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ARITHMETICAL PROPERTIES OF GENERALIZED

RAMANUJAN SUMS

TOM. M. APOSTOL

The sums studied in this paper are defined as follows.
For any two arithmetical functions / and g, let

(1) Sf,g(m, ft) = Σ MϊBikld) ,
d\ίm,k)

where the sum extends over the divisors of the greatest
common divisor (m, k) of the positive integers m and k. It
should be noted that m and k do not enter symmetrically in
(1) unless g is constant.

The sums Sf,g(m, k) generalize the Dirichlet convolution

( 2 ) (

to which they reduce when (m, k) = k. Multiplicative properties and
finite Fourier expansions were obtained in [1]. A famous special case
is Ramanujan's sum ck(m), the sum of the mth powers of the primi-
tive A th roots of unity, for which we have

( 3 ) ck(m) = Σ exp (2πimh/k) = Σ dμ(k/d) ,
h mod k d\ {m,k)
(h,lc)=l

where μ is the Mδbius function. The second sum in (3) is an example
of (1) with f(n) = n and g(n) = μ(n) for all n. When (m, k) = 1 we
have ck(m) = μ(k), and when (m, k) = k we have ck(m) — φ(m), Euler's
totient.

In a study on cyclotomic polynomials, Holder [4] showed that
Ramanujan's sum can also be expressed in closed form as follows:

(4) ck(m) - y «(m/(fe, m)) .
φ(m/(k, m))

The number on the right is called the Von Sterneck function and is
denoted by Φ(m, k). Thus, (4) states that

ck(m) — Φ(m, k) .

The function Φ(m, k) was encountered by Von Sterneck in 1902 [11] in
a study of restricted partitions with summands reduced to their least
residues module m. Its properties were also studied by Nicol and
Vandiver [7].

We derive further properties of the sums Sf,g(m, k). Some of them
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generalize known properties of Ramanujan's sum or Von Sterneck's
function. Others, when specialized, give new properties of these num-
bers. The methods of this paper are simpler than those used by
earlier writers. In particular, roots of unity and restricted partitions
mod m play no role.

2 Properties of Dirichlet convolution* The Dirichlet convolu-
tion (2) provides a natural setting for the results of this paper. It
is well known that the operation * is commutative and associative and
has the identity element 7, where

if n = 1

if n > 1 .

If g(ΐ) Φ 0 we let g~ι denote the Dirichlet inverse of g, defined by the
equation g*g~ι = I. In particular, μ~~ι{n) = 1 for all n.

The set of all functions g with g(l) Φ 0 forms an abelian group
under the operation *. The subset of multiplicative functions is a
subgroup. [A function g is called multiplicative if g(ϊ) = 1 and if
g(mn) = g{m)g(n) whenever (m, n) — 1.]

If a is any arithmetical function and if g(l) Φ 0, the equation

d\n

holds if, and only if,

a(n) - Σ S{d)g~\nld) .

The special case with g = μ is the usual Mobius inversion formula.
By introducing the function

ίl if d\n
(5) a n > d =

(0 if d\n,

we can rewrite the sum in (1) in two alternate forms:

( 6) Sf,9(m, ft) = Σ akfdf{d)g{kld) ,

and

(7) Sftβ(m, ft) = Σ amιdf(d)g(k/d) .
d\k

For fixed ft, Equation (6) expresses Sf,g(m, ft) as a Dirichlet con-
volution,

(8) Sf,g(m,k) = (h^fjr'Xm) ,

where
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hk(d) = ak}df(d)g(k/d) .

For fixed m, Equation (7) expresses Sf,g(m, k) as another Dirichlet con-
volution,

(9) Sf>g(m,k) - (wm*g)(k) ,

where

wm(d) = am,df(d) .

3* Dirichlet convolutions involving Sf,g(m, k)+ This section
derives arithmetical identities in the form of divisor sums whose terms
contain the numbers Sf>g(m, k).

NOTATION. The function a is defined by (5) and, unless other-
wise stated, the functions / and g are arbitrary. For any arithmeti-
cal function a, we denote the Dirichlet convolution a*μ~ι by α*. Thus,

a>*(n) = Σ Φ)
d\n

For example, we have μ* — μ*μ~ι — J, and (μ~1)* — o, where σ(n) is
the sum of the divisors of n.

THEOREM 1. If n ^ 1, k :> 1 we have

(10) Σ Sf,g(d, k) - Σ f(d)g(k!d)σ(n/d) .
d\n d\(n,k)

Proof. For fixed k9 let S(m) = Sf,g(m, k). Then by (8) we have
S(m) — (h^μ^im), so

Σ Sftg(d, k) = Σ> S(d) = (S^μ-'Kn)
d\n d\n

= (h^μ-^μ-'Xn) = (hk*σ)(n)

= Σ ak,df(d)g(k/d)σ(n/d) = Σ f(d)g(k/d)σ{n/d) ,
d\n d\n,d\k

which proves Theorem 1.

EXAMPLES. Theorem 1 has a number of interesting corollaries.
If (n, k) — n we obtain

Σ Sf,g(d, k) = Σ f(d)g(k/d)σ(n/d) .
d\n d\n

If k = n this gives

Σ Sf,β(d, n) = Σ f(d)g(n/d)σ(n/d) .
d\n d\n

When g — μ we can write this as
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(11) Σ S/ιμ(d, n) = Σ μ(d)σ(d)f(n/d) .
d\n d\n

If / is completely multiplicative, that is, if f(ab) = f(a)f(b) for all
α, 6, and if f(n) Φ 0, then f(n/d) = f(n)/f(d) and (11) gives us

Σ Sf,μ(d, n) = f(n) Σ μ(d)σ(d)lf(d)
d\n d\n

where the product is taken over all prime divisors of n. The special
case f(n) = n gives a formula of Nicol and Vandiver ([7], Theorem
VIII),

(12) I
d\n p]n

We also have the following more general result.

THEOREM 2. Let a*(n) — ̂ d\na(d), where a{n) is any arithmetical
function. Then for n ^ 1, k ^ 1 we have

(13) Σ S/tg(d, k)a(n/d) = Σ f(d)g(k/d)a*(n/d) .
d\n d\{n,k)

Proof. With the notation used in the proof of Theorem 1 we have

Σ Sf,g(d9 k)a(n/d) — (S*a)(n) — (hk*μ~ι*a){n) — (hk*a*)(ri)
d\n

= Σ,at,df(d)g(k/d)a*(n/d)= Σ f(d)g(k/d)a*(n/d) ,
d\k d\n,d\k

which proves Theorem 2.

EXAMPLES. When a = μ~ι then α* = σ and Theorem 2 reduces to
Theorem 1. When a = μ then α* = I and the second sum in (13) is

Σ f(d)g(k/d)a*(n/d) - Σ f(d)g(k/d)[dln] = ak,J(n)g(k/n) .

d\{n,k) d\{n,k)

Hence (13) becomes

f(n)g(k/n) if n\k ,Σ Sfίβ(d, k)μ(n/d) =
0 if n\k .

This can also be deduced by Mobius inversion of (6) for fixed k.
When k = n, Equation (13) can be written as

Σ Sf,g(d, n)a(n/d) = Σ g(d)a*(d)f(n/d) .
d\n

If we take g — μ and assume that a is multiplicative and that / is
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completely multiplicative, with f(n) Φ 0, we obtain the following pro-
duct formula, a further generalization of (12):

Σ SfJd, n)a(n/d) = f(n) Π (l
d\n p\n \

THEOREM 3. If n ;> 1, m ^ 1 we have

(14) Σ Sf,g(m, d)= Σi f(d)g*(n/d) ,
d\n d\{m,n)

where g*{n) = Y,d\ng{d).

Proof. For fixed m, let S{k) = Sf,g(m, k). Then by (9) we have
S(k) = (wm*g)(k), so

Σ Sfjm, d) = Σ
d\n d\n

= Σ f(d)g*(n/d),
d\n d\n,d\m

which proves Theorem 3.

EXAMPLES. For the special case g = μ we have g* = I so (14)
becomes

(15) Σ Sf,μ(m, d) = Σ

When /(%) = n this gives a formula of Von Sterneck ([7], p. 825),

n if n I m ,

0 if w kw
V IJ- /ί'/j lib

The type of argument used to prove Theorem 3 also gives the
following more geneneral reseult.

THEOREM 4. For any arithmetical function a, let B — g*a. Then
for m ^ 1, n Ξ> 1 we have

(16) Σ Sf,g(m, d)a(n/d) = Σ f(d)B(n/d) .
d\n d\{m,n)

If ^r(l) Φ 0 and α = g~L, then B — I and (16) reduces to

ί/(w) if n\m ,
Σ S/,,(m, d)g~ι(n/d) = am>nf(n) =
rfi (0 it

When g •= μ this is the same as formula (15).
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EXAMPLES. When g = μ and a(n) = n, then B = μ*α = φ and (16)
implies

Σ.dS,Jm, -f ) = Σ f(d)ψ(nld) .
rf|% \ (X / d I (m,%)

When /(w) = w this gives the following identity for Von Sterneck's
function,

Σ dΦ(m, n/d) = Σ d<p(n/d) .
d\n d\{rn,n)

4* Partial sums involving the functions Sf,g(m, k). The theo-
rems of this section deal with sums whose terms include the numbers
Sf,g(m, k) where one of m or k is fixed and the other ranges over
consecutive integers. First we introduce some notation.

As in the previous section we denote by α* the divisor sum

a*(n) - Σα(d) »
d\n

where a is any arithmetical function. For real x ^> 1 we also write

aA(x) - Σ Φ) >

and we put aA(x) — 0 if x < 1. We shall make use of the following
lemma.

LEMMA. For any two arithmetical functions a and b we have

Proof. We have

Σ (a*b)(n) = Σ Σ a(d)b(n/d) .

If d\n we can write n — qd and we obtain

ΣiΈΦMn/d) = Σ α ( i ) Σ δ(ff) - Σ
n^x d\n d^x q£x/d d^x

THEOREM 5. For k ^ 1, n ^ 1, αmZ α τ̂/ arithmetical function a
we have

(17) Σ S/,,(m, k)aA(n/m) = Σ f(d)g(k/d)(a*)A(n/m) .
m = l d\k,d^n

Proof. We use the lemma, then Equation (8), and then the lemma
once more to get
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ΣS / l f f(m, k)aA(n/m) = it (hk*μ-ι*a)(m) - Σ (hk*a*)(m)
m = L m = 1 m = 1

= Σ Λ*(m)(α*)Λ(»/m) = Σ α,,m/(m)ί/(fc/m)(α*)Λ(%/m) ,
TO — l m = l

which proves (17).

EXAMPLES. If we take a — I, then αΛ(#) = 1 for all x ^ 1 and
α*(w) = 1 for all n, so (α*)Λ(x) = [x], and Theorem 5 becomes

(18) tSfJm, ft) = Σ /0)ί/(ft/d)[w/d]
TO = I d\k ,d^n

If A: I π, say π — gfe, then every divisor d of A: is ^ n and (18)
takes the form

m = ί d\k

For the special case f(n) — n this gives us

Σ SfJm, k) = qkg*(k) .

In particular, when g = μ we obtain the following formula of Von
Sterneck ([7], p. 825):

Σ ( f c ) i

THEOREM 6. jPor m ^ 1, ^ ^ 1 αwd αti7/ arithmetical function a
we have

(19) Σ Sf,9(m, k)aA(n/k) = Σ /(rf)(^*α)Λ(^/d) .
Λ = l d\m,d^n

Proof. This time we use the lemma in conjunction with (9) to
obtain

Σ SfJm, k)aA(n/k) = Σ (wm*g*a)(k) = Σ

= Σ am,kf(k)(g*a)Λ(n/k) = Σ f(k)(g*a)A(n/k) .

This proves Theorem 6.

EXAMPLES. If a = ^r1 we have #*α = I and IΛ(a;) = 1 for all x >̂
1, so Theorem 6 gives us the formula
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(20) Σ SfJm, k)(g-Y(n/k) = Σ
k=l d\m,d^n

In particular, if g = μ then (βΓ1)^) = [x] and (20) becomes

,,(m,fc)= Σ f(d).
d\m,d^n

When /(w) = w this gives a theorem of Nicol ([6], p. 965),

k)= Σ d = σ(m,n).
d \ d

Here σ(m, w) is the sum of the divisors of m which are ̂  n.
If we take a = I, then g*a = g and Theorem 6 becomes

(21) Σ S/.,(m, fc) = Σ f(d)gA(n/d).
k = ι d\m,d^n

In particular, if /(n) = π and g — μ we obtain the following formula
for the sum of the mth powers of all the primitive άth roots of unity
for k — 1, 2, •• , n:

Σ ck(m) = Σ dμ*(n/d) .
k=l d\m,d£n

When n — m this becomes

(22) Σ β»(m) = Σ dμA(m/d) .
k=l d\m

The right-hand member of (22) has the form (f*μA)(m) where f(ri) =
n. Since f~\n) — nμ(n), inversion of (22) gives us the following for-
mula for the partial sums of the Mobius function:

(23) Σ μ(n) = m Σ ̂ ψ1 Σ ck(d) .
\ d\ d kl

Σ
d\m

THEOREM 7. For k ̂  1, n ̂  1 αttd any completely multiplicative
function a we have

Σ α(m)S/ια(m, fc) = Σ a(d)f(d)g(k/d)aA(n/d) .
m=l d\k,d^n

Proof. We use formula (8) to obtain

Σ a(m)Sf,g(m, k) = ± a(m) Σ K(d) = ± a(d)hk{d) Σ α(ί)

= Σ a(d)hk(d)aΛ(n/d) = Σ a(d)f(d)g(k/d)aA(n/d) .
d d\kd^
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This proves Theorem 7.

EXAMPLES. If a{n) — n then aA(x) — [x]([x] + l)/2 and Theorem
7 gives us

(24) | m S / ) f f ( m , k) = Y dΣι<Jf(d)g(k/d)[n/d]([n/d] + 1) .

I f k I n , s a y n — qk, t h e n [w/d] = qk/d if d\k a n d (24) b e c o m e s

ak 1 f(d) 1

Σ mSf,g(m, k) — — g2&2 Σ 7 9(k/d) + —gA; Σ f(d)g(k/d) .
m = l 2 ctlfc (X 2 otlA

When gf = j« and /(n) = n we obtain the formula

-α(<7 + 1) if & = 1 ,

^ k) = Σq^Jc2I(k) + —qkφ(k) =
Δ Δ —qkφ{k) if fc > 1 .

When 9 = 1 this gives Theorem III of Nicol and Vandiner ([7], p.
830).

In Theorem 5 of [1] it was shown that for R(s) > 1 we have

(25) Σ Sf'a{m> k) = C(β) Σ f(d)g(k/d)d-°
m = l ΎYl d\k

where ζ(s) = Σ*=i ^~s Theorem 7 leads to another proof of this for-
mula and also gives an estimate for the growth of the partial sums
of the series on the left. Taking α{m) — m~% and putting σ = R(s),
we have (see [2], p. 618)

(26) α*(x) = Σ A = T ^ + ί(s) + °^~σ)
1

This formula is valid for all complex s Φ 1 with σ > 0. Using this
in Theorem 7 and taking n = g&, we obtain the formula

jA fif/.^m, k) == g1"^1-' ^ f(d)g(k/d)d-1

(27) m = 1 m S 1 — s

+ ζ(s)
d | A ot I A;

If σ > 1, the terms on the right which contain q approach 0 as g
and we obtain (25).

For the special case f(d) — d, g = μ, we have

Σ f(d)g(k/d)d-1 = Σ Mfc/d) - 0 if & > 1.
d\k d\k
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In this case the first term on the right of (27) vanishes if k > 1 and
the third term approaches 0 as q —> co when σ > 0. This gives a
celebrated formula of Ramanujan ([9], p. 199)

valid for k > 1 and all complex s ^ 1 with σ > 0.
For s = l we have, instead of (26), the estimate

a*(x) = Σ — = logo; + C + θfi-) ,

where C is Euler's constant. Using this in Theorem 7 with n — qk
we obtain the formula

Σ g / > g ( m > fc) = (C + log k + log g) Σ f(d)drιg(k/d)
m = l m dl*

- Σf{d)drιg{W) log d + O^1*;-1 Σ I f(d)g(k/d)\) .
d\k d\k

This shows that the series Σϊ=i Sftg(m, k)/m converges if and only if
the coefficient of logg vanishes, that is, if and only if

(28)

in which case we obtain

Σ S / > g ( m > k) = - Σ f{d)d-'g{kld) log d .

When f(d) = d and g = μ. Equation (28) is satisfied for k > 1 and we
obtain another formula of Ramanujan ([9], p. 199),

f;£*i^I = -Σμ(k/d)logd = - Λ(k) ,
m=l m rf|Λ

where A; > 1 and Λ(k) is Mangoldt's function.

THEOREM 8. For m ^ 1, w ^ 1 α ĉί any completely multiplica-
tive function a we have

/,.(w, fc) = Σ a(d)f(d)(ag)*(n/d) ,
d\m}d£n

where (ag)A(r) = Σ ^ r a(d)g(d).

Proof. We use formula (9) to obtain
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n n n

Σ a(k)Sf,g(m, k) = Σ a(k) Σ wm(d)g(k/d) = Σ a(d)wm(d) Σ a{q)g{θ)

= Σ ^ i / ί ί X f t ^ W ί ) = Σ<nα(d)/(d)(αflf)Λ(Wd) .

EXAMPLES. In Theorem 5 of [1] it was shown that

("*v x j '• — (JΓ\S) ^ ^ jΓ \Cί)d/
k = l f£s d\m

for each s for which the Dirichlet series G(s) = ΣΓ=i g(r)r~s is con-
vergent. We ban derive this also from Theorem 8 and obtain a for-
mula for the partial sums of the series on the left.

Taking a(ri) — n~s we have

(ag)A(x) = Σ g(r)r~s = G(s) - Σ g{r)r's

if the series for G(s) converges. Using this in Theorem 8 and taking
n = qm we find

Σ g / ' Ί m ' k) - G(s) Σ /(^)ώ-s - Σ f(d)d~s Σ ^Wr s .
A; = l f£s d\m d\m r>qmfd

Letting q —> c>o we obtain (29).
In the special case with f(d) = d, g — μ, we have

= - L for 2 2 ( β ) > l .
r=i r 8 ζ(s)

This series also converges for s = 1 and G(l) = 0. Also,

Σ f(d)d~s = Σ
d\m d\

In this case (29) gives another formula of Ramanujan ([9], p. 185)

y ck{m) = σ^8(y
* ks ζ(s)

valid for i?(s) > 1 and also for s = 1.

5* An extension of Smith's determinant* For any arithmetical
function / , let

Σ
and let A = [/*(m, A:)] be the n x n matrix whose m, k entry is the
value of / * at the greatest common divisor (m, k) of m and /c. H. J. S.
Smith [10] proved the determinant formula
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(30) detA = /(l)/(2) .

Dickson ([3], pp. 122-129) reports on several papers by Catalan, Cesaro,
Gegenbauer, Mansion, and others, devoted to proofs and extensions of
(30). D. H. Lehmer [5] also generalized (30) to higher-dimensional
determinants.

A simple proof of (30), suggested by Pόlya and Szego (see [8],
p. 330), is based on the observation that A — BC\ where B and C
are lower triangular n x n matrices with det B = /(l)/(2) f(n)
and det C = 1. This section extends this proof to provide the following
new generalization of (30).

THEOREM 9. Let A be the n x n matrix whose rn, k entry is
Sf,g(wι9 k). Then we have

(31) detA = /(l)/(2).../(n)flf(l) .

Proof. We express the n x n matrix A as a product, A =
B(f)C(g)*9 where B{f) and C(g) are lower triangular n x n matrices
given by

B(f) = [aM,kf(m)]f C(g) = [am,kg(m/k)] .

Then m, k entry of B(f)C(g)* is equal to

Σi<Xn,rf(r)aktrgWr) = Σ f(r)g(k/r) = Sftβ(m, k) ,
r = l r\m,r\k

so 4 = B(f)C(g)\ as asserted. Since det B(f) = /(I) f{n) and
det C(g) = g{l)ny we obtain (31).

EXAMPLE. When f{n) = n and g — μ, we obtain the following
formula for the determinant of the n x n matrix whose m, k entry
is the Ramanujan sum ck(m):

det [ck(m)] = n\ .
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