B) is an ideal of #(4). But a group has no proper
ideals. Thus f(B) = ¢(4A) = A. Since f is an injection B = A.

We now give an interpretation of Theorem 3.6 in terms of quo-
tient groups. Let A be a commutative cancellative semigroup. Let
J be an injection of A as a set of generators into G, the quotient
group of A. Let f be the isomorphism from T(4) onto TG(A) (TG(A)
of Lemma 38.5; f = kh of Lemma 3.8). Let B be a commutative
cancellative semigroup having an RZU with A. Let % be an injection
of B into T(A) such that A(B)i(4) & (B) N ©(A). Compose the maps
h and f. We have (fh)(B)j(4) & (fh)(B) N j(4). Evidently, B is iso-
morphic to B’, a subsemigroup of 7TG(A) such that B'j(4) & B’ N j(4).
Conversely, an isomorphic copy of such a B’ will have an RZU with
A. Thus we have a way of finding all commutative cancellative semi-
groups having an RZU with A.
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