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THE CLASS OF (p, #)-BIHARMONIC FUNCTIONS

LEO SARIO AND CECILIA WANG

Our main interest in this paper is with the (p, g)-biharmonic
boundary value problem, which takes the following form:
Given continuous functions φ and Ψ on Wiener's or Royden's
p-and ^-harmonic boundaries a and β respectively, find a
function u satisfying (J + q)(Δ + p)u = 0 and

u\a = ψ , u\β = Ψ .

We shall solve this problem by what we call the (p, q)~
biharmonic projection.

In §1 we give some preliminary results. The (p, g)-biharmonic
projection is introduced in § 2 for various classes of functions, and in
§4 for suitably restricted Riemannian manifolds. In §3 we characterize
classes of manifolds with respect to significant subclasses of (p, q)-
quasiharmonic functions by means of the p-harmonic Green's function
and the g-elliptic measure on R. The (p, g)-quasiharmonic nonde-
generacies of the manifold are the various conditions we impose on
R in §4. Finally in §5 we give some explicit results concerning
certain classes of density functions.

1* On a smooth noncompact Riemannian manifold R of dimension
m ^ 2 with a smooth metric tensor (^y), the Laplace-Beltrami operator
is given by

1 m d m rt

V g ί=i dxι i=i dx3

where x = (x\ •••, xm) is a local coordinate system, g = det (g^), and
(g**) — {giόy

ι. Let p(x) be a density function, that is, a nonnegative
C2 function on R. A p-harmonic function is a C2 solution of the
equation Apu = 0 with

Ap = A + p .

We call a C4 function (p, q)-biharmonίc if it satisfies the equation

AqApU = 0 ,

and we denote by Wpq — Wpq(R) the family of (p, g)-biharmonic func-
tions on R. An important subclass of Wvq is the class QPQ — Qpq(R)
of (p, q)-quasίharmonic functions, i.e., the C2 solutions of Apu = eq,
where eq is the g-elliptic measure on R (see No. 2).
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Note that for p = q = 0, Wpq and Qpq reduce to the classes W
and Q of biharmonic and quasiharmonic functions respectively. For
these classes our problem was solved in [ 5 ]-[ 7 ] and [11], which have
greatly influenced our reasoning.

1* Auxiliary results*

2* Let Ω be a regular subregion of R, and hf the continuous
function on R which is p-harmonic on Ω and 1 on R — Ω. The limit
ep of the decreasing sequence {hfΩ} as Ω —> R is called the p-elliptic
measure of R. Clearly ev is nonnegative and p-harmonic on R, with
0 ^ ep ^ 1. Explicitly, it is either identically zero or strictly positive.
In particular, it is identically 1 if p == 0. In the case p Ξ£ 0, we call
a Riemannian manifold R p-parabolic if ep — 0, and p-hyperbolic if
ep > 0. As in the case p = 0, we shall follow the convention adopted
by Royden [9] that R is called 0-parabolic if and only if R is parabolic.

3* The harmonic Green's function g(x, y) on R exists only on a
hyperbolic manifold. In contrast, the p-harmonic Green's function
gp(x, y) for p E£ 0 exists on every Riemannian manifold. Thus on an
arbitrary Riemannian manifold R, hyperbolic if p = 0, the operator
Gp is well defined on the family of continuous functions by

GPf = \ gP( ,y)f(y)dy,
JR

with dy the volume element of R. We are interested in the class

Fn = {f\Gp\f\< oo}.

LEMMA 1. Let R be an arbitrary Riemannian manifold (hyperbolic
if j> = 0). If f e C- Π FP1, then ΔVGJ = /.

Proof. For every 9? e Co", we have

ί G,f(x) - Δtφ(x)dx = \ GpJpφ(v) f(y)dy
}R }R

I*

= \ <P(V) f(y)dy
J?.JR

Therefore ApGpf — f in the sense of distributions, and the lemma
follows by the hypoellipticity of Ap.

4. Let Mpι{R) be the class of continuous p-harmonizable functions
for which there is a continuous p-superharmonic function sf with
sf ^ I/I on R, and Npι(R) the potential p-subalgebra of MP1(R), i.e.,
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the family of functions in Mpι{R) whose p-harmonic part h} = \imΩ^Rh}Ω

vanishes identically on R.

LEMMA 2. Let R be an arbitrary Riemannian manifold {hyperbolic
if p = 0). If fe C°° ΓΊ Fpί, then Gpf e Npί(R).

Proof. Set f = f+ - f~ with /+ - / U 0 and / - = - / U 0. Clearly
Gpf

+ and Gpf~ are nonnegative and p-superharmonic on R. In view
of \Gpf\< Gpf

+ + Gpf~, GpfeMpl(R).
It remains to show that hp

G f = 0. Let Ω be a regular subregion
of R and gpΩ(x, y) the ^-harmonic Green's function on Ω with value
zero on R — Ω. For a parametric disk Bx c R about x e Ω with radius
ε, the Green's formula yields

ί {[GPf(y) - hζf(v)] * dgp0(x, y) - gpΩ(x, y) * d[GJ(y) - h%f(y)]}

= 9PΩ(X, y)ΔpGpf(y)dy .
}Ω-BX

On letting ε —> 0 and then Ω —> R we obtain

GJ(x) = hξ°pf(x)

and by Lemma 1,

GJ = h?β9f + Gpf .

Therefore hp

Gpf = 0 and consequently Gpf e Npι(R).

5* Denote by HP(R) the class of p-harmonic functions on R, and
let E(u) be the energy integral

E(u) = \ du Λ *du + \ p(x)u2(x)dx .
}R JR

LEMMA 3. The energy integral is lower semicontinuous:

E(u0) ^ lim E(un)
n—>co

for every sequence {un} in HP(R) converging uniformly to u0 on com-
pacta of R.

Proof. For xQe R and a parametric ball Bcz R about xQ,

uΛ(x) = - \ u J y ) d 0 " ί X ' y ) dS, , n = 0 , 1 , 2 , . . - ,
JdB any

with x e B, gPB the p-Green's function on B, dgPB/dn the normal deriva-
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tive of gPB, and dS the surface element of dB. Then

[ v (ηj d
OX% J95 OX% OΎly

ox% ony ox%

as n —> oo. Therefore dun(x)/dxi —> duo(x)/dxi uniformly on every para-
metric ball as n -+ oo. The uniform convergence on compacta of R is
a consequence of the fact that every compact set can be covered by
a finite number of parametric balls. Clearly

FΩ(uQ) = lim EΩ(un) ^ lim E(un)

for every relatively compact set Ω. The lemma follows as Ω—+R.

6. Consider the real-valued linear operator G>( , •) on C x C
defined by

GP(f, g) = \ gP(χ, v)f(χ)g(y)dχdy

for f, geC.

LEMMA 4. If f e C°°,

whenever the right-hand side is finite.

Proof. Let

GpΩf= 1 flrpi?(-, y)f{y)dy .

We have

ί gpΩ(χ, y)f(χ)f(y)dxdy .
R

By the p-harmonicity of GPf — GpΩf on Ω and the lower semicontinuity
of E,

E{GJ) £ lim E(GpOf) S GP(\f\,
Ω-*R

In view of Lebesgue's convergence theorem,



THE CLASS OF (p, g)-BIHARMONIC FUNCTIONS 803

= liml gpΩ(x, y)f(x)f(y)dxdy
Ω-*RJRXR

= \ ffp(®, y)f(x)f(y)dxdy
JRXR

= G,(f, f) .

2. The (p, g)-biharmonic projection*

7* As a preparation for the (p, g)-biharmonic projection, we
introduce a number of families of functions on R. Let MvZ{R) be the
class of continuous functions with finite energy integrals; Mp2{R) and
Mpi(R) the Wiener and the Royden p-algebras on R; and Npi(R) the
potential p-subalgebra of Mpi(R) for i = 2, 3, 4, (cf. [ 3 ], [10], and
[11]) We shall often omit R and write Mpi and Npi instead of Mpi(R)
and Npi(R). For the sake of simplicity, we set Xτ = {f\TfeX} and
XY = X Γ) Y for given classes of functions X, Y, and a given operator
T. Furthermore, we write Mi3 = Mpi(Mqj)Jp and JV<y = Npi(Ngj)Jp for
all i, j . Let P', β, and E be the classes of essentially positive func-
tions, bounded functions, and functions with finite energy integrals
respectively. Set Hpl = HPP', Hp2 = H*B, Hp3 = H9E, and iJ,4 = H'K,
where K — BE. It is known that the direct sum decompositions
Mpi = HpiQ)Npi are valid for all i. The p-harmonic part of a func-
tion feMpi is called the ^-harmonic projection of Mpi and denoted by
πpif. It is also known that the decompositions are orthogonal in the
sense that E(f) = E{πpif) + E(f - πpίf) for fe Mpi and i = 3, 4, (cf.
e.g. [10]). Let

and

Φi5 = MisiFri)^ , i, 3 = 1, 2, 3, 4 .

THEOREM 1. Ow an arbitrary Riemannian manifold R (hyperbolic
if p = 0), the functions in Φί3 have a unique decomposition into (p, q)-
biharmonic functions and (p, q)-potentials:

Proof. Let fe Φi3 . By the decomposition theorem of Mpi and
Mqj, f = τrpί/ + hi with ττpi/ G Hpi and ^ e iSΓpi, ΔJ = τrgiz/p/ + fcy with
7rgi^p/ G Jϊ g i and kj e Nqj. Since TΓ^ Z/^/ G i ^ and F^i c Fpl9 the function
w<i = πVif + GpπqjJpf is well defined. By Lemmas 1 and 2, we see
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that wiό e Wpq for all i, j , and wi3 e Φi3 for i = 1, 2, and all j . In view
of Lemma 4,

E(wi3) ^ #(τrp4/) + E(Gpπq3Apf) = #(τr^/) + Gp(πqjApf, πqjApf) < oo

for i = 3, 4. Therefore w^ e TFp̂ Φij for all i, i . It remains to show
t h a t / - wί3 e Ni3Φi3. Clearly Ap(f -wi3) = k3 e Nqj and πqjAp(f - wi3) = 0.

By Lemma 2, / - w4i = hi — Gpπq3Apf e Npi. Therefore w^ + (/ — % )
is the desired decomposition.

To prove the uniqueness, let v e WpqΦi3 Π Ni3Φi3. Since Apv e ίfgi Π
•WffJ = {0}, v G Hpi Π iVp. , and consequently v = 0 on i?.

We call the function w^ e WpqΦi3 in Theorem 1 the (p, qybiharmonic
projection of fe Φi3. It is the solution of the (p, g)-biharmonic Dirichlet
problem with

w»i [ βi = f I /S* and Apwi3 \ β3- = Λp/1 /9, ,

where β{ and /5y are the p-and g-harmonic boundaries corresponding
to Mpi and Mq3 respectively. From the uniqueness of the decomposi-
tion, we see that the solution is unique except for the cases i = 1 or
j = 1. In these cases there exist singular ^-harmonic functions which
vanish on the p-harmonic boundary.

3* (p, #)-quasiharmonic classification of Riemannian manifolds*

8* The (p, g)-biharmonic projection was obtained in Theorem 1
for certain restricted families of functions on arbitrary Riemannian
manifold. In order to relax the conditions on the families, it is
necessary to impose conditions on the manifold. We shall see that
such conditions are intimately related to the (p, g)-quasiharmonic
classification of manifolds.

Denote by Ox the class of Riemannian manifolds on which there
exist no X functions, and by P the class of positive functions. The
various (p, g)-quasiharmonic null-manifolds are determined completely
by the p-harmonic Green's function and the g-elliptic measure:

THEOREM 2. On a q-hyperbolic Riemannian manifold R (hyperbolic

if P = 0),
( i ) R g OQpqP if and only if Gpeq < co,
(ii) R& OQpqB if and only if supRGpeq < oo,
(iii) R $ OQpqE if and only if Gp(eqy eq) < oo,
(iv) R g OQpqK if and only if supΛGpeff < oo and Gp(eq, eq) < oo.

Proof. For every u e Qpq and every regular subregion ΩczR,

u(x) = hζΩ(x) + gpΩ(x, y)eq(y)dy .
JR
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Suppose jβgOρ p, i.e., there exists a veQpqP. Clearly v is p-super-
harmonic and bounded from below on R. Therefore hζ = limΩ^RhζΩ

exists. By the monotone convergence theorem,

Gpeq = lim gpQ{ , y)eq{y)dy = u - hζ < co .
Ω^R JR

Conversely, GpeqeQpqP, and ( i ) follows. Relation (ii) is established
in a similar manner.

Suppose R£ OQpqE and take a ve QpqE. For every regular subregion
Ω c R,

v = hf + GpΩeq

and

E(v) = E(h>°) + E(GpOeq) .

As in the proof of Lemma 4,

E{GpΩeq) = Gpfl(eff, eff) .

The monotone convergence theorem yields

l im GpΩ(eq, eq) = Gp{eq, eq) .
Ω-*R

Since Gp(eq) — GpΩ{eq) is p-harmonic on Ω, Lemma 2 implies

E(Gpeq) ^ lim E(GpΩeq) ^ ^(v) < co .
Ω-*R

By Lebesgue's convergence theorem,

Gp(eq, eq) = E(Gpeq) < - .

Conversely, if Gp(eq, eq) < oo, then Gpeq < oo and ApGpeq-eq. By
virtue of

#(Gpeg) ^ lim JS7(Gpfleff) ^ GP(eq, eq)< oo ,

Gpeρ e QPff-E and (iii) follows. The last assertion of Theorem 2 is an
immediate consequence of (ii) and (iii).

9. An important bi-product of the proof of Theorem 1 is that
the (p, g)-biharmonic functions restricted to the class Φi3 can be uniquely
decomposed into the p-harmonic part and the potential part:

THEOREM 3. On an arbitrary Riemannian manifold R (hyperbolic
if p ΞΞ 0), every function w^ e WpqΦi3 can be uniquely written as

Wij = Mi + GpVj ,
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with Ui e Hpi and v3- e Hqj for i, j = 1, 2, 3, 4.

4* Nondegenerate manifolds*

10* We shall show that, by imposing a suitable condition on the
manifold Ry the restrictions we have set on the functions which have
(P, #)-biharmonic projections can be relaxed.

We write Xγ = P, X2 = B, X3 = E, X4 = K, and we let WpqXx(Xs)Λp

stand for WpqMpl(X3)Δp.

THEOREM 4. On a Riemannίan manifold which carries QpqXc
functions,

with i = 1, 2, 3, 4, α^d j = 2, 4.

Proof. It is sufficient to show that fe WpqBΔp implies thej)-
harmonizability of / on i? £ Oρ P .

For every regular subregion β of i2, and every fe WpgBj ,

f = hf + ί gvΩ{ ,y)Avf{y)dy .

gSince R £ 0QpqP, Gpeq < oo by Theorem 2. In view of | gpΩ Apf | <̂  k

for some constant k, the Lebesgue convergence theorem implies the

existence of the limit of limfl_Λl gpΩ{ , y)Δpf{y)dy. Thus hf converges,

and / is p-harmonizable.

11* With suitable conditions imposed on the manifold, we have
the following direct sum decompositions of (p, g)-biharmonic functions:

THEOREM 5. On a Riemannian manifold R which carries positive
Qpq-functions,

with i = 1, 2, 3, 4, and j = 2, 4. Moreover,

WpqXi(Xs),p - Hpi 0 GpHqj

if and only if RgOQ Xit

The proof makes use of Theorems 2, 3, and 4.

On a manifold R g Oρ x <, let 9?, ψ be continuous functions on the
harmonic boundaries βι and βά corresponding to Mpi and Mqj respec-
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tively. The second assertion of Theorem 5 implies that if h% and h%
are solutions of the p-and g-harmonic boundary value problems with
boundary values φ and ψ respectively, then our (p, g)-biharmonic
Dirichlet problem has a solution which is in WpqXi{Xj)Δp and takes
the form h% + Gph

q

Φ.

5* Special density functions*

12* In the case that the density function is bounded from below
by a positive constant, we have more explicit results:

THEOREM 6. If inίBp(x) > 0 on a q-hyperbolic Rίemannίan
manifold, then

and

WMX,),, = Hpί 0 GpHgJ

with i = 1, 2, and j = 2, 4. Furthermore, if \ p(x)dx < oo, then the

above assertion is true also for i — 3, 4.

Proof. To prove the first assertion, it is sufficient to show that
R £ OQpqB for infβ p(x) > 0. On every regular subregion Ω, we have

1 = hlΩ + l gpΩ( , y)p(y)dy, and consequently Gpp ^ 1 upon letting

Ω -> R. Therefore Gpeq ^ Gpl £ 1/m with m = infΛ p. By Theorem 2,

R g OQpqB. Suppose furthermore that \ p(x)dx < oo. Then the volume

of R is V(R) = [ dx ^ 1/m ί p(x)dx < oo and

p { q , q ) ^ { )
m2

The second assertion follows from Theorem 2.

13* By the fact that gp(x, y) ^ gr(x, y) for p ^ r, and Theorem
2, we have the following:

PROPOSITION. 0 ^ α q-hyperbolic Riemannian manifold R (hyper-
bolic if p = 0),

( i ) ° v c °QPQB c O ρ M j f , αwd OQpqP c 0 ^ ^ c OgMjr,
(ii) OQpqX c O Q r ς X /or p ^ r,
(iii) O Q ^ X C O ^ s X /or g ^ s,
(iv) Oρp g Z c O Q r s X for p^r and q^s, with X = P, B, E or K.
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We note that if R is g-parabolic, Qpq = Hp and 0 = OHPP c OHVB c
O^p* = O^p^, that is, (i) is still true. However, (ii)-(iv) are no longer
valid, for 0 = OHPP = OHrP, OHrB c OHPB, and OHrE = 0 ^ * c O^p* =
0 ^ if p :> r.

From (iv) of the above proposition, we see that if the (r, s)-
biharmonic Dirichlet problem is solvable by the decomposition method
of Theorem 5, then the (p, g)-biharmonic boundary value problem has
a solution for p |Ξ> r and g }> s. In particular, the (p, g)-biharmonic
Dirichlet problem is solvable if the biharmonic problem is.
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