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ON TIGHTEST PACKINGS IN THE MINKOWSKI PLANE

R. L. GRAHAM, H. S. WITSENHAUSEN AND H. J. ZASSENHAUS

The J. H. Folkman and R. L. Graham 1969 method of
obtaining a packing inequality for finite plane simplicial com-
plexes that are admissible for Euclidean distance is generalized
for arbitrary Minkowski distances, a slackness measure is
defined and the N. Oler 1961 result concerning tightest admis-
sible Jordan triangulations is extended to tightest finite
packings.

1* Introduction* The classical problem of the geometry of
numbers is concerned with the existence of optimal lattices in real
affine %-space Rn meeting geometric conditions with regard to a
Minkowski distance d. For example, the Minkowski packing problem
asks for the existence of ^-dimensional lattices L of Rn of minimal
mesh (critical lattices) such that the ώ-packing condition

d(P, Q) ^ 1

is satisfied for any two distinct points P, Q of L. Since the work of
Thue on circle packings in the plane, many people have noted that
the mesh of a lattice is the inverse of the density of its points and
have asked whether there are arbitrary pointsets of maximal density
satisfying the packing condition. C. A. Rogers [8] showed in 1951,
for example, that for the Euclidean plane no packing is denser than
the critical lattice.

The question which first was taken up by Thue concerns itself
with the metric characteristics of finite pointsets of R2 satisfying the
Euclidean distance packing condition. In this paper we develop the
motivation for giving the metric characterization in terms of invariant
measures and we solve the Thue problem (which was solved for plane
packings in Jordan polygons by N. Oler [3] in 1961) for the vertex
set of arbitrary finite plane simplicial complexes meeting the rf-packing
condition (cf. Theorem 4), thereby extending the method used by
Folkman and Graham [2] in the case of Euclidean distance.

It is interesting to observe that the plane packings of a given
finite number of points of minimal slackness measure (cf. [9]) must be
part of a critical 2-lattice if the unit ball defining d is strictly convex.
On the other hand there are infinite irregular packings of maximal
density which are not subsets of a critical 2-lattice.

Of course, the corresponding questions can be considered in more
than two dimensions. As a consequence of the work of Minkowski,
it is clear what the invariant measures for convex bodies must be,
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although the extension to arbitrary simplicial complexes requires cer-
tain modifications.

The final sections of the paper indicate the possibility of extending
the study of equations in combinatorial topology (which forms the
beginning of algebraic topology) to the study of inequalities for simpli-
cial complexes (which forms the beginning of metric topology).

2* Affine Minkowski spaces*

DEFINITION. A linear Minkowski space is a finite-dimensional real
Banach space. That is, it is a real linear space provided with a
norm x —> ||a;|| such that (i) ||λ£c|| = |λ| ||a?|| for real λ, (ii) \\x + y\\ ^
11 x 11 + 11 y 11 and (iii) 11 x \ | = 0 => x = 0. Thus a norm is a convex, posi-
tively homogeneous function vanishing only at the origin.

The unit ball {#|||#||<^1} is a compact convex set symmetric
about the origin and it characterizes the norm.

An affine Minkowski space is a metric space obtained from a real

affine space by defining a distance d(A, B) or \AB\ by d(A, B) = \\AB\\
where (i) the vector AB is an element of the linear space of equival-
ence classes, modulo translations, of ordered pairs of points (A, B) and
(ii) || || is a norm on that linear space.

In an affine Minkowski space there is a family of unit balls dif-
fering among themselves only by translations.

Convexity of distance. The convexity of the norm implies that
the distance from a fixed point F to an arbitrary point P is a convex
function of P, for P varying over the affine Minkowski space or, a
fortiori, over a convex subset thereof, such as a straight line. This
is a key tool of Minkowski geometry, used as follows. Let [A, B]
denote the line segment joining points A and B, including these points,
while (A, B], [A, B) and (A, B) denote the remainder of this set when
A, B or both are removed.

FACT 1:

PB\ ^ \PC\.
PB\ < \PC\.

( i ) If I PA I ̂  \PC\ and Be [A, C] then
(ii) If
(iii) If

PA\ < \PC\ and Be [A, C) then
PA\ ^ \PB\ and Be [A, C] then \PB\ ^ \PC\.

(iv) If \PA\< \PB\ and Be [A, C) then \PB\ < \PC\.

Some affine properties. In affine geometry two figures are called
"similar and similarly situated" or "parallel" if they differ either
by a translation or else by a homothety (alias: dilatation). A homo-
thety of center C and ratio λ (real, nonzero) sends a point P into the
point Q satisfying CQ = XCP. In such figures corresponding pairs of
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points determine parallel segments.
Two triangles ABC and A'B'C' with parallel bases BC and B'C

are said to have the "same altitude" when for any point P on line BC
the fourth vertex Q of parallelogram PAA'Q belongs to line B'C.

FACT 2: The ratio of the areas of these triangles (an affine invari-
ant) is the ratio of their bases, considered as proportional vectors and,
a fortiori, of the lengths of their bases.

The ease of the plane. Some properties of the affine Minkowski
plane, valid for all norms, are needed for the sequel. Denote by Δ*
the infimum (which, by compactness, is actually a minimum) of the
areas of all equilateral triangles with sides of unit length. The refer-
ence area with respect to which areas are measured is irrelevant since
all properties ultimately refer to ratios of areas. In the Euclidean
case, Δ* is V 3 /4 unit squares.

LEMMA 1. The area E of an equilateral triangle with sides of
length X is not less than X2Δ*.

Proof. A homothety of ratio λ"1 and arbitrary center maps the
given triangle into a triangle with unit sides and area X~2E which
cannot, by definition, be less than zf*.

The sets {P\ | CP\ = r) for given C and r > 0 are called Minkowski
circles of center C, radius r.

LEMMA 2. If point P is not located on line £f, then there exists
at least one equilateral triangle PQR with Q and R on £<?.

Proof. Let A, B be distinct points on £<?. By continuity, the
Minkowski circles with centers A, B and radii \AB\ have common
points. Let C be one of them. The triangle ABC is equilateral. Draw
parallels to AC and to BC through P. Together with £f they form
a triangle parallel to triangle ABC, hence, equilateral.

3* A lower bound on the area of a triangle*

For a triangle PλP2Pz it may be assumed without loss that sι =
PZPBI ̂  s2 = \PiPsl Ξ> s3 = \P1P2\* Then the three triangle inequalities

are subsumed under

When PγP%Pz are collinear the triangle is called degenerate and
(1) holds with equality. The converse of this statement is only true
in the special case where the unit ball is strictly convex. On the
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other hand, the area A of the triangle vanishes if and only if it is
degenerate. Thus if s2 + s3 — st > 0 then A > 0. In Minkowski geo-
metry the lengths of the sides of a triangle do not determine its area
but a lower bound can be obtained when (1) holds with strict
inequality.

THEOREM 1. The area A of a triangle with side lengths sλ Ξ> s2 ^ s3

is no less than s2A*(s2 + s3 — s^.

Proof. Let Pl9 P2, P3 be the vertices opposed to sl9 s2, s3, respec-
tively. Construct (Lemma 2) an equilateral triangle P2RS with RS
on the line and in the direction PγP3. Let E be its area and λ its
side length. Then λ + sι ^ s2 + s3. For indeed interval [RS] cannot
be contained in interval (P^) because this would imply sx = | P2PZ | g
|P2S| + |SP3 | = \RS\ + ISPsI = \RP*\ < IPΛI - s2. If P, and/or P3

belong to [RS] then convexity of the distance from P2 to R, (Pt or
P3)y S gives s3 ^ λ to which one need only add s2 ^ sx. If interval
[i2S] does not meet [PiP3] then it cannot be on the side of P3 by
convexity of the distances from P2, unless sι = s3 = λ whence λ + sι =
s2 + s3. With RS on the side of Px one has s3 = |P2PJ ^ |P 2S| +
|SPX | - IΛSI + ISPJ = |i2PJ so that s2 + s3g I P ^ I + \RP,\ = \RP,\^
RP2\ + IP2P31 = λ + SL

The triangles P2RS and P2PiP3 have a common altitude so that
A = s2E/X. By Lemma 1, A ^ s2̂ ί*λ ^ M^fe + s3 — s^.

4* Classification of angles*

DEFINITION. A proper angle of vertex P is a closed convex set
bounded by two half lines, carried by distinct lines, with common
endpoint P.

When the two half lines merge into a single half line one has the,
improper, zero angle. When the convex set becomes a half-plane one
has the, improper, straight angle.

DEFINITION. TWO angles are supplementary when their intersec-
tion is a zero angle and their union a straight angle.

Thus any angle has two supplements differing only by reflection
in the common vertex. The supplements of a proper angle are proper
angles.

One way to discuss angles quantitatively is to study the distances
between points at unit distance from the apex on the two sides of
the angle and its supplement.

Consider angle XOY where \OX\ = |OΓ| = 1. Let Z be sym-
metric to X with respect to 0, so that \OZ\ = 1.
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DEFINITIONS. The angle XO Y will be called

narrow when \XY\ < 1

wide when | YZ \ < 1

intermediate when \XY\^1 a n d \ Y Z \ ^ 1

critical when \XY\ = 1 .

By the triangle inequality \XY\ + | YZ\ ̂  2, hence, an angle can-
not be both wide and narrow, though \XY\ = I YZ\ — 1 is possible
(take the unit ball to be a parallelogram).

The classification of angles as narrow, wide and intermediate is,
therefore, exhaustive and mutually exclusive.

5* Properties of angles*

LEMMA 3. An angle contained in a narrow angle is narrow.

Proof. It suffices to consider the case where the angles have a com-
mon side. Let angle YOZ be contained in narrow angle XOY with
I OX! = \OY\ = \OZ\ = 1, | X Γ | < 1. Construct the parallelograms
OYXR and OYZU. Line OZ meets XY at Q and EX at S. Line
ZU meets XY at V. Convexity of the distances from 0 to X, Q, Y
implies \OQ\^1. Convexity of the distances from O to S, X, R
implies \OS\ > 1. Hence, Z belongs to the intervals [Q, S) and [V, U),
V belongs to interval (X, Y). Convexity of the distance of Y to
F, Z, U when | YV\ < \ YX\ < 1 and | YU\ = \OZ\ = 1 implies | YZ\ <
1. Thus, angle YOZ is narrow as claimed.

If in the above argument one had \XY\ ̂  1, then Z is shown to
belong to [Q, S] so that | YV\ ̂  | YX\ ^ 1 and one concludes | YZ\ ̂  1.
This may be stated as

LEMMA 3'. An angle contained in a narrow or critical angle is
itself narrow or critical.

Another crucial fact is

LEMMA 4. In a triangle, a side opposed to a narrow angle is
strictly shorter than one of the other sides.

Proof. Let ABC have a narrow angle at B. Construct D on the
half line from B through C so that \BD\ = \AB\. By assumption
AD\ < \AB\. If C belongs to interval [B, D] then the distances from A

are in order \AB\, \AC\, |AD|< \AB\ so that \AC\< \AB\ by convexity.
If D is between B and C then \AC\ ^ \AD\ + \DC\<\BD\ + \DC\ =
\BD\.



704 R. L. GRAHAM, H. S. WITSENHAUSEN AND H. J. ZASSENHAUS

LEMMA 5. If XOY is an intermediate angle then there exists an
equilateral triangle YUV with U, V on line OX and 0 contained in
segment [U, V].

Proof. One may assume \OX\ = \OW\ = \OZ\ = 1 with W on
half line OY, Z symmetric to X with respect to 0. Then \XW\ ̂
1, I WZ\ ;> 1. Construct equilateral triangle XRO with R on the same

side of line OX as W. A translation of XRO by OZ gives OSZ. If
Y is located in angle ROS, line 0 Y meets interval (RS) at P. Trans-
late triangle XRO by RP then perform a homothety of center 0 to
bring P onto Y, obtaining the desired triangle. If W is located in
angle XOR then \XW\ = 1 by Lemma 3' and XOW, an equilateral
triangle, yields the desired triangle, by homothety. A similar argu-
ment applies if W is located in angle SOZ.

LEMMA 6. If triangle ABC has an intermediate angle at A, then
its area a is no less than J*\AB\ \AC\.

Proof. By Lemma 5 there exists an equilateral triangle BRS
with RS on line AC and Ae [R, S]. Let λ be the length of its sides
and E its area. By convexity of the distances from B one has \AB\ ^
λ. Since triangles BAG and BRS have a common altitude one has,
using Lemma 1, a = E-\AC\/X ̂  z/*|AC|λ ^ J*\AC\ \AB\.

6* A bound on the area of certain quadrilaterals*

THEOREM 2. In a convex quadrilateral in τvhich any diagonal is
at least as long as any side, the area is no less than A*(st + s't'),
where s, t are the lengths of an appropriate pair of adjacent sides and
s', V are the lengths of the two other sides.

Proof. If any of the four angles of convex quadrilateral ABCD
were narrow, then the diagonal opposite to this angle would, by Lemma
4, be strictly shorter than one of the sides, contradicting the hypo-
thesis. Assume two adjacent angles say, A, B, are both wide. Assume
without loss of generality that D is at least as close as C to line AB.
Draw CX parallel to and oriented as BA. Then, angle BCX, parallel
to the supplement of the wide angle at B, would be narrow. By
Lemma 3, angle C would also be narrow, a contradiction. Thus there
is a pair of opposite angles that are both intermediate. Applying
Lemma 6 to the corresponding triangles establishes the claim.

7* Invariant measures on plane simplicial complexes*

DEFINITION. A collection S^ of points, straight segments and
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solid triangles is called a finite plane sίmplicial complex (FPSC) if:
1. The number α o (^) of points in £f ("vertices" or "0-faces"

of Sf) is finite;
2. Every straight segment in S("edge" or "1-face" of £f) is the

closed straight segment [PQ] connecting two distinct vertices P, Q of
£* such that no vertex of Sf is between P and Q; the intersection of
two distinct edges of Sf either is empty or it is a vertex of £f;

3. Every solid triangle in S^ ("2-face" of S?) is the convex hull
[PQR] of some set of three distinct vertices P, Q, R of £f such that
the edges [PQ], [QR], [RP] of [PQR] are edges of & and that P, Q, R
are the only vertices of £f contained in [PQR].

It follows that the number a^S^) of edges of £f and the number
(h(<9*) of 2-faces of £f are finite.

If [PQR] is a 2-face of 6^ then P, Q, R are noncollinear.

The intersection of two 2-faces of S^ either is empty or it is a
common vertex or it is a common edge. In the latter event the
vertices which are not in common lie on opposite sides of the straight
line generated by the common edge of the two solid triangles.

An edge of 6^ either is an edge of 2, 1 or 0 solid triangles of
£/ί In the first case it is an inner edge, in the second and third
cases it is a boundary edge; in the second case it is a bounding edge,
in the third case it is a nonbounding edge.

A vertex of S^ either is a boundary vertex (i.e., a vertex of a
boundary edge of S^ or an isolated vertex) or it is an inner vertex.
The boundary edges and vertices of £f form an FPSC which shall
be denoted by d^ and which shall be called the boundary of S^.

DEFINITION. The pointset | £f | formed by the set-theoretic union
of the 0-, 1- and 2-faces of the finite plane simplicial complex &* is
called the support of £f.

The support pointset also are called triangulable (plane) pointsets.
The support of dS^ is easily seen to be the boundary of \6^\.

Examples of FPSC's are:

I. The empty FPSC; it will be denoted by 0 and it is charac-
terized by the numerical relations

αo(0) = αx(0) = α2(0) = 0

II. The basic ^-complexes formed by just one vertex P; they are
denoted by {P}; these FPSC's are characterized by the numerical
relation

= 0
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III. The basic 1-complexes formed by two distinct vertices P, Q
and the straight segment [PQ] joining P, Q; it is denoted by {PQ};
the FPSC's obtained in this may are characterized by the numerical
relations

= 2, al£f) = 1, α 2 ( ^ ) - 0

IV. The FPSC formed by three noncollinear vertices P, Q, R, the
straight segments [PQ], [QR], [RP] joining them and the solid triangle
[PQR] generated by them; it is denoted by {PQR}; the FPSC's obtained
in this way are called the basic 2-complexes and they are charaterized by

- 3 , alSf) = 3 ,

LEMMA 7. The union and the intersection of two triangtdable
plane pointsets are triangulable.

Proof. One has to show that for any two FPSC's S>Ί, S^ there
are FPSC's <&, j ^ ~ such that

This is clear if 6f[ and ^f are compatible in the sense that the
union of Sf[ and of &% is a FPSC. In that case we set

In general, for the the purpose of constructing ^/, ^~, we will
have to modify £^ into another FPSC S^' with the same support as
c5?(ΐ = 1, 2) in such a way that <pf, ,9%' are compatible.

This will be done by mutual refinement of &[\ £%'m
An elementary refinement of S/[ is defined as the replacement of

6/[ by one of the following FPSC's:
(a) exchange of [PQ] for X, [PX], [XQ] and a new vertex X,

retaining the other items of Sf[ provided X is between P, Q and [PQ]
is a nonbounding boundary edge of <5f;

(b) exchange of [PQ], [PQR] for [PX], [XQ], [XR], [PXR], [QXR]
and a new vertex X, retaining the other items of ,ζ/[ provided X is
between P, Q and [PQ] is a boundary edge of 9̂f;

(c) exchange of [PQ], [PQR], [PQS], for [PX], [XQ], [XR], [XS],
[PXR], [QXR], [PXS], [QXS] and a new vertex X provided X is be-
tween P, Q and [PQ[ is an inner edge;

(d) exchange of [PQR] for [PX], [QX], [RX], [PQX], [QRX],
[RPX] and a new vertex X, retaining the other items of S/[ provided
X is in the interior of the 2-face [PQR] of f̂.

In any case one obtains a new FPSC with the same support as f̂.
Any FPSC obtained by a chain of elementary refinements from
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SΊ is a refinement of S^.
Utilizing for the purpose of refining Si both the vertices of ,5f_ί

as well as the points which are obtained by intersecting an edge of
J5? with a nonparallel edge of Sζ-i we obtain compatible refinements
SV of ^? for i = 1, 2!

DEFINITION. A real valued function / of the FPSC's is called
additive if it satisfies the conditions:

(1) / depends only on the support of its argument;
(2) if Si, Si are compatible then

(2) f(sn) + /cs?ί) = /Gs/fu ^ ί ) + /(«<?? n ^ ) .

Using the terminology introduced in the proof of Lemma 7 it is
clear that condition (1) is satisfied if and only if / does not change
under elementary refinement.

Furthermore, any real valued function / of the FPSC's satisfying
(1) induces a real valued function / on the triangulable (plane) point-
sets by setting

The condition (2) is tantamount to the condition

(2') /(so + f(S2) = f(s, u s2) + /(& n s2)

for the function /, to be satisfied by all pairs of triangulable plane
pointsets Si, Si.

Examples are:
I. The 1-function

II. The area function

Σ
[PQR] e.r

III. The perimeter function

^(S^)= Σ \PQ\+ Σ
[PQ] nonbounding

IV. The Euler-Poincare characteristic

It is not difficult to verify in each case the invariance under ele-
mentary refinement and the additivity condition.

The additive functions form a linear space over the real number
field .^. For the four FPSC's 0 ,



708 R. L. GRAHAM, H. S. WITSENHAUSEN AND H. J. ZASSENHAUS

£%= {P} , (P some point) ,

c^ = {PQ} y (pf Q points of distance 1) ,

Si = {PQR} , ([PQR] an equilateral triangle of side length 1 and

of area A*) ,

we obtain the following table of values:

0

•9i

1

1

1

1

1

I

0

1

1

1

0

0

1

3

0

0

0

Δ*

Noting that

J* > 0

it follows that the 4 functions 1, χ, ^ , St? are linearly independent.
They have the following additional properties:

( 3 ) In variance under translation;
( 4) The function restricts to a linear function of | PQ | for basic

1-complexes [PQ];
(5) Continuity,1

DEFINITION. Real valued functions of the FPSC's satisfying the
conditions (l)-(5) are called invariant measures.

THEOREM 3. The invariant measures form a linear space over
& spanned by 1, X, .^, s/*

We have pointed out already that 1, χ, .ζP, j y are linearly inde-
pendent invariant measures.

Let / an invariant measure.
In order to see that / is an ^-linear combination of 1, χ, ^ , JY

it suffices to show that the difference / — /(0) 1 is an ,^-linear
combination of χ, ^ sf.

1 A sequence (Sζ) of FPSC's is said to be convergent towards the FPSC Λ/ if
for some index N we have the equations αo(--5Ίθ = αoCS/O f° r a ^ n > N and if, more-
over for n > N the vertices of S^τ can be so numbered that they form CLQ(S^) point-
sequences (Pin) converging towards the vertices Pi of ,5/^(1 ^ i ^ ao(S^)) and if, finally,
the edges [PinPjn] or the 2-faces [PinPjnPkn] belong to SK, if and only if [PiPj] or
[P*PiPifc] belong to S<

The continuity of the additive function / requires that lim^co/Oi^) = f{£^) when-
ever the sequence («5H) converges to &.

2 Compare Blaschke [1].
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In view of the remark that every FPSC is the union of finitely
many compatible basic FPSC's it suffices, because of (2), to show that
the restriction of an invariant measure vanishing on 0 to the basic
FPSC's is an .^-linear combination of the restriction of χ, ^, s*f.

We note that χ restricts to 1 on the nonempty basic FPSC's.
Due to the translation invariance of / there exists a real number

λx such that / + λxχ restricts to zero on the basic 0-FPSC's. With-
out loss of generality we assume that already / itself restricts to
zero on the basic 0-FPSC's.

By (4) there exists a real number λ2 such that / + λ 2 ^ restricts
to zero on the basic 1-FPSC's. Without loss of generality we assume
that already / itself restricts to zero on the basic 0- or 1-FPSC's.
Hence (2) assumes the stronger form

f{siusi) = f{si) + f(Si)

in the event that S^, Si are FPSC's which have no 2-face in common.
We apply this strict additivity and the translation invariance of

invariant measures and the continuity property to the rectangular
simplicial complexes

<SS(x0, y0, a, β) = {(x0, y0), (x0 + a, y0), (x0, y0 + β), (x0 + a, yQ + β) ,

[(xQ, yo)(xo + a, yQ)], [(xQ + a, yQ)(x, + a, y0 + β)] ,

[(x0 + a,y0 + β)(x0, y« + β)], [(xQ, y0 + β)(x09 y0)] ,

[fan, 2/o)(αo + «, Vo + β)] ,

[̂ o, Vo)(%o + 0Ly yQ)(x0 + a,yo + β)] ,

[(xQ, yo)(xo, y0 + β)(x0 + a,yo + β)]}

where

«o,2/o,α,i8e^, cc > 0 , β > 0 ,

and obtain by application of the usual Euclid-Riemann-Jordan area
theory that

(xOf Vo, a, β)) = aβf(S*(0, 0, 1, 1))

= /(^(0, 0, 1, l))j^(^(xG9 2/o, α, β)) .

Hence,

/ - /(^(0, 0, 1, 1)) j * -

and the theorem is proved.

COROLLARY. The invariant measures χ, ^, J^f are characterized,
up to proportionality, by the two properties that:
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(a) They vanish on the empty set)
(b) Under the application of a homothety in the ratio λ: 1 their

value is multiplied by 1, [λ[, λ2 respectively.
In this way dimensionality enters invariant measure theory.

8* A packing inequality*

DEFINITION. The finite plane simplicial complex Sf provides a
finite packing (for the given Minkowski distance function) if the
distance between any two distinct vertices is not smaller than 1 in
case the straight segment joining them belongs to the support of S^

Examples are provided by the FPSC with vertex set contained
in an admissible 2-lattice (see [7] for definitions).

DEFINITION. An inequality of the form

which is satisfied by the invariant measure / for all finite packings
Sf7 is said to be a packing inequality.

DEFINITION. The packing inequality

α o ( ^ ) ^ Λ ( ^ )

is said to be better than the packing inequality

if fγ Φ f2 and if f2 — fι is nonnegative for all FPSC's.
We note that the relation "better than" is nonreflexive, but

transitive; in other words, it establishes a partial ordering on the
packing inequalities. Therefore it makes sense to ask the question:
Is there a best packing inequality? Of course, if it exists at all it
will be unique.

The existence of a best packing inequality, conjectured earlier by
one of the authors, was proven for Jordan triangulations by N. Oler
[3] (1961) and for finite packings that are admissible for the Eucliden
distance function, using another method, by Folkman and Graham [2]
(1969).3 The method used by the latter two authors is generalized
here in order to show:

THEOREM 4. For every Minkowski distance d there is the fol-
lowing best packing inequality:

(3) a^) ^ ^§1 + *ψL +
ΔΔ Δ

3 The "best" property was not shown explicitly.
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Proof. Let us begin with the proof of the optimum property of
(3).

For this purpose we must show that any packing inequality

( 4 )

in which

/ = λo l

implies the inequalities

(5a)

(5b)

(5c)

(5d)

+ XX + λ 2 ^

^ 1 = 1 5

λ, 6 1/(24*)

Suppose ^ is a finite packing. There is a translation τ such
that the supports of the image packings r\j5^ are disjoint. Hence we
have the finite packings &> U ?(£*) U U τn~\SS) for all of which
(4) is valid so that the inequalities

λ0 +

or

aQ(S^) ^ Xjn

for n = 1, 2, are obtained. Hence

( 6)

and by substitution of {P} for ^ (β) yields (5b). Furthermore, upon
substitution of S for £f in (4) we obtain (5a).

Choose two points P, Q with d(P, Q) = 1. Let Po = P, P,= Q,
and choose P{ on the straight line joining P and Q so that d(Pif Pά) —
| i _ j [? ̂  j = 2, 3, . Let ^ ( P , Q, w) be the finite packing that is
provided by the vertices Po, , Pn together with the straight segments
[P0PJ, , [P^iPJ. Upon substitution of ^ ( P , Q, n) in (6) we obtain
the inequalities

n + 1 ̂  λx + 2X2n

or

λ2 ^ i - + (1 - λO/2%
Li

for w = 1, 2, •••; hence (5c) holds.
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Finally let [PQR] be an equilateral triangle of sidelength 1 and
of area Δ* and let S^{P, Q, R, n) be the finite packing provided by

the ( n ~λ ) vertices Pik which are obtained by setting
V Δ I

= iPQ + kPR (0 £i,0 ^k,i + k^n)

as well as the straight segments [PikPifk+1] (0 ̂  ί, O^k^n — 1 — i) and
[PikPi+ltk] (0^i^n-l-k,0^k)sLnά the n2 triangles [PikPi,k+ίPi+ltk\
(0^ί^n-l-k,0^k) and [P^P^^P^^] (0 ^ i ^ n - 1 - k, 1 ̂  k).
Upon substitution of *9*{P, Q, R, n) in (6) we obtain the inequalities

or

+ )/2Δ* - Xjn2Δ* - SXjnΔ*
nπ

for n = 1, 2, , hence (5d) holds.
Assume (3) does not hold. Then there must exist a finite packing

with minimum value of a{SS) = ao(<9*) + aγ{6^) + a2{S^) for which
(3) fails.

If aQ(S^) — 0 then both sides of (3) would vanish. Hence aQ(S^) >
0. Also, if α o (^) = 1 then a^S^) = a2(S^) = 0, χ(S^) = 1 and (3)
would hold. Thus, we must have ao(S^) > 1.

If .ζf is the union of two compatible nonempty FPSC's S^, Si
with empty intersection then we would find that a(S^)<a(S^) for
i = 1, 2 so that (3) would hold for both S^, Si. Since the four func-
tions α0, . j ^ .^, χ are strictly additive again (3) would obtain. Hence
we can assume Sf has only one connected component. This is the
same as saying that the support of £/* is a connected pointset.

If there is a nonbounding edge [PQ] of S^ then let us consider
the finite packing £/[ which is obtained by its deletion. Since ao(S/i) =
α o (^), aL(S^) = aiSS) - 1, a2(.9ϊ) = α 2 (^) it follows that a(S^) < a{£S)
and therefore (3) is satisfied for £/[. Moreover the right hand side
of (3) for £f is obtained by the addition of (1/2) 2|PQ| - 1 to the cor-
responding expression for f̂. Since this term is nonnegative by as-
sumption a contradiction arises. Thus it follows that every edge of
.ζ/* is bounding.

Among the edges of £f there is one of maximum length μ, say
the edge [PQ]. We make the further stipulation that the counter-
example .9* is chosen among the finitely many ones with the same
vertex set in such a way that the maximum length μ is as small as
possible. Furthermore assume the number of maximum length edges
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is minimal.
There are two cases.

I. [PQ] is a boundary edge. In this case [PQ] bounds precisely-
one 2-face of &* say [PQR], and [PQ] is the largest side of the tri-
angle [PQR]. Hence by Theorem 1

J^(PQR) ^(\PR\ + \RQ\- |PQ|)(max(|PR|, \RQ\))Δ*

and by the packing assumption (|Pi2|, |RQ| ^ 1) we have

(7) J*(PQR)I2Δ* - (I PR I + \RQ\ - \PQ\)/2 ̂  0 .

Upon deletion of [PQ] and [PQR] from 6^ we obtain a finite
packing ^ for which ao(&) = α o (^) , a{Sζ) < α ( ^ ) , χ ( ^ ) - χ ( ^ ) ,
J ^ ( ^ ί ) = J ^ ( ^ ) - J^(PQR) and P(^f) = P ( ^ ) - |PQ| + |PR| +
|RQ|. By the induction hypothesis since aL(S^) was assumed minimal,
we see that (3) must hold for ,5Pf. Thus

Z l j

2- 2/ί* 2

which contradicts the assumption that (3) fails for 6^

II. The edge [PQ] is an interior edge of £/: Suppose it is the
edge which is common to the 2-faces [PQR] and [PQS] of £Z Here
[PQ] is the largest side of both triangles; R and S lie on opposite
sides of the straight line connecting P and Q.

If |JBS| < \PQ\ then we could replace £f by the union of the
compatible finite packings Si and {P, Q, R, S, [PR], [RQ], [QS], [QP],
[RS], [PRS], [RSQ]} without changing any of the values of a0, χ, &*, S^.
But in the new counterexample the maximum length of the edges has
not changed though the number of maximum length edges has decreased
by 1. Since this is contrary to previous assumptions concerning 6^
we conclude that \RS\ S |PQ| In this case it is not difficult to see
that the quadrilateral PRQS is convex. By Lemma 4 none of the
angles PRQ, RQS, QSP, SPR is narrow. However, if two adjacent
angles in PRQS were both wide, then arguing as in the proof of
Theorem 2 we see that one of the interior angles must be narrow,
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again a contradiction. Thus, some pair of opposite angles of PRQS
must both be intermediate. Suppose this pair were PRQ and QSP.
If Si denotes the quadrangle packing {P, Q, R, S, [PQ], [PR], [QR],
[PS], [QS], [PQR], [PQS]} then by Lemma β we obtain

* ^ \PR\ \RQ\ + \PS\ \SQ\

and hence

2

(8) ^\PR\\RQ\ + \PS\\SQ\ - \PR\ - \QR\ - \PS\ - \QS\ +2

- (\PR\ - 1)(\QR\ - 1) + (\PS\ - 1)(|QS| - 1) ̂  0 .

Similarly, if the pair of intermediate angles were RQS and SPR then
we would have

J^(^)/J* ^ \PR\ \PS\ + \QR\ \QS\

and again (8) holds.
Now, if we delete [PQ] and the two triangles [PQR] and [PQS]

from £f we obtain a finite packing ^f for which aQ(^) = ao

< ai^), atiSζ) < α2(^), χ(^) = χ(^) - 1, J^(^t)
^(Pi2S) ,^(^) = ̂ ( ^ ) + |Pi2| + |i2Q| + |PS| + \SQ\,

and α(^f) < α ( ^ ) .
By the minimality assumptions on S^ (3) must hold for &[. Thus

- (J^(PQR) +

by (8). This contradicts the assumption that (3) fails for £^ and the
theorem is proved.

9. Tight packings* Theorem 4 suggests the following

DEFINITION. The slackness of a finite packing 6^ is defined as the
nonnegative number

The finite packing £f is said to be tight if its slackness is zero.
Going carefully through the steps of the proofs of Theorem 4 and

the preceding lemmas we obtain
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THEOREM 5. A finite packing 6^ is tight if and only if there is
a triangulation 6^f of \ £f \ using the same vertex set as 6^ such that
all edges are length 1 and all triangles of &" are equilateral of side
length 1 and of area A*.

COROLLARY. If there are only two equilateral triangles over any
basis then a connected packing without nonbounding edges is tight if
and only if its vertices belong to a critical lattice and its boundary
edges are of length 1 (for terminology see [8]).

As an application of Theorem 4 we can prove the result first
shown by N. Oler [4] that the vertices of an equilateral triangle of
sidelength 1 and area z/* generate a critical lattice and vice versa
(for the original statement and proof see [8]).

The packing inequality (3) suggests a metric treatment of the
FPSC's £f by associating with them the nonnegative dimensionless
packing constant

where μo(S^) is the minimum of the length of the edges of S^. This
packing constant is invariant under homotheties. It is independent
of scale changes for the Minkowski distance. It is zero if and only
if Sf is tight for the Minkowski distance obtained from the given
one by a scale change in the ratio μQ{£^): 1.
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