# ON ARITHMETIC PROPERTIES OF THE TAYLOR SERIES OF RATIONAL FUNCTIONS, II 

David G. Cantor


#### Abstract

Suppose $a_{n}, b_{n}$, and $c_{n}=a_{n} b_{n}$ are sequences of algebraic integers and that all $b_{n}$ are nonzero. It is easy to verify that if both $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $b(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ are rational functions, then so is $c(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. We are interested in studying the conjecture that if $b(z)$ and $c(z)$ are rational functions, then so is $a(z)$. We shall prove this in the case that $b(z)$ has no more than three distinct singularities.


Let $k$ be an algebraic number field; denote by $M_{k}$ the set of valuations of $k$, normalized so as to satisfy the Artin product-formula. We assume, whenever convenient, that each valuation in $M_{k}$ has been extended in some fashion to $\Omega$, the algebraic closure of $k$. Let $S$ be a finite subset of $M_{k}$ containing all Archimedean valuations. We say that $\alpha \in k$ is an $S$-integer if $|\alpha|_{v} \leqq 1$ for all $v \in M_{k}-S$ and that $\alpha$ is an $S$-unit if $\alpha$ and $1 / \alpha$ are both $S$-integers. Let $a_{n}$ be a sequence of $S$ integers of $k$. Suppose there exist rational functions $b(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ and $c(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ whose coefficients lie in an extension field $K$ (possibly transcendental) of $k$; suppose that none of the $b_{n}$ are 0 and that $a_{n}=c_{n} / b_{n}$ for $n \geqq 0$. In [1], I showed that if $b(z)$ has only one singularity (possibly a pole of high multiplicity) then $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is a rational function. In [6] G. Pathiaux extended this result by showing that, under the additional assumption that $K$ is algebraic, if $b(z)$ has at most two distinct singularities, then $a(z)$ is rational.

Here we shall study various extensions of these results. In particular we shall show that if $b(z)$ has at most three distinct singularities, then $a(z)$ is rational.

We note that since $b(z)$ and $c(z)$ are rational functions, we may write $b_{n}$ and $c_{n}$ as exponential polynomials:

$$
\begin{align*}
b_{n} & =\sum_{i=1}^{r} \lambda_{i}(n) \theta_{i}^{n}  \tag{1}\\
c_{n} & =\sum_{i=1}^{s} \mu_{i}(n) \varphi_{i}^{n}
\end{align*}
$$

for all sufficiently large $n$. Here the $\lambda_{i}(n)$ and $\mu_{i}(n)$ are polynomials in $n$. By appropriately enlarging $K$, if necessary, we may assume that the $\theta_{i}$, the $\varphi_{i}$, and the coefficients of the polynomials $\lambda_{i}(n)$ and $\mu_{i}(n)$ all lie in $K$. By omitting a finite number of terms from each of the sequences $a_{n}, b_{n}, c_{n}$ we may assume that (1) and (2) hold for all $n \geqq 0$. The purpose of the first lemma is to show that we may
assume that $K$ is algebraic over $h$.
Lemma 1. Suppose $a_{n}, b_{n}, c_{n}$ are sequences as above. There exist sequences $\bar{b}_{n}, \bar{c}_{n}$ lying in a finite algebraic extension of $k$ with $\bar{b}(z)=$ $\sum_{n=0}^{\infty} \bar{b}_{n} z^{n}$ and $\bar{c}(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ rational functions such that $a_{n} \bar{b}_{n}=\bar{c}_{n}$ for all integral $n \geqq 0$ and such that only finitely many $\bar{b}_{n}$ are 0 .

Proof. As above we may write $b_{n}=\sum_{i=1}^{r} \lambda_{i}(n) \theta_{i}^{n}$ and $c_{n}=$ $\sum_{i=1}^{s} \mu_{i}(n) \varphi_{i}^{n}$.

If all the coefficients of the $\lambda_{i}$ and the $\mu_{i}$, and the $\theta_{i}$ and $\varphi_{i}$ are in $k$, then the Lemma is true with the $\bar{b}_{n}=b_{n}$ and $\bar{c}_{n}=c_{n}$. We henceforth assume this not the case. Let $R$ be the ring generated by adjoining the $\theta_{i}$, the $\varphi_{i}$, the ratios $\theta_{i} / \theta_{j}$, and the coefficients of the $\lambda_{i}$ and the $\mu_{i}$ to $k$. By the assumption above the transcendence degree $t$ of $R / k$ is $\geqq 1$. We are going to construct a homomorphism $\tau$ of $R$ into a finite algebraic extension of $k$ such that $\tau$, when restricted to $k$, will be the identity. If $\tau \alpha$ is abbreviated $\bar{\alpha}$ then $\bar{b}_{n}=\sum_{i=1}^{r} \bar{\lambda}_{i}(n) \bar{\theta}_{i}^{n}$ and thus $\sum \bar{b}_{n} z^{n}$ is rational; similarly $\sum \bar{c}_{n} z^{n}$ is rational and since $a_{n} b_{n}=c_{n}$ clearly $a_{n} \bar{b}_{n}=\bar{c}_{n}$. The remainder of this proof is devoted to constructing such a homomorphism $\tau$ for which only finitely many $\bar{b}_{n}$ are zero. By the Noether normalization lemma [3], there exists a transcendence basis $x=\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ for $R / k$ such that each element of $R$ is integral over $k[x]$. Since $R / k[x]$ is algebraic and finitely generated, its degree $d$ is finite. Each element $\alpha$ in $R$ satisfies a polynomial equation $f(\alpha)=0$, where

$$
f(Y)=\sum_{i=0}^{\dot{ }} p_{i}(x) Y^{e-i}
$$

is a polynomial with coefficients $p_{i}(x)$ in $k[x]$, of degree $e \leqq d$, and monic $\left(p_{0}(x) \equiv 1\right)$. Any homomorphism $\tau$ of $k[x]$ into $k$, which is the identity on $k$, has the form $p(x) \rightarrow p(u)$ where $u=\left(u_{1}, u_{2}, \cdots, u_{t}\right)$ is a $t$-tuple of elements of $k$ and $p(x)$ is in $k[x]$. Such a homomorphism $\tau$ can be extended to a homomorphism of $R$ into $\Omega$, the algebraic closure of $k$ [3]. The image $\bar{\alpha}$ of $\alpha$ will satisfy the monic polynomial $\sum_{i=0}^{e} p_{i}(u) Y^{e-i}$ and hence have degree $\leqq e$ over $k$. Since $e \leqq d$, every element in $\tau R$ will have degree $\leqq d$ over $k$ and hence $\tau R$ will be contained in a finite algebraic extension of $k$. Moreover if $p_{e}(u) \neq 0$, then $\bar{\alpha} \neq 0$. Denote by $\Phi_{k}(h)$ the degree of the field generated by the primitive $h^{\text {th }}$ roots of unity over $k$. It is easy to verify that $\Phi_{k}(h) \geqq \Phi_{Q}(h) /[k: Q]$ where $Q$ is the field of rational numbers and $\Phi_{Q}(h)$ is, of course, Euler's phifunction. Since $\Phi_{Q}(h) \rightarrow \infty$ as $h \rightarrow \infty$, so does $\Phi_{k}(h)$. Let $h$ be the largest integer for which $\Phi_{k}(h) \leqq d$. Let $m$ be the least common multiple of all of the orders of all of the roots of unity which can be written in the form $\theta_{i} / \theta_{j}$. We can write

$$
b_{m n+s}=\sum_{i=1}^{q} \eta_{i s}(n) \sigma_{i}^{n}
$$

where the $\sigma_{i}$ are the distinct $m^{\text {th }}$ powers of the $\theta_{i}$, and the $\eta_{i s}(n)$ are polynomials, not all 0 (for each value of $s$ ). Let $\alpha$ be the product of all the nonzero coefficients of the $\eta_{i s}(n)$ and the elements $\left(\sigma_{i} / \sigma_{j}\right)^{n!}-1$ for $i \neq j$ (the latter quantities are not 0 since the ratios $\sigma_{i} / \sigma_{j}$ cannot be roots of unity). Now let $u=\left(u_{1}, u_{2}, \cdots, u_{t}\right)$ be elements of $h$ for which $p_{e}(u) \neq 0$. Then under the homomorphism $\tau$, defined above, $\bar{\alpha}=\tau \alpha$ will be nonzero, and $\bar{\eta}_{i s}(n)$ (the polynomial obtained by applying $\tau$ to each coefficient of the polynomial $\eta_{i s}(n)$ ) will be the zero-polynomial if and only if $\eta_{i s}(n)$ is the zero-polynomial. None of the ratios $\bar{\sigma}_{i} / \bar{\sigma}_{j}$, with $i \neq j$, are roots of unity, for since $\left(\bar{\sigma}_{i} / \bar{\sigma}_{j}\right)^{n!} \neq 1$, if $\bar{\sigma}_{i} / \bar{\sigma}_{j}$ were a root of unity, it would have to have order $>h$ and hence degree $>d$ over $k$; but the latter is not the case. If any of the $m$ sequences $\bar{b}_{m n+s}$ had infinitely many zeros then either all of the polynomials $\bar{\eta}_{i s}(n)$ would be zero or by a theorem of Mähler [4] and Lech [5] the zeros would be periodic, and two of the $\bar{\sigma}_{i}$ would have ratio a root of unity. Thus the sequence $b_{n}$ has only finitely many zeros.

Lemma 2. Suppose $a_{n}$ is a sequence of $S$-integers of $k$, that $a_{n}=$ $c_{n} / b_{n}$ where $b_{n}=\sum \lambda_{i}(n) \theta_{i}^{n}$ is never 0 and $c_{n}=\sum \mu_{i}(n) \varphi_{i}^{n}$; suppose the $\theta_{i}, \varphi_{i}$ and the coefficients of the $\lambda_{i}(n)$ and the $\mu_{i}(n)$ are integers of $k$. Suppose there exists a valuation $v_{0} \in S$ such that $\left|\theta_{1}\right|_{v_{0}}>\left|\theta_{i}\right|_{v_{0}}$ for $i \geqq 2$. Then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is rational.

Proof. Elementary estimates show there exist $M>0$ and $R>0$ such that $\left|b_{n}\right|_{v}$ and $\left|c_{n}\right|_{v}$ are $\leqq M R^{n}$ for all $v \in S$ and $n \geqq 0$, and that $\left|b_{n}\right|_{v} \leqq 1$ for all $v \notin S$ and $n \geqq 0$. Since $\Pi_{v \in S}\left|b_{n}\right|_{v} \geqq 1$, if $w \in S$, then

$$
\left|\frac{1}{b_{n}}\right|_{w} \leqq \prod_{\substack{v \in S \\ v \neq w}}\left|b_{n}\right|_{o} \leqq M^{s-1} R^{(s-1) n}
$$

where $s$ is the cardinality of $S$. Then $\left|a_{n}\right|_{w}=\left.\left|c_{n}\right| b_{n}\right|_{w} \leqq M^{s} R^{s n}$. It follows that $\sum_{n=0}^{\infty} a_{n} z^{n}$ has positive radius of convergence in $k_{w}$, the completion of $k$ under the valuation $w$. Let $\widetilde{k}_{w}$ be the algebraic closure of $k_{w}$ and assume that $w$ has been extended to $\widetilde{k}_{w}$. Let $R_{w}$ be the radius convergence of $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in $k_{w}$. Then $a(z)$ is analytic in $\widetilde{k}_{w}$ for $|z|_{w}<R_{w}$. Now

$$
\lambda_{1}(n) \theta_{1}^{n} a_{n}=c_{n}-\sum_{i=2}^{r} \lambda_{i}(n) \theta_{i}^{n} a_{n}
$$

or

$$
\sum_{n=0}^{\infty} \lambda_{1}(n) a_{n} z^{n}=c\left(\frac{z}{\theta}\right)-\sum_{i=2}^{r} \lambda_{i}(n)\left(\frac{\theta_{i}}{\theta_{1}}\right)^{n} a_{n} z^{n} .
$$

In the field $\widetilde{k}_{v_{0}}$, the algebraic closure of ${k_{v_{0}}}$, the last equation expresses
$\sum_{n=0}^{\infty} \lambda_{1}(n) a_{n} z^{n}$ as a rational function plus a sum of functions each meromorphic for $|z|_{v_{0}} \leqq \delta R_{v_{0}}$ where $\delta=\min _{i \geqq 2}\left|\theta_{1} / \theta_{i}\right|_{v_{0}}$ is $>1$. Thus by analytic extension $\sum_{n=0}^{\infty} \lambda_{1}(n) a_{n} z^{n}$ is meromorphic for $|z|_{v_{0}}<\delta R_{v_{0}}$. Repeated applications of the above transformation show that $\sum_{n=0}^{\infty} \lambda_{1}(n)^{j} a_{n} z_{w}$ is meromorphic for $|\boldsymbol{z}|_{v_{0}}<\delta^{j} R_{v_{0}}$. Elementary estimates show that $\sum_{n=0}^{\infty} \lambda_{1}(n)^{j} a_{n} z^{n}$ has radius of convergence $R_{v}$ for all $v \in S$. Choosing $j$ so large that $\delta^{j} \Pi_{v \in S} R_{v}$ is $>1$, we find, by a theorem of Dwork [2], that $\sum_{n=0}^{\infty} \lambda_{1}(n)^{j} a_{n} z^{n}$ is a rational function. By [1] so is $\sum_{n=0}^{\infty} \alpha_{n} z^{n}$.

Lemma 3. Suppose $a_{n}$ is a sequence of $S$-integers of $k$, that $a_{n}=$ $c_{n} / b_{n}$ where $b_{n}=\sum \lambda_{i}(n) \theta_{i}^{n}$ is never zero and $c_{n}=\sum \mu_{i}(n) \varphi_{i}^{n}$, suppose the $\theta_{i}, \rho_{i}$ and the nonzero coefficients of the $\lambda_{i}(n)$ and the $\mu_{i}(n)$ are $S$-units of $h$. Suppose there exists a valuation $v_{0}$ of $h$ such that $\left|\theta_{1}\right|_{v_{0}}<$ $\left|\theta_{i}\right|_{v_{0}}$ for $i \geqq 2$. Then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is rational.

Poof. Extend the definition of $c_{n}$ and $b_{n}$ to negative $n$ by their formulas. If infinitely many such $b_{n}$ were zero, then by a theorem of Lech [4] and Mähler [5], $b_{n}$ would be zero for all $n$ in a doubly infinite arithmetic progression, contradicting the hypotheses. Extend the definition of $a_{n}$ to negative $n$ by putting $a_{n}=c_{n} / b_{n}$ if $b_{n} \neq 0$ and otherwise put $a_{n}=0$. Now let $v$ be any valuation of $M_{k}$ not in $S$. Then $v$ is an extension of a $p$-adic valuation $\mid l_{p}$ of $Q$. There exists an integer $f$ such that if $\alpha \in k$ and $|\alpha|_{v}=1$ then $\left|\alpha^{p^{f}}-1\right|_{v}<1$. Letting $m$ be an integer of the form $p^{h}\left(p^{f}-1\right)$, where $h$ is large, we find that $\left|\alpha^{m}-1\right|_{v}$ can be made very small. In particular we can choose $m$ so large that if $b_{n} \neq 0$ then $\left|b_{n+m}\right|_{v}=\left|b_{n}\right|_{v}$ and that $\left|c_{n+m}-c_{n}\right|_{v}<$ $\left|b_{n}\right|_{v}$. We can choose $m$ so large that $m+n \geqq 0$ and then $\left|c_{m+n} / b_{m+n}\right|_{v} \leqq 1$. Thus $\left|a_{n}\right|_{0} \leqq 1$. Restating all this, we have shown that there exists $n_{0}$ such that if $n \leqq n_{0}$ then $b_{n} \neq 0$ and if $v \in S$ then $\left|a_{n}\right|_{v} \leqq 1$. We apply Lemma 2 to the sequences $a_{n}^{\prime}=a_{n_{0}-n}, b_{n}^{\prime}=b_{n_{0}-n}$ and $c_{n}^{\prime}=c_{n_{0}-n}$, to conclude that $\sum_{n=0}^{\infty} a_{n}^{\prime} z^{n}$ is rational. It follows that $a_{n}$ can be written in the form

$$
a_{n}=\sum_{i=1}^{t} \eta_{i}(n) \sigma_{i}^{n}
$$

for $n \leqq n_{0}$. Then the exponential polynomial

$$
\sum_{i=1}^{s} \mu_{i}(n) \varphi_{i}^{n}-\sum_{i=1}^{r} \lambda_{i} \theta_{i}^{n} \sum_{\imath=1}^{t} \eta_{i}(n) \sigma_{\imath}^{n}
$$

is 0 for $n \leqq n_{0}$. By the theorem of Mähler [5] and Lech [4], it is identically 0 . Thus $\alpha_{n}=\sum_{i=1}^{t} \eta_{i}(n) \sigma_{i}^{n}$ for $n \geqq 0$ and $a(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$ is a rational function.

We now come to the result mentioned at the beginning of this
paper.
Theorem 4. Suppose $a_{n}$ is a sequence of S-integers of $k$ and that $b_{n}$ and $c_{n}$ are sequences of elements of an extension field $K$ of $k$ such that $\sum_{n=0}^{\infty} b_{n} z^{n}$ and $\sum_{n=0}^{\infty} c_{n} z^{n}$ are rational functions and $b_{n}$ is never zero. If $a_{n}=c_{n} / b_{n}$ and the rational function $\sum_{n=0}^{\infty} b_{n} z^{n}$ has at most 3 distinct singularities then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is rational.

Proof. By Lemma 1, we may assume $K$ is algebraic over $k$ and that $b_{n}=\sum_{i=1}^{r} \lambda_{i}(n) \theta_{i}^{n}$ and that $c_{n}=\sum_{i=1}^{s} \mu_{i}(n) \varphi_{i}^{n}$ where the $\theta_{i}, \varphi_{i}$ and all coefficients of the $\lambda_{i}$ and $\mu_{i}$ are algebraic over $k$. By replacing $k$ by a larger field and $S$ by the set of extensions of the valuations in $S$ to this new field, we may assume that the above quantities are, in fact, in $k$. By increasing $S$ appropriately, we may assume that those of the above quantities which are not zero are $S$-units. Now if $r=1$, the theorem follows immediately from [1]. If $r=2$ then either $\theta_{1} / \theta_{2}$ is a root of unity, in which case the theorem follows from the case $r=1$ or there is a valuation $v$ such that $\left|\theta_{1}\right|_{v}>\left|\theta_{2}\right|_{v}$, and the theorem follows from Lemma 2. If $r=3$ then either $\left|\theta_{1}\right|_{v}=\left|\theta_{2}\right|_{v}=\left|\theta_{3}\right|_{v}$, for all $v \in S$ and $\theta_{1} / \theta_{2}$ and $\theta_{1} / \theta_{3}$ are roots of unity, so the theorem follows from the case $r=1$, or there is a valuation $v_{0} \in S$ for which not all of the three values are equal. In the latter case we may assume that $\left|\theta_{1}\right|_{v_{0}} \leqq\left|\theta_{2}\right|_{v_{0}} \leqq\left|\theta_{3}\right|_{v_{0}}$ and $\left|\theta_{1}\right|_{v_{0}}<\left|\theta_{3}\right|_{v_{0}}$. If $\left|\theta_{2}\right|_{v_{0}}=\left|\theta_{3}\right|_{v_{0}}$ then the theorem follows from Lemma 3, and otherwise from Lemma 2.

It is worth noting that the method of the theorem cannot be extended to the case where $b(z)$ has 4 singularities. In fact, consider the case where $k$ is the field $Q(i)$ where $i=\sqrt{-1}$ and $\theta_{1}=(1+2 i) \times$ $(1+4 i), \theta_{2}=(1+2 i)(1-4 i), \theta_{3}=(1-2 i)(1+4 i), \theta_{4}=(1-2 i)(1-4 i)$. The ideals generated by $(1+2 i),(1-2 i),(1+4 i),(1-4 i)$ are prime and give rise to 4 valuations of $Q(i)$. At each of these valuations, two of the $\theta_{j}$ take one value and two another. For example at the valuation corresponding to the prime ideal generated by $1-2 i, \theta_{1}$ and $\theta_{2}$ both have value 1 , while $\theta_{3}$ and $\theta_{4}$ both have the same value which is less than 1. All $4 \theta_{j}$ take the same value at all other valuations. Thus the hypotheses of Lemma 2 or Lemma 3 cannot be met.

## References

1. D. G. Cantor, On arithmetic properties of the Taylor series of rational functions, Canad. J. Math., 21 (1969), 378-382.
2. B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math., 82 (1960), 631-648.
3. S. Lang, Introduction to Algebraic Geometry, Interscience, New York, 1958.
4. C. Lech, A note on recurring series, Arch. Mat., 2 (1953), 417-421.
5. K. Mähler, On the Taylor coefficients of rational functions, Proc. Cambridge Philos.

Soc., 52 (1956), 39-48.
6. G. Pathiaux, Algébre de Hadamard de fractions rationnelles, C. R. Acad. Sci., Paris Ser. A-B, 267 (1968), A977-A979.

Received February 12, 1971. This research was supported in part by the Sloan Foundation and National Science Foundation Grant \#GP-23113.

University of California, Los Angeles

