
PACIFIC JOURNAL OF MATHEMATICS
Vol. 41, No. 2, 1972

A GENERALIZATION OF INJECTIVITY

JOHN A. BEACHY

In a category of modules the notions of />injectivity
(with respect to a torsion radical p) and quasi-injectivity can
be generalized to a notion of injectivity with respect to two
preradicals simultaneously. Using this general definition an
analog of Baer's condition for injectivity is obtained, as
well as other generalizations of results for injective and
quasi-injective modules. An alternate approach (not requir-
ing the existence of injective envelopes) is given for abelian
categories, with the results stated in dual form for pro-
jectivity.

In the first section of the paper we give some preliminary defi-
nitions and results, including a definition of density with respect to
a preradical which is weaker than the standard one, and the defi-
nitions of preradicals radJ/ and Rad*7 associated with a module M
(the smallest preradical and smallest torsion preradical, respectively,
for which M is torsion). In the second section we define and study
the notion of (p, £7)-injectivity, for preradicals p and σ. A module Q
is called (p, <τ)-injective if every homomorphism / : JV0 —> Q, where No

is a <o-dense submodule of N and ker (/) is σ-dense in N, can be
extended to N. This definition is motivated by a theorem of L. Fuchs
[3, Lemma 1] giving a characterization of quasi-injectivity. Many of
the results are motivated by those of G. Azumaya in his paper on
Λf-projective and ikf-injective modules [1]. We prove that a module
is M"-injective if and only if it is (p, σ)-injective, where p is the
identity functor and σ is either radM or Rad^. This approach depends
heavily on the existence of injective envelopes in categories of
modules. In the third section of the paper we drop this assumption
and obtain slightly weaker results valid in any abelian category.
These results are stated in their dual form, for projectivity, and we
show that our definition specializes, for modules with a projective
cover, to that of ikf-projectivity.

1* Preliminary definitions and results* We will use the termi-
nology of J. —M. Maranda [6]. A subfunctor p of the identity
functor on an abelian category A is called a preradical of A. Thus
a preradical p of A assigns to each object A of A a subobject ρ(A)
and to each morphism / : A—>B in A its restriction p(f): ρ(A)—>ρ(B).
It is said to be idempotent if p2 — p and is called a torsion preradical
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if p is left exact. If ρ(A/ρ(A)) = 0 for all A in A, then p is called
a radical. An object A is ^-torsion if p(A) — A and p-torsionfree if
p(A) = 0.

We are primarily interested in the category RM of unital left R-
modules over an associative ring R with identity. Any preradical p
of RM defines a closure operation on submodules in the following
way: for a submodule No of RN let the closure CP(N0: N) of No in N
be the inverse image of p(N/N0) under the projection p: N—*N/NQ.
The ^-closure of N in its injective envelope E(N) will be written
simply as CP(N). A submodule No of N is said to be ^-closed in N
if CP(N0: N) = i\Γ0. Note that this is the case if and only if N/NQ is
jO-torsionfree. This closure operation has the property that if
M, NeRM with submodules M0J No respectively and f eHomB(M, N)f

then f(M0) S No implies f(CP(M0: M)) £ CP(N0: N). This can be shown
by considering the homomorphism from M/Mo to N/No induced by /.
Associated with the closure operation is a notion of density.

DEFINITION 1.1. Let p be a preradical of BM. A submodule
No of a module RN is said to be ^-dense in N if there exists an
extension RM of N such that N g CP(NQ: M).

LEMMA 1.2. A submodule No £ RN is p-dense in

Proof. If No is ô-dense in N then there exists an extension M
of N with N ^CP(N0: M). The inclusion N-+E(N) extends to a
homomorphism / : M-+E(N), since JŜ iV) is injective, and then
f(N0)^N0 implies that N = f(N) ^ f(CP(N0: M)) ^ CP(N0: E(N)).
The converse follows immediately from the definition.

PROPOSITION 1.3. Let p be a preradical of RM, and N19 N2 be
submodules of the module RN, with NλQ iV2 ϋ N.

(a) If Nx is p-dense in N9 then N2 is p-dense in N.
(b) // N2 is p-dense in N, then N2)Nι is p-dense in

Proof, (a) If Nt is ^-dense in N, then by Lemma 1.2 we have
NS CpiNj E(N)). Since Nt SN2 implies C^N,: E(N)) Q CP(N2: E(N)),
it follows that N £ CP(N2: E(N))9 and iSΓ2 is <o-dense in N.

(b) If N2 is ^-dense in N, then since NQCP(N2: E(N)) it follows
that JV/iSΓi £ CpiNJNί: E(N)/Nd.

The usual definition of ^-density (see [5] and [6]) states that a
submodule No is p-dense in N if p(N/NQ) = ΛΓ/iV0. Note that this
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occurs if and only if N g CP(NQ: M) for every extension M of N.
Our definition has some of the usual properties, as shown in the
above proposition, and in addition guarantees that N is always ,0-dense
in CP(N). The next proposition shows that the two definitions are
equivalent when p is a torsion preradical.

PROPOSITION 1.4. The following conditions are equivalent for a
preradical p of RM.

(a) p is a torsion preradical.
(b) For all NeRM, a submodule NQ is p-dense in

N « p(N/N0) = N/NQ .

Proof. Recall that p is a torsion preradical if and only if for
all modules N and submodules ΛΓ0, No g p(N) implies p(N0) = No.

(a) =» (b). If No is ô-dense in N, then there exists an exten-
sion M of N with N g CP(N0: M). This implies that N/No is
isomorphic to a submodule of p(M/N0), and since p is assumed to
be a torsion preradical, we must have ρ(N/NQ) = N/No. On the other
hand, it is always true that p(N/N0) = N/No implies that NQ is p-
dense in N.

(b) ==> (a). If NQ is a submodule of RN such that NQ g ρ(N),
then the zero submodule is p-άense in i\Γ0, since Cp(0: N) — p(N).
By assumption we must have p(N0) — No, and this shows that p is a
torsion preradical.

If p and σ are preradicals such that p(M) g σ(M), for all ilίe ΛίM,
we write p ^ σ. The smallest preradical of ΛM, the zero functor, is
denoted by 0 and the largest preradical, the identity functor, is
denoted by oo, If MeRM and p is a preradical with p(M) = M,
then since p is a preradical we must have f(M) g /θ(iV), for any
ΛΓe^M and / e Homβ(ikf, JSΓ). Letting rad^JV) = J/(Af), where/
runs through all elements of Hom îkf, iV), we have rad^ ^ /0 It can
be verified that rad"¥ is an idempotent preradical, and is the smallest
preradical for which M is torsion. Furthermore, rad3/(ΛΓ) = N if
and only if M generates N in the categorical sense. The module
M is called cofaithful if it generates every injective module in RM.
This occurs if and only if RR can be embedded in a finite direct sum
of copies of M (see [2]). There is also a smallest torsion preradical
for which M is torsion. This can be shown by considering for each
module RN the intersection of all submodules which are the torsion
submodule of N for some torsion preradical for which M is torsion.
The formal definition and some properties follow. Using the notation
of Fuchs [3] we denote by Ω(M) the set of all left ideals of R which



316 J. A. BEACHY

contain a finite intersection of left ideals of the form Ann(m) =
{r G R: rm = 0}, for some m e M.

DEFINITION 1.5. Let RMeRM. The smallest preradical and
smallest torsion preradical of RM for which M is torsion will be
denoted by radM and RadM, respectively.

PROPOSITION 1.6. Let RMeRM.
(a) For all NeRM, RadM(iV) = N Π τ&ά*(E(N)).
(b) The left ideal A of R is RadM-dense in R<=>AeΩ(M).
(c) If N is a submodule or factor module of M then Rad^ ^

Rad^.
(d) RadM = oo <=> M is cofaithful.

Proof, (a) Since Rad^ is a torsion preradical and rad^ ^ RadM,
it follows that Rad*(JV) = N Π Rad3/(J£(i\0) 3 ΛΓ Π rad^CAO), for
all NeRM. On the other hand, setting p(N) = N Γι radM(E(N)) for
all N G ̂ M defines a torsion preradical of RM. That p is a preradical
follows from the fact that if / e ΈίomR(N, Q) then / extends to
g: E(N)-+E(Q), with g(τ&άM(E(N))) S rad i l f(^(Q)), and consequently
/(iV Π rad ί̂J&ίJSΓ))) S Q Π rad^^ίQ)) . Furthermore, p is a torsion
preradical, since if JV0 is a submodule of JV, then E(NQ) is a direct
summand of E(N), and so τ&άM(E(N0)) = £ 7 ^ ) n radM(£7(iV)). Hence
rtiVα) = iV0 n raaM(E(N0)) = NQΠ raάM(E(N)) = No Π p(N). Thus p is
a torsion preradical with p(M) = ikf and <o ̂  Rad^, and so we must
have p = Rad^.

(b) We will show that for any injective module RQ, x e rad^(Q)
if and only if Ann(α ) e Ω(M). The result then follows from part (α).
If RQ is injective and xexa,άM{Q), then by the remarks preceding
the proposition, x = Σ?=i fi(mi)> f ° r wiiZM and fζeΈLomR(M, Q). It
is clear that Π?=i Ann(mi) S Ann(α ), and Ann(α ) e Ω(M). On the
other hand, if x e Q and Ann(x) 3 i = p)?=i Ann(m<), for elements
m{ e M, then the homomorphism g: R/A —> Rx with g(l) — x is well-
defined. Since R/A can be embedded in the direct sum Mn of n
copies of M9 the homomorphism g can be extended by the injectivity
of Q to f:Mn-+Q, with f(m19 m2, •••, mw) = x. For the components
ft of / we have x = Σ?=i/iW> and so #GradM(Q).

(c) If JV is a submodule or factor module of M, then since
RadM(M) = M and RadM is a torsion preradical we must have
Rad^iNΓ) = N. It follows from the definition of Rad^ that
Rad* ^ Rad^.

(d) If Rad^ = co, then for any injective module Q, rad^(Q) =
R&dM(Q) = Q and M generates Q. Conversely, if M is cofaithful,
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then for any module RN, RadM(N) = Nf] τadM(E(N)) = N.

The definitions in 1.5 can be dualized, and we give here only the
constructions of preradicals rad7tf and Rad¥ associated with a module

RM. It can be shown that the preradical rad,¥ defined below is the
largest preradical for which M is torsionfree, and is in fact a radical.
We have Rad^ ^ radi¥, although Azumaya has shown [1, Prop. 7] that
the preradicals coincide for any protective module.

DEFINITION 1.7. Let RMeRM. Let radJf and RadM be the
preradicals defined by radj¥(i\Γ) = f\feπomB(Ntx) ker(/) and Rad,¥(2V) =
Ann(ikf) N, for all modules NeRM.

The following lemma and its dual will be used in both of the
following sections. Recall that a monomorphism f:A-+B in an
abelian category A is essential if for all C e A and g: B-+C in A,
gf is a monomorphism implies that g is a monomorphism. Equiva-
lently, the monomorphism / : A—> B is essential if and only if g Φ 0
implies h Φ 0 in every pullback diagram

P >C

LEMMA 1.8. / /

B

B

is a pullback diagram in an abelian category, with i: A—+B an es-
sential monomorphism, then gp = h implies ig = f.

Proof. Consider the pullback diagram

P, Vί-^ C

hi f~ig
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Then {f-ig)vt = iht implies fpι — i{gVi + h). Since P is a pullback,
this induces a factorization s: Pγ ~-> P.

But then ί(^px + hx) — ihs — igps = igpγ* This shows that ihx = 0,
and then hx = 0 since i is a monomorphism. But i: A —> 5 is an
essential monomorphism and P1 is a pullback diagram, so ht = 0
implies f — ig — 0, and thus / = ί#.

2* (/?, tf)-injective modules* A module ΛQ is injective if (i)
for each module RN, (ii) each submodule NQ of N, and (iii) each
homomorphism / : iV0 —• Q, there exists an extension of / to N. (By
an extension of / to N we mean a homomorphism g: N—> Q such
that gi — /, for the inclusion i: No —• iV.) This definition can be
generalized by suitably restricting the class of modules in (i), the
class of submodules in (ii), or the class of homomorphisms in (iii).
Azumaya has studied the first of these in a recent paper [1], in
which a module RQ is called M-injective if each homomorphism
f:M0—+Q from a submodule Mo of the fixed module M can be ex-
tended to M. The second of these possible generalizations has been
studied extensively in connection with rings of quotients ([5] and [6]),
where the class of submodules is restricted to those submodules which
are dense with respect to a fixed torsion radical. Finally, a condition
placing restrictions on the class of allowable homomorphisms in (iii)
has been used by Fuchs [3, Lemma 2] to characterize quasi-injective
modules. The following definition combines these approaches.

DEFINITION 2.1. Let p and σ be preradicals of RM. A module

BQ will be called (p, σ)-injective if each homomorphism f:N0-+Q
such that (i) No is a |O-dense submodule of RN and (ii) ker (/) is a
σ-dense submodule of N can be extended to N.

It is immediate from the definition that for preradicals pt ^ p2

and σx ^ σ2, any (plf 0\)-injective module is also (p2, σ2)-injective. The
standard argument can be used to show that a direct product of
modules is (p, σ)-injective if and only if each factor is (p, σ)-injective.

DEFINITION 2.2. Let p be a preradical of BM, and MeRM.
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A module RQ will be called (p, ikf)-injective if each homomorphism
/: MQ-^Q such that MQ is a ,0-dense submodule of M can be extend-
ed to M.

THEOREM 2.3. Let p and σ be preradicals of RM. A module

RQ is (p, σ)-injective <=> Q is (ft M)-injective for all Me RM such that
0 is σ-dense in M.

Proof. =>). If the zero submodule of M is σ-dense in M, then
by Proposition 1.3 every submodule of M is σ-dense in M.

<=). Assume that Q is (p, ikf )-injective for all M such that 0 is
σ-dense in M, and that / : No —> Q is a homomorphism with No a p-
dense submodule of N and ker (/) a σ-dense submodule of N. Then
/ induces a homomorphism /x: iV0/ker(/) —> Q. Since No is ô-dense in
N it follows from Proposition 1.3 that NJker(f) is ^-dense in Nfkeτ(f).
Furthermore, since ker(/) is σ-dense in N it follows that 0 is σ-
dense in N/ker(f) Then, by assumption, fγ can be extended to
gλ: N/ker(f) —> Q, and it is clear that gtp gives the desired extension
of /, where p is the projection p: N-+ N/ker(f).

The next theorem extends Baer's condition for injective modules
to (p, σ)-injective modules.

THEOREM 2.4. Let p and σ be torsion preradicals of RM. A
module RQ is (p, σ)-injective <=* each homomorphism f\A—+Q such
that A is a p-dense left ideal of R and ker (/) is σ-dense in R can
be extended to R.

Proof. Our proof follows very closely the standard proof for
injectivity. Given a ô-dense submodule No of RN and a homo-
morphism / : No—+Q with ker (/) σ-dense in N, there exists a maximal
extension / ; iVΊ ~* Q, with No S iVΊ S N. If there exists xeN, xί N19

then let A = {reR: rxeNJ and define g: A—>Q by g(r) = f^rx).
An extension of gr to i? gives rise to an extension of ft to Nt + Rx,
a contradiction, which then shows that Nx = JNΓ. Thus to complete
the proof we must show that the homomorphism g: A —> Q defined
above can be extended to R. If we assume that Q satisfies the
condition of the theorem, then it is sufficient to show that A is p-
dense in R and ker (g) is σ-dense in R. By assumption NQ is ^-dense
in N, so Nλ is also ^-dense in N, and since p is a torsion preradical,
N/Nί is ^-torsion. From the definition of A it follows that R/A is
isomorphic to a submodule of NfN19 and again since p is a torsion
preradical, it follows that R/A is ^-torsion and A is |θ-dense in R.
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From the definition of g it follows that ker (g) — {reE: rx e ker
and so iϋ/ker (g) is isomorphic to a submodule of iSΓ/ker (/J. But
ker (/i) 2 ker (/), and by assumption ker (/) is σ-dense in N. It
follows as before that ker (g) is tf-dense in R, using the assumption
that σ is a torsion preradical.

The following theorem, with σ — oo, extends the known results
for /Mnjective modules to the case in which p is only a preradical,
rather than a torsion radical.

THEOREM 2.5. Lei p and σ be preradieals of RM and QeRM.
The following conditions (a) — (c) are equivalent and imply (d). If
p is a torsion preradical, then all four conditions are equivalent.

(a) Q is a direct summand in each extension RM 2 Q such that
Q is a p-dense submodule of M and Q + M Γ\ σ{E{M)) = M.

(b) Q 3 CP(Q) n σ(E(Q)).
(c) Each homomorphism f: No—+Q such that No is a p-dense

submodule of RN and NQ + NΠ σ(E(N)) — N can be extended to JV.
(d) Q is (p, σ)-injective.

Proof, (a) => (b). Let M - Q + CP(Q) ΓΊ σ(E(Q)). Then since
M S ^(Q) it follows that Q is a ô-dense submodule of M. Further-
more, since Q Q M S E(Q), it follows that E(M) = E{Q), and con-
sequently M — Q + iWΠ σ(E(M)). If (? satisfies condition (a) then it
must be a direct summand of M, and since Q is an essential
submodule of M this implies that Q = M, or equivalently, that
Q 2 CP(Q) Π σ(#(Q)).

(b) =» (c). Let / : No —* Q be a homomorphism which satisfies the
conditions of (c). Then / can be extended to g: E(N) -+ E(Q), and
since NsN0 + CP (No: E(N)) Π σ(E(N)) it follows that

g(N) S g(N0) + g(Cp(N0: E(N))) n g(σ(E(N)))

S Q + C,(Q) Π σ(

and so # restricted to JV gives the desired extension of / to N.
(c) => (a). This is immediate.
(c) ==> (d). This follows from Theorem 2.3, since if 0 is o -dense

in N, then N Π σ(E(N)) = JV, and JV satisfies the conditions of (c)
for every ô-dense submodule.

(d) => (b). It is necessary to assume that p is a torsion preradical.
In this case, since Q is ^-dense in Cp(Q)f it follows that Q Π σ{E{Q))
is p-dense in CP(Q) Π σ(E(Q)). If Q is (p, σ)-injective, then the
inclusion i: Q Π σ(E(Q)) — Q extends to / : CP(Q) Π σ(E(Q)) — Q, since
ker (i) = 0 is σ-dense in CP(Q) Π σ(E(Q)). In fact / extends to an
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endomorphism g of E(Q), and then g(σ(E(Q))) £ σ(E(Q)) implies that
f(CP(Q) Π σ{E{Q))) g e n σ{E{Q)). Thus fi is the identity on
Q Π σ(E(Q))> and since Q Π σ(E(Q)) is essential in C,(Q) Π σ(E(Q)),
this implies that Q Π σ(E(Q)) = CP(Q) Π σ(E(Q)). Therefore Q 3
CP(Q) Π σ(E(Q)), and the proof is complete.

COROLLARY 2.6. Lei p and σ he preradicate of RM and let
M, NeRM, with N a submodule of M. If M is (p, σ)-injective and
•AT 3 CP(M) (Ί σ(E(M)), then N is (p, σ)-injective. The converse is
true if p is a torsion radical and N is an essential p-dense submodule
of M.

Proof. If N is a submodule of M then CP(M) 3 CP(N) and
σ{E{M)) a σ{E{N)). Hence if

N a CP(M) Π σ(E(M)) a C,(iV) n σ(E(N)) ,

then JV is do, σ)-injective by Theorem 2.5. Conversely, if N is es-
sential in M, then # ( # ) = E{M) and σ(E(N)) = σ(E(M)). If /o is a
radical, then since JV is ô-dense in ikf it follows that CP(N) = CP(M),
and then the result follows from Theorem 2.5.

These results are simplified considerably if σ is a torsion pre-
radical. In this event, for any module RN we have NO σ(E(N)) =
ff(iV) and CP(N) Π σ(E(N)) = σ(Cp(N)). The next corollary can be
used to show the existence of a "(/?, σ)-injective envelope" when p is
a torsion radical.

COROLLARY 2.7. Lei p be a torsion radical of RM and let σ be
a preradical of RM. Then for any module RN, N + CP(N) Π σ(E(N))
is (p, σ)-injective and is contained in every (p, σyinjective submodule
of E(N) which contains N.

Proof. Let Q - N + CP(N) Π σ(E{N)). Then N^Q^ CP(N),
and since p is a radical it follows that CP(Q) = CP(N). Furthermore,
JE7(Q) = E(N), and so Q a CP(Q) Π σ(E(Q)). Theorem 2.5 implies that
Q is (̂ o, σ)-injective. If NQ MS E(N), with M (p, σ)-injective, then
by Theorem 2.5, 1 3 CP(M) f) σ{E{M)) a C,(iNΓ) Π σ(E(N)), and so

The next theorem gives a condition equivalent to (p, Af)-injectivity.
It generalizes Theorem 15 of [1] and a theorem of [8]. Its application
in Corollary 2.9 shows the connection between (p, σ)-injectivity and
Λf-injectivity.
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THEOREM 2.8. Let p be a torsion preradical of RM, and let
M, Qe RM. Then Q is (p, M)-injective <=> f(M) £Ξ Q, for all

feRomR(M,CP(Q)).

Proof. =>)• Let / : M—*CP{Q) and consider the pullback diagram

P >M

h

I /9

Q-—. >CP(Q)

Since Q —* CP(Q) is a monomorphism, so is P - ^ M. Furthermore,
viewing P as a submodule of M, M/P is isomorphic to a submodule
of CP(Q)/Q, and so P is ^o-dense in M since Q is ^-dense in CP(Q).
If we assume that Q is (p, Λf )-injective, then h: P-+Q extends to
g: M-+Q. Lemma 1.8 implies that / = ig, and so f(M) S Q

<==). If βr: M 0 ->Q, with ikί0 a ^o-dense submodule of M, then g
extends to / : #(ikf) — #(Q), and /(Af) S f(Cp(M0: E{M))) s C,(Q).
By assumption, /(Λf) S Q, and so / yields the required extension of
g to M.

COROLLARY 2.9. The following conditions are equivalent for
any modules RQ and RM.

(a) Q is M-injective.
(b) Q is (ooi τ&dM)-injective.
(c) Q is (co? RadM)-injective.

Proof. Theorem 2.8 implies that Q is M-injective (equivalently,
Q is (oo, ikf)-injective) if and only if Q 3 rad^CE^Q)) = Radilf(jBr(Q)).
The three conditions are then equivalent as a consequence of
Theorem 2.5.

A module RQ is quasi-injective if and only if it is Q-injective, so
Theorem 2.3 and 2.4 imply Lemma 1 and 2 of Fuchs [3]. (A module
N is Radρ-torsion if and only if Ω(N) £ Ω{Q).) Theorem 2.5 is closely
related to Theorem 11 of [1], which can be seen by taking p = oo
and σ = rad¥ . Corollary 2.6 shows the existence of an "Λf-injective
envelope" ([9]). If N is a submodule or factor module of M, then
Rad^ <* Rad¥, and every ikf-injective module is iSΓ-injective ([1, Propo-
sition 10]). If M is cofaithful, then Rad3 /— oo, and every ikf-
injective module is injective ([1, Theorem 14]). If A = Ann(ikf), and
A e Ω{M), then M is a cofaithful J?/A-module, and hence any jβ/A-module
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Q is M-injective if and only if it is injective as an i2/A-module (com-
pare [3, Theorem 1]).

3* (M* tf)-ρrojective objects* The results in § 2 depend on the
existence of injective envelopes. The dual of this condition does not
hold in many categories of modules, so the earlier results cannot
simply be dualized. We can, however, give results dual to those
obtained when p is a torsion preradical and σ is an idempotent
preradical.

Let A be an abelian category and let a be a radical of A. These
will remain fixed throughout, along with a nonempty class E[ of epi-
morphisms of A which satisfies the following two conditions: ( i )
if A->BeE and

A >B

C >Q

is a pushout diagram in A, then C—+QeE and (ii) if A—+ Be E and

Q >C

is a pullback diagram in A, then Q-^Ce E. (Note that the dual of
( i ) and (ii) is satisfied by the class of monomorphisms A —> B such
that A is |O-dense in B, where p is a torsion preradical.)

DEFINITION 3.1. An object PeA is called (E, σ)-projective if
each diagram

P

A >B

such that A —> Be E and ker (A —» B/f(P)) is σ-torsionfree can be com-
pleted to a commutative diagram.

Here we use f(P) for the image of / and B/f(P) rather than
cokernel(/). Note that ker (A —> Bjf(P)) is σ-torsionfree if

ker (A — B/f(P)) f] σ(A) = 0 .

An object PeA is called (E, A)-projective, for Ae A, if each
diagram
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P

/ ί
A >B

such that A—* BeE can be completed to a commutative diagram.

THEOREM 3.2. The following conditions are equivalent for an
object PeA.

(a) P is {E, σyprojective.
(b) P is (E, A)-projective for all Ae A such that A is σ-torsion-

free.
(c) There exists a lifting h: P-~*A in all diagrams

P
/ I

/ 1
A >B

such that ( i ) A-+BeE and (ii) ker (g) Π σ{A) = 0.
(d) Each epίmorphism p: C—+P in E such that ker(p)f)σ(C) = 0

has a splitting morphism i: P—*C with pi = 1P.

Proof. The implications (a) => (b) and (c) => (d) are obvious. We
prove (b) ==> (c) and (d) => (a), to complete the argument,

(b) => (c). Given

P

Ϋ
A >B

9

such that A—>BeE and ker (g) f] σ(A) = 0, form the pushout diagram

P

A r B

\ / \p

AlσiA) —*D .

Then A —>BeE implies A/σ(A) —*De E, and A/σ(A) is σ-torsionfree
since σ is a radical, so pf lifts by assumption to P—>A/σ(A). But
ker (g) Π o(A) = 0 implies that
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A/σ(A)-+ D

is also a pullback diagram, and this gives the desired factorization

(d) => (a). Given

P

Ϋ
A >B

9

with A->BeE and σ(ker(^l —> B/f(P))) = 0, consider the pullback

B

Then C->PeE. Let D = ker (p)f]σ(C). Now h(D)Qh(σ(C))^σ(A),
and gh(C) = /p(C) S /(P) implies h(C) S ker (A — B/f(P)). Hence
Λφ) s σ(ker (A —> B/f(P))) = 0, and so because C is a pullback and
ftφ) - p(D) = 0, it follows that D - 0. Therefore p: C ~+P satisfies
the conditions of (d), and the splitting morphism P-+C induces the
required lifting P-*C->A of P-+B.

COROLLARY 3.3. If PeA is (E, σ)-projective and p:P~+AeE,
with ker (p) Q CF(P), then A is (E, σ)-projective.

Proof. We will use Theorem 3.2 (b). If B -> C e E and σ(B) = 0,
then for any morphism A-+CeA, P—+A-+C lifts to g: P—+B, since
P is (2£, σ)-projective. But σ(B) = 0 implies g(σ(P)) = 0, so ker(g) 3
c(P) 3 ker (^). Therefore # factors through A, and since p is an
epimorphism this induces the desired lifting of A —> C to A —> B.

THEOREM 3.4. Let p: C-+PeE and p be a coessential epimor-
phism. If P is (E, A)-projective, for Ae A, then ker (/) 3 ker (p)
for all morphisms f: C-+A in A.

Proof. Consider the pushout diagram

h/

A- D
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Then C-+PeE implies A—>DeE. Since P is (E, -A)~projective, g
lifts to h\P—*A. But then the dual of Lemma 1.8 implies that
/ = hp and so ker(/) = ker(hp) 2 ker(j>)

By an i£-projective cover p: C—*P of an object Pe A we mean a
coessential epimorphism pe E and an object Ce A such that C is
(i?, A)-projective for all Ae A.

THEOREM 3.5. If PeA has an E-projective cover p: C—>P, then
the following conditions are equivalent.

(a) P is (E, σ)-projective.
(b) P is (E, C/σ(C))-projective.
(c) ker (p) S σ(C).

Proof, (a) => (b). This follows from Theorem 3.2 (b) and the
fact that C/σ(C) is σ-torsionfree.

(b)=*(c). Apply Theorem 3.4 to the projection C—>C/σ(C).
(c) => (a). This follows from Corollary 3.3 since C is certainly

(E, tf)-

We now assume that A = RM is a category of modules. Let E
be the class of all epimorphisms of RM. If σ is a radical of RM and

RP is (E, σ)-projective, we will simply say that P is σ-projective. If
P is (E, lί)-projective, for MeBM, we say that P is ikf-projective.
Our final corollary to these results is in essence Theorem 8 of
Azumaya [1]. From this it follows immediately that if RP has a
projective cover and is Af-projective for a faithful module RM, then
Radj¥ = 0 and P is projective ([1, Theorem 9]). In general, our results
on ikf-projective modules are not as good as those of Azumaya, since
our characterization of ilί-projective modules holds only for those
modules with projective covers.

COROLLARY 3.6. Let P,MeBM. If P has a projective cover,
then the following conditions are equivalent.

(a) P is M-projective.
(b) P is r&dM-projective.
(c) P is RadM-projective.

Proof. Let p: C—>P be the projective cover of P.
(a) => (b). By Theorem 3.4, if P is M-projective then rad3/(C) 3

ker(p), and therefore by Theorem 3.5 (c) it follows that P is radi¥-
projective.

(b) => (c). This is immediate from Theorem 3.5, since C is pro-
jective and therefore rad^(C) = Rad^(C).
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(c) ==> (a). Because M is RacU-torsίonfree, this follows from
Theorem 3.2 (b).

REFERENCES

1. G. Azumaya, M-projective and M-injective modules, (to appear).
2. J. A. Beachy, Generating and cogenerating structures, Trans. Amer. Math. Soc,
158 (1971), 75-92.
3. L. Fuchs, On quasi-injective modules, Annali della Scuola Normale Superiore di
Pisa Classe di Scienze, 23 (1969), 541-546.
4. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J.
London Math. Soc, 36 (1961), 260-268.
5. J. Jambek, Torsion Theories, Additive Semantics, and Rings of Quotients, Springer-
Verlag, Berlin, 1971.
6. J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc, 110 (1964), 98-135.
7. B. Mitchell, Theory of Categories, Academic Press, New York, 1965.
8. J. Ravel, Sur les Modules M-Injectifs, Publ. du Dept. de Math. Lyon, (1968), 63-71.
9. M. Rayar, M-injective hull, Notices Amer. Math. Soc, 17 (1970), 945.
10. L. E. T. Wu and J. P. Jans, On quasi-projectives, Illinois J. Math., 11 (1967),
439-448.

Received May 21, 1971.

NORTHERN ILLINOIS UNIVERSITY






