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FIXED POINT THEOREMS FOR NONEXPANSIVE
MAPPINGS

Kok-KEONG TAN

The notions of nonexpansive, contractive, iteratively con-
tractive and strictly contractive mappings have been gener-
alized to a Hausdorff topological space whose topology is
generated by a family of pseudometrics. A fixed point theorem
for strictly contractive mappings is obtained which generalizes
the Banach’s contractive mapping principle. Several examples
and an implicit function theorem are given as well as some
applications in solving functional equations in topological
vector spaces.

For iteratively contractive mappings, some results obtained
by D. D. Ang and E. D. Daykin, S. C. Chu and J. B. Diaz, by
M. Edelstein, by K. W. Ng and by E. Rakotch respectively
are generalized.

1. Definitions and Notations. Throughout this paper X is a
Hausdorff topological space whose topology is generated by a family
{d;};er of pseudometrics on X. It is well known that in order for X to
be such a space, it is necessary and sufficient that X be a Hausdorff
uniform space, or equivalently a Hausdorff completely regular space. It
is clear that for any z, y ¢ X, if © = ¥, then there is an A e I" such that
d,(x, y) > 0. We shall denote by J* the set of all nonnegative integers,
N the set of all natural numbers, RN the set of real numbers and €
the set of all complex numbers.

NorATioN 1.1. If f, g: X — X, we shall denote by f¢ the com-
position fog of f and ¢. If neJ*, we shall denote f"* = f*(f),
where f° = I, the identity mapping of X.

NorAaTIioN 1.2. If Ac X is nonempty, for each A e I', we denote
d,(A) = sup {d;(x, y): x, ye A}, which is called the diameter of A
w.r.t. d;.

DEFINITION 1.3. If f: X — X, then
(i) f is nonexpansive w.r.t.{d;},., if and only if for each e I,

d;(f(@), f(¥) =< di(x, y), for all z, ye X.

(ii) f is contractive w.r.t.{d;},.r if and only if f is nonexpansive
w.r.t. {d;},., and for any x,ye X, if v+ y, then there is a xe I’
such that d,(f(2), f(y)) < di(, y)-
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(ili) f is iteratively contractive w.r.t.{d;};c, if and only if f is
nonexpansive w.r.t.{d;},., and for any =z, ye X, if = y, there is a
reI' and there is an % e such that d,(f"(x), f"(y)) < d,(x, ).

(iv) f is strictly contractive w.r.t.{d;};., if and only if for each
rvel, there is a C;eR with 0 = C; <1 such that d,(f(®)), f(y) =<
C.dy(z, y), for all z, ye X.

(v) f is an isometry w.r.t.{d;};cr, if and only if for each \e I,
d:(f (@), f(y) = di(w, y), for all @, ye X.

By choosing an appropriate basis for the uniformity generated by
the family {d,};., of pseudometrics, Definition 1.3 (i) of nonexpan-
siveness reduces to the notion of contraction defined by T. A. Brown
and W.W. Comfort in [3], while Definition 1.3 (ii) of contractiveness
reduces to the notion of g-contractiveness defined by W.J. Kammerer
and R.H. Kasriel in [9]. Also Definition 1.3 (ii) is a condition used
by D.D. Ang and D. E. Daykin in Theorem 1 of [1].

It is clear that if f: X — X is nonexpansive (respectively contrac-
tive, iteratively contractive or strictly contractive) w.r.t.{d;};.,, then
for each n e N, f* is nonexpansive (respectively contractive, iteratively
contractive, or strictly contractive) w.r.t.{d,;},.r. It is also clear that
every strictly contractive mapping w.r.t. {d,};.r is contractive w.r.t.
{d;}:cr, €very contractive mapping w.r.t. {d;},., is iteratively contractive
w.r.t. {d;};cr and every nonexpansive mapping w.r.t. {d;};c, is
continuous.

If f: X— X is nonexpansive (respectively contractive, iteratively
contractive or strictly contractive) w.r.t. {d;};., and if X is metrizable,
it is not known whether there exists a metric d on X inducing the
same topology on X such that f is nonexpansive (respectively contrac-
tive, iteratively contractive or strictly contractive) w.r.t. {d}.

NoraTioN 1.4. If f: X— X, X’ = {x ¢ X: there is an x,€ X such
that « is a cluster point of (f™(%,))5-o}-

In case {d,};.r contains a single metric, the above notation X'
was first introduced by M. Edelstein in [7].

DEerFINITION 1.5. Let (x,)7-, be a sequence in X. Then (x,)5, is
Cauchy if and only if for each e I, d,(x,, 2,) — 0 as n, m — oo,

DEFINITION 1.6. X is sequentially complete if and only if every
Cauchy sequence in X converges to some element in X.

It is known that X is sequentially compact implies X is countably
compact and X is countably compact implies X is sequentially complete.

2. Strictly contractive mappings. In this section the well known
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Banach’s contraction mapping principle is generalized.

ProprosiTION 2.1. Let f: X — X be iteratively contractive w.r.t.
{di}rcre Then a fized point of f, whenever it exists, is unique. More-
over, x€ X 1s a fized point of f if and only if © is a periodic point of f.

Proof. Suppose there were {, e X such that f({) = = 9 = f(9).
Since f is iteratively contractive w.r.t. {d;};,., and { # », there is an
AeI" and there is an ne N such that d,(f(), /"(n) < di(&, ), which
contradicts the fact that /") = { and f"(n) = 7.

Next suppose ¢ X is a periodic point of f, then x = f"(z), for
some Ne R, then x is a fixed point of f¥. Since f¥ is also iteratively
contractive w.r.t.{d;},.;, * must be the unique fixed point of f*.
Since f(f¥(x)) = f¥(f(x)) = f(x), we must have © = f(x). Hence « is
a fixed point of f.

If card (I') = 1, Theorem 1 of K. W. Ng in [11] shows that the
above proposition still holds even if the nonexpansiveness is dropped
in defining an iteratively contractive mapping. However in a Haus-
dorff locally convex space, we have the following generalization:

PROPOSITION 2.2. Let E be a Hausdroff locally convex space (T.-
l.c.s.), KC E, and Z be a base for closed absolutely convexr meigh-
borhoods of 0. For each Ue Z let P, be the gauge of U. Suppose
f: K— K is such that for any o,y K and Ue %, of Py(x —y) >0,
then there is an ne N such that P,(f"(x) — f*(y)) < Py(x — y). Then
for any xe K, « is a fized point of f if and only if x is a periodic
point of f.

Proof. Suppose xec K is a periodic point of f and f(x) == x. Let
N =inf{ned: f(x) = x}, then N >1. If fx) = f**(x) for some
ne{0,1, .-+, N1}, then z= f¥(x) = f""(f"(x) = f""(f"*() =
f¥*Y(x) = f(x), which is a contradiction. Hence f™(x) = f"*'(x) for any
ne{0,1,2 +--, N—1}. Thus0¢ {f"(x) — f"*'(x):n=0,1, -+, N — 1}.
Since {f*(x) — f**(x):n =20,1, ---, N — 1} is closed, there exists a
UeZ suech that UN {f*=) — f*@x):n=0,1.--, N—-1} =@. It
follows that P,(f*(x) — f"*(x)) > 1 > 0 for each ne{0,1, ---, N — 1}.
Since Py(x — f(x)) >0, there is an m € M such that P,(f™(x) — f™*'(v)) <
Py(x — f(x)). Let N, = inf{ned Py(x — f(x)) > Pu(f"(®) — f*"())}
If NN=N, say N,=pN-+gq, where 0<q¢g< N=Z N, so that
Py(w — (@) > Po(f*(a) — f7i7(2) = Py(f(2) — f7(»)), which con-
tradicts the minimality of N,. Hence we must have N, < N. Suppose
N, N,, -+, N;e R have been defined such that for each j =1, ---, 4,
N; < N and Py(fFiti(x) — fYi++(x)) < Pyf¥i(x) — fY¥i*t'(x)) for each
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j=1,+--,9—1. Then since P,(fYi(x) — f¥+(x)) >0, there is
an ne M such that Py(fYi(x) — fY+ (@) >Pu(f*(fYi(@) — fr(f7(@))).
Let N, = inf {neN: P,(fYi(x) — f¥+(x)) > Py(f"(®) — f ' (x))}. If
N;1y= N, say N;y, = pN + q, where 0=¢ < N, p=1, then P,(f"(x)—
FIR@) > oo > Pp(fYi(w) — fYiM(@) > Pp(fYire) — U () =
P,(f*(x) — fr*(x)), which conradicts the minimality of N,. Hence we
must have N,,, < N. Therefore by induction there is an infinite
sequence (N,), of positive integers such that (i) N; < N, for all
t=1,2 -, and (i) Py(f"i(2) — fY* (@) > Py(fYri(x) — fr ()
for all t=1,2,---. By (i), there exist 7, j € such that 7 j while
N; = N;, which contradicts (ii). Thus we must have f(z) = .

The proof of the following theorem is the same as the classical
Banach fixed point theorem, and is therefore omitted.

THEOREM 2.3. Let X be sequentially complete. If f: X— X is
strictly contractive w.r.t. {d;};.r, then f has a unique fized point {e X
such that { = lim,_..f"(x), for all xe X.

PROPOSITION 2.4. Let Y be any topological space and f: Y —Y
(not necessarily continuous). If there exists an Ne I and there is a
Ce Y such that for each ye Y, { = lim,_.(fY)"(y), then { = lim,_ ..f™"(y),
for each yeY.

Proof. Let V be any neighborhood of {. If ye Y, then for each
ke{l, ---, N -1}, = lim,_.(f")"(f*(y)), so that for each ke{l, -,
N — 1}, there is an n, € such that for all n = n,, (fN)"(f*(y) e V.
Take m, = max{n, -+, y_,}. Then for all n=n, n=mn, for all
k=1,---, N—1, so that (f")*(f*(y))e V for all » = n, and for all
k=1 ---, N— 1. Hence f*(y) ¢ Vfor all n=n,N. Thus { =1lim,_..f"(y)
for each ye Y.

Theorem 1.3 on pp. 8 of Bonsall in [2] is a special case of the
following.

COROLLARY 2.5. Let X be sequentially complete, f» X — X (not
necessarily continuous). If there is an Ne N such that f~ is strictly
contractive w.r.t. {d;},.r, then f has a unique fized point {e X and
¢ = lim,_./™®), for all ze X.

Proof. By Theorem 2.3, f¥ has a unique fixed point e X such
that { = lim,,_..(f")"(x), for all e X. By proposition 2.4, { = lim,_...f"(x)
forall ze X. Since f(0) = f(fY(Q) = fY(f(£), we must have f({) = {.

COROLLARY 2.6. Let X be sequentially complete, f: X — X (not
necessarily continuous). If there are R, S: X — X such that RS =1,
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wdentity mapping on X and if there exists an Ne N such that Sf"R
18 strictly contractive w.r.t. {d;}:cr, then f has a unique fixed point
(e X and { = R(lim,_..(Sf"R)(x)), for all xze X.

Proof. Since (SfR)¥ = SfYR is strictly contractive w.r.t. {d;}:cr,
SfR has a unique fixed point 7€ X and 7 = lim,... (SfR)"(x) =
lim,_.. (Sf*R)(x), for all xe X, by Corollary 2.5. But then it is
easy to show that { = Ry is a unique fixed point of f, and { =
R(lim,_... (Sf"R)(x)), for all ze X.

The above corollary generalizes a result of S.C. Chu and J.B.
Diaz in [4].

COROLLARY 2.7. Let X be sequentially complete and F' be a family
of commuting mappings on X. Suppose there exists an feF and
there are R, S: X — X such that (i) RS = I and (ii) for some NeN,
SfYR 1is strictly contractive w.r.t. {d;}1er. Then F has a unique com-
mon fixed point.

Proof. By Corrollary 2.6, f has a unique fixed point, say {e X.
If ge F, then f(g(0)) = g(f () = g({), so that g({) is also a fixed point
of f implies ¢({) =(. Thus { is the unique common fixed point of F.

3. Some examples and applications. First we shall give an
example of a mapping which is contractive but not strictly contractive
while some iterates of it is strictly contractive.

ExAMPLE 3.1. Let S be a nonempty topological space and C(S)
be the set of all complex-(or real)-valued continuous functions on S.
Let & = {C: C is a nonempty compact subset of S}. For each Ce &,
we define q.(f) = sup,.q| f(@)]|, for all fe C(S). Then ¢, is a seminorm
on C(S) for each Ce%. Let F=1{g,:Ce%}. If feC(S) is non
zero then f(z) = 0 for some x e X, so that ¢q,,(f) > 0. By a theorem
of Robertson in [13], C(S) is a Hausdorff locally convex space under
the topology generated by F. For each Ce &, if we define d(f, 9) =
q.(f — ¢), for all f, ge C(S), then d, is a pseudometric on C(S) and
{dc}oe - generates the same topology as F. First we note that C(S)
is complete. Define K = {f € C(S):|| f|le = sup,.s|f(®)| < %}, then it
is clear that K is nonempty closed and convex, so that K is also
complete and hence sequentially complete.

(i) For each ne @ such that |A] =1 and each ge C(S) with
o]l = %, we define T,,: K— K by T,,,(f) = f*+ g, for all feK.
Since for each fe K, || Th,(f)ll- = [IN* + glle = M 1 f* ]l + (9]l =
Iflle + llglle=% +%=1% T, indeed maps K into K. If f, f,e K,
Ce g: then dC(Tz,g(fl)y Tz,g(fz)) = qC(Tng(fl) - Tl,g(fz)) = Squeclff(x)"
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Fi(®)| =sup.cc| fi(%) — fo(®) [[[1(®) + fo(@) | = sup,ccl fi(@) —Fo(@) | =do(f), 1),
so that T,, is nonexpansive w.r.t.{d¢}cce. If f, f:€ K and f, = f,,
then there is an xe S such that f.(x) # fy(x). Since |fi(x)| < % and
| fo(x)] = %, we must have | fi(®) + fo(x)] < 1. Thus for C = {z}, Ce &
and do(T,,,(f), T:,0(f2) = | fi@) — fi@)| = | fi(®) — ful@) || [i(@) + fo(2) | <
| fi@) — fix)| = do(fy, f). Hence T,, is contractive w.r.t.{d;}cc..
However for any pe R with 0 < ¢t < 1, choose any ac R such that
M —3<a<} and define h, = % and h, = a, then h, h,e K, so that
for any Ce &, we see that pd (h, k) = p( —a) < 3 — & = d(T},,(hy),
T, ,(h)). Therefore T,, is not strictly contractive w.r.t. {ds}oc-.
However if ||g|l. < % it can be easily shown that for each Ce &,
do(T3,,(f), T3,,(f2) = pde(fy, fo) forall £, f.e K, where ¢t =3 + 2|/ g]|.<1,
and so T:, is strictly contractive w.r.t.{d;},... By Corollary 2.5,
T,,, has a unique fixed point { € K and { = lim,_.. T7,(f), for all fe K.

(ii) Suppose T: K — K is nonexpansive w.r.t.{ds}¢... For each
re € with |A] £1 and each ge C(S) with ||g]l. <% and each neN
with n = 3, we define T,,,,: K— K by T,,..,(f) = MTf)" + g, for all
fe K. Then for any Ce &, do(T;,u,o(f), Trno(f2)) = n/277'ds(f,, f2), for
all f,, f.e K. Since 0 < n/2"* < 1, T,,.,, is strictly contractive w.r.t.
{do}oe. . Hence by Theorem 2.3., T,,., has a unique fixed point (e K
such that { = lim,,_.. T7..(f), for all fe K.

(iii) Suppose T: K — K is nonexpansive w.r.t. {d.}¢.... For each
AeR with 0 < A < 1, each ge C(S) with [|¢]|. = } and each n e N with
n = 2, we define V,, . (f) = MTF)" + 1 — N)g, for all fe K. Then
for each Ce 7, do(Vn,o(f1); Vi o(fD) = nN2"7'do(f, [2), for all f, fr€ k.
Since 0 < nn/2"' < 1, V,,., is strictly contractive w.r.t. {d;}s.. and
so by Theorem 2.3, V,,, has a unique fixed point (e K and { =
lim,,_.. V. .(f), for all fe K.

The following result is obtained by Kirk in [10] in Banach spaces.
The similar proof is omitted.

THEOREM 3.2. Let E be o Tyl.c.s. whose topology 1is gemerated
by a family & of semi-norms on E, and KC E be nonempty convex.
For each pe 7, define d,(x, y) = p(x — y) for all x,ye E. Suppose
T: K— K is nonexpansive w.r.t. {dy}pese For ay a, <+, a, =0, n=1,
a, >0 and S, =1, define S: K— K by Sx) = Sroa; Ti(x), for all
xe K. Then for any xe K, S(z) = x if and only if T(x) = x.

Corresponding to Theorem 2.3, we have the following implicit
function theorem which is analogous to a result of E. Dubinsky in [5].

THEOREM 3.3. Suppose X is bounded, i.e. d,(X) < = for each
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el and X is sequentially complete. Let S be any topological space
and f: X x S— X be continuous. Suppose for each ne I', there is a
constant C, with 0 < C, < 1 such that d,(f(x, s), f(y, s)) < C.d;(x, y),
for all x,ye X and all se€S. Then there is a wunique continuous
mapping T: S— X such that f(T(s), s) = T(s), for all se S.

Proof. For each se S, define g,: X — X by g.(2) = f(x, s), for all
xe X. Then g, is a strictly contractive mapping w.r.t. {d;};.,. By
Theorem 2.3., there is a unique 7(s)e X such that g,(T(s)) = T(s).
Hence there is a unique mapping T': S — X such that f(T(s), s) = T(s),
for all se S. It remains to show that T is continuous.

Fix any z,€ X. For each ne RN, we define T,: S— X as follows:
Ty(s) = f(x, s) and T,..(s) = f(T,(s), s) for all seS and all neMN. It
is clear that T, is continuous and it can be shown by induction that
each T, is continuous for n = 2,3, ---.

Next we want to show that T, converges uniformly to T, i.e.
for any € >0 and Mel', there exists an N, ¢)eI such that
d,(T,.(s), T(s)) < ¢/3, for all » > N and all s€S. Indeed, since X is
bounded d,(X) < <, we may choose N(\, €) € 3 such that C¥d,(X) < ¢/3.
Thus for n > N, and all s€ S, we see that

di(Tw(s), T(s)) = di(f (Ta-s(s), ), S(T(s), 9))
= Cdy(T.-i(9), T(s)

Cr'dx(Ty(s), T(s))

= Cr7dx(f (@, 8), [(T(s), 9))

= Cldy(xy, T(s))

< Crdy(X)

= Cldy(X)

A 1A

€
<—.
3

Suppose s,—s in S. For any ¢ >0 and AeI' there is an
N(x, ¢) e R such that d,(T,(s), T(s)) < ¢/3, for all » > N and all s€ S.
Since Ty, is continuous, there is a g, with d;(Ty..(s.), Tx+.(s)) < €/8,
for all g > p,. Hence for all ¢ > 1,

di(T(sp), T(s)) < du(T(sw)y Tow+i(8w))y + Aa(Trs(8,), Tova(s))

+ & Tyfs), TE) < = + g + § =,

so that T(s.) — T(s). Hence T is continuous.
Theorem 3.4. and Corollary 3.5 below can be obtained as a corol-
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lary and considered as an application of Theorem II of D.D. Ang and
D. E. Daykin in [1].

THEOREM 3.4. Let (E, E') be a dual pair, A be a linear operator
on E, and A’ be the adjoint of A such that A'(E')yc E'. Suppose A’
has a family G of eigenvectors e in E' each of which belongs to an
etgenvalue N, of modulus less than 1 and G s total over E. Suppose
for every sequence (x,)n—, 10 E such that for each ec G, (%, — ©,, ¢) — 0
as m, m — co, there is an x € E such that for each ec @G, (x, — x,€) — 0
as m— . Then for an arbitrarity fixed y,€ E, the equation x =
A®@) + y, has a unique solution {, and moreover

(A"(x) + A" yo) + =+ + Yo — Ly €) 0

as n— o for every ec G and every x € E.

Proof. For each ec @G, define d,(x,y) = |(x — y, ¢)|, forall z, ye E,
then d, is a pseudometric on E. Let E have the topology generated
by {d.}.c.e. Since G is total over E, for any =z, y€ E with 2 # ¥y, then
% —y %0, so that there is an e€ G with (x — y, ¢) % 0, and so d,(z, y) >0.
Hence E is Hausdorff. For an arbitrarily fixed y,€ E, define F(x) =
A(z) + y,, for all xe E. For each ecG,

d.(F(z), F(y)) = [(A(x) — Ay), )| = [(x — y, A'¢)|
= I(x - Y 7\196)] = Ix’e,de(x’ y) .

Since |\,| < 1 for each ec G, F is strictly contractive w.r.t. {d.}.cc.
Next by hypothesis, E is sequentially complete. Hence by Theorem
2.3. F has a unique fixed point {, € E and {, = lim,... F""(z), for all
xe E. Thus {,, is the unique solution of = A(x) + y, and

(AY@) + A" (Wo) + +o 0+ Yo — Gy @) = (F(@) — Gy 0) =0 as n— oo,

for all ec G and each xz¢€ E.

COROLLARY 3.5. Let (E, E') be a dual pair such that E is o(E, E'),
the weak topology on E determined by E', sequentially complete. Let
A be a linear operator on E and A’ be the adjoint of A on E’' with
A(E'YC E'. Suppose A’ has a family G of eigenvectors e in E’' each of
which belongs to an eigenvalue \, of modulus less than 1. If G spans
E', the equation & = A(®) + y, has a unique solution {,, such that for
each we€ B, A*x) + A" (y,) + +-- + A(y) + v, — &, in o(E, E').

Proof. First we note that G spans E’ implies G is total over E.
For each e¢€ G define d, as in Theorem 3.4. Suppose (x,);-, is a
sequence in FE such that for each ec@, d (x,, ,) — 0 as n, m — co.
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For any fe E’, since G spans E’, there are ¢, -+-,¢,€ G and there
are scalars a, +--, a, such that f = >\, a;¢;, Thus

n
(@ — Ty f) = 2, 0% — Ty ) =0 aS ki, m— o .
=1

Hence (x,)7-, is a Cauchy sequence in E and so there is an x € E with
(x, — 2z, f)—0 as m—  for each fe€ E’. Hence the hypothesis of
Theorem 3.4. is satisfied and so there is a unique solution {, of
x = A(x) + 9, and

(A™@) + A" (Yo) + -+ + AlY) + Y — Cyp @) — 0 as n— oo

for each ee G. But then (4™(w) + A" '(y,) + + -+ + A¥W,) + ¥ — &y [)—0
as n — oo, for each fe E’, so that A"(x) + A" (y)) + -+ + A(y,) +
Yo — &, in o(E, E).

THEOREM 3.6. Let (E, E') be a dual pair, A be a linear operator
on E and A’ be the adjoint of A’ on E’ such that A'(E')C E'. Sup-
pose A’ has a family G of eigenvectors e in E' each of which belongs
to an eigenvalue N, = 1 with |N,| £ 1. Suppose either (i) E is o(E, E’)
sequentially complete and G spans E’' or (ii) G s total over E, and
for every sequence (%,)5—, in K such that for each ec @G, (x, — %, ¢) —0
as m, m — oo, there is an x € K such that for each e¢c G, (xn —x,e)—0
as n— . Then for any positive integer n > 1 and a,, « -+, a, >0 such
that D2, a; <1, and any arbztmmly fized y,€ E, there 8 @ unique
solution of the equation x = >.*, a,A*(x) + ¥,.

Proof. From the proof of Corollary 8.5, condition (i) implies
condition (ii). Thus we may assume that (ii) holds. For each ec G,
define d, as in Theorem 3.4. Let E have the topology generated by
{d.}..c, then E is Hausdorff and sequentially complete. Define F(x) =

., a;ANx) + y, for all xe E. It remains to show that F is strictly
contractive w.r.t. {d,},.,. Indeed, for each ec G,

n

3 0 A@) - z‘:aiAi(y),e)‘

i=1

d.(F(x), F(y) =

/—\

(’U - Y, (A’

Il
Mg

a (x — v, Ne);

)\J’L

(@ — v, o]

a)J d.(x, Y) .

Il
nMs TMS ?Mg i

Since |\, a\i| < 1 for all ee G, F is strictly contractive w.r.t. {d,}.c
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and hence by Theorem 2.3, the equation z = 3%, a;A*(x) + ¥, has a
unique solution.

With slight changes in the hypothesis in Theorem 3.6, the above
proof works for the following:

THEOREM 3.7. Let (E, E') be a dual pair, A be a linear operator
on E, and A’ be a adjoint of A on E' such that A'(E')C E'. Suppose
A’ has a family G of eigenvectors e in E’' each of which belongs to an
etgenvalue N, with |\,| £ 1. Suppose either (i) E is o(E, E’') sequenti-
ally complete and G spans E', or (ii) G is total over E and for every
sequence (x,)7_, in E such that for each e¢€@G, (¢, — %,,e)—0 as
", m — <o, there is an x€ K such that for each ec€@G, (x, — x,e) —0
as m— . Then for any positive integer n,a, *++,a, =0 with

roa; < 1, and arbitrarily fized y, € E, there is a unique solution of
the equation © = .1, a;ANx) + Y.

As an application of the above Theorem 3.6 and Theorem 3.7, we

have the following:—

ExAMPLE 3.8. Let A be a diagonalizable » X % matrix over €,
and A’ be its adjoint. Suppose for each eigenvalue M of A’, [N £ 1,
then for each positive integer =, a,, --+,a, =0 with > a; <1 and
any arbitrarily fixed vector y, (an n-triple), the equation

v = a; A x) + vy,
=1
has a unique solution.

ExAMPLE 3.9. Let A be a diagonalizable n X % matrix over €,
and A’ be its adjoint. Suppose for each eigenvalue A of A", » = 1
and |)\| £ 1, then for each positive integer n > 1, a,, -+, a, > 0 with

*,a; =<1 and any arbitrarily fixed vector ¥, the equation x =
., a;AY2) + 9y, has a unique solution.

Although the classical Banach contraction mapping principle can
be used to prove the following, it is a special case of the above two
examples.

ExaMPLE 3.10. Let E be a finite dimensional complex Hilbert
space, A be a normal operator on E. (a) If ||A]| =1 and 1l¢a(4),
the spectrum of A, then for any positive integer » > 1, a,, -+, a, > 0,
with 37, a; <1 and any arbitrarily fixed y,€ E, the equation x =
>k, a;A%(x) + Y, has a unique solution. (b) If ||A]| =<1 then for any
positive integer u, a,, +-+, a, = 0 with >*, a; < 1 and any arbitrarily
fixed y,€ E, the equation ¢ = >,», a;A*(x) + y, has a unique solution.



FIXED POINT THEOREMS FOR NONEXPANSIVE MAPPINGS 839
4. Iteratively contractive mappings :

PROPOSITION 4.1. Suppose f: X — X is nonexpansive w.r.t {d;} cre
If there are C, x,€ X such that € is a fized point of f and s a
cluster point of the sequence (f™(,))i—,, then lim,.. f"(x,) exists and

¢ = lim, . f7(2)-

Proof. For any € > 0 and M€ I, there is an Ne RN with d,(f"(x,),
€) < & but then for all n = N, d,(f*(%,), {) < d;(f¥(=,), {) < . Hence
€ = lim, ... f"(%,).

The following proposition is a corollary of Proposition 1 of M.
Edelstein in [8]:—

PRropPOSITION 4.2. Let f: X — X be nonexpansive w.r.t. {d;};.r and
x€X. Then x€ X’ if and only if © is a cluster point of (f™(%))r—o.

The following proposition is a corollary of Theorem 1 of M.
Edelstein in [8]:—

PRroOPOSITION 4.3. Let f: X — X be nonexpansive w.r.t. {d;}rer. If
x€ X/, then f 1is an isometry on (f™(x))i— w.r.t. {d:};cr, t.e. for each
Ne T d(fm+ (®), f*HH(®) = di(f™(%), 1), for all m, n, ke JF*.

THEOREM 4.4. Let f: X — X be iteratively contractive w.r.t. {d;}cr-
Then Card (X*) = 1. In case Card (X’) =1, X7 contains only the
unique fixed point of f.

Proof. Suppose X/ #+ @ and xe€ X’/. If f(x) # x, then f is iter-
atively contractive w.r.t. {d;};., implies there is a )\,€ /" and there
is an ne N such that d,(f"(»), /"' (x)) < d; (2, f(x)). By Proposition
4.3, f is an isometry on (f(x));-, w.r.t. {d;};.,, and so in particular,
do(f (@), (@) = dyp(f*(@), 7)) -+ + = d;(f(2), ©), which is a con-
tradiction. Hence f(x) = x. Since any fixed point of f is unique,
X7 = {x}.

COROLLARY 4.5. Let f: X— X be iteratively contractive w.r.t.
{d:}rcr- Suppose there is an x,€ X such that (f"(x,))z-, has a cluster
point L € X, then { is the unique fixed point of f and lim,... f"(x,) = C.

Proof. Since ( is a cluster point of (f™(x,));-0, { € X’/. By Theorem
4.4 £ is the unique fixed point of f. By Proposition 4.1, { = lim,_.f™(x,).

The above corollary generalizes Theorem 1 of D.D. Ang and D. E.
Daykin [1].
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COROLLARY 4.6. Let f: X — X be such that for some NN, f¥ is
iteratively contractive w.r.t. {d;}zer. If for some x,€ X, the sequence
((F™)"(xe))e=o has a cluster point (€ X, then L is the unique fized point
of f and { = lim,_.. f¥"(x,).

Proof. By Corollary 4.5, { is the unique fixed point of f¥ and
€= lim,.. f"(x,). Since f(Q) = f(f7(Q) = f7(f(), we must have
f©=c

COROLLARY 4.7. Let f: X— X be iteratively contractive w.r.t.
{d:}rere  If there are(, x,€ X and there is a sequence (n;)i, in N with
1= n, < ny < «+» such that £ = lim,_., f™i(x,), then lim,_. f"(x,) exists
and f(§) = { = lim,_.. f"(%,).

Theorem 1 of M. Edelstein in [6] is a special case of the above
corollary.

COROLLARY 4.8. If X s sequentially compact or countably com-
pact and f: X — X is such that for some NeNR, f7 is iteratively con-
tractive w.r.t. {d;};er, then f has a unique fived point £€ X such that
& = lim,_.. f*(x), for all xe X.

COROLLARY 4.9. Let F be a family of commuting mappings on
X. Suppose there exists f€F, there are R,S: X — X with RS=1
and there is an N €N such that SfYR is iteratively contractive w.r.t.
{di}ere  If there is an x,€ X such that the iterates of ®, under Sf R
has a cluster point tn X, then F has a unique common fixed point.

Proof. By Corollary 4.6, { = lim,_., Sf*R(x,) is the unique fixed
point of SfR. Hence R{ is the unique fixed point of f. For any g€ F,
g(©) = g(f Q) = f(g(0)), and so ¢g({) = {. Hence { is the unique common
fixed point for F.

THEOREM 4.10. Let f: X— X be iteratively contractive w.r.t.
{d:}1er. Suppose there is an x,€ X such that if

M., =ZL6JF{x€ Xt di(@, f(2) < dy(@, f(0)}

then every sequence in M,, has a cluster point in X. Then f has a
unique fized point (€ X and { = lim,_... f"(x,) .

Proof. Since f is nonexpansive w.r.t. {d;};.,, we see that f(M,)C
M,. If f(x,) = w, then x, is the unique fixed point of f and =, =
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lim, ... f"(x,). Suppose f(x,) # x,, then there is a A€ " and there is
an n,€ N such that d,(f™(x,), (@) < dx(2o, f(2)). Thus f(x;) € M,,
so that f"(x,) € M,, for all n = n,. By hypothesis, there is an {e X
such that  is a cluster point of (f"()),2.,. By Corollary 4.5 { is
the unique fixed point of f and { = lim,_., /*(x,).

COROLLARY 4.11. Let f: X— X be iteratively contractive w.r.t.
{d:},cr. Suppose there exists an x,€ X and there is a subset M of X
such that (i) M 1is countably compact and (ii) for any Ne I and
re X ~ M, dyz, %) — di(f (@), f(@) = 2d:(2, f(x;)). Then lim, .. (%)
exists and is the unique fized point of f.

Proof. Define M,, = U;.r{xe X: di(z, f(2) < d;(x,, ()}
If ve X ~ M, then for any rne I,

2d(%o, f () = da(®, 2) — da(f (@), S ()
= diy@, (@) + do(f (@), f(@) + ([ (o), ) — dau(f(®), f(2))
Zdl(xy f(x)) + dl(f(xo)) xo) )

so that dy(w,, f(2,)) < d;(%, f(»)) for all v e I", and hence v € X ~ M, . Thus
X~McX~X, and so M, c M. Since the hypothesis of Theorem
4.10 is satisfied, lim,_. f"(x,) exists and is the unique fixed point of f.

The above Corollary generalizes Theorem 1 of E. Rakotch in [12].
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