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RINGS OF QUOTIENTS OF ENDOMORPHISM

RINGS OF PROJECTIVE MODULES

R. S. CUNNINGHAM, E. A. RUTTER, JR., AND D. R. TURNIDGE

This paper investigates two related problems. The first
is to describe the double centralizer of an arbitrary projective
right iϋ-modiile. This proves to be the ring of left quotients
of R with respect to a certain canonical hereditary torsion
class of left ϋί-modules determined by the projective module.

The second is to determine the relationship between rings
of left quotients of R and S, where S is the endomorphism
ring of a finitely generated projective right ϋί-module PR. It
is shown that there exists an inclusion-preserving, one-to-one
correspondence between hereditary torsion classes (or loca-
lizing subcategories) of left ^-modules and hereditary torsion
classes of left E-modules which contain the canonical torsion
class determined by PR.

If QR and Qs are rings of left quotients with respect to
corresponding classes, then P($$RQR is a finitely generated
projective right Q^-module with Qs as its Q#-endomorphism
ring. Necessary and sufficient conditions are obtained for the
maximal rings of left quotients to be related in this manner.
In particular, this occurs when PR is a faithful .R-module and
R is either a semi-prime ring or a ring with zero left singular
ideal. The situation considered includes the case where S is
an arbitrary ring, SP is a left ^-generator, and R is the S-
endomorphism ring of SP When SP is a projective left S-
generator, the maximal rings of left quotients of R and S
are related in the manner considered above.

We present a brief summary of those aspects of torsion theories
and generalized rings of quotients required in the sequel. We include
it both for the convenience of the reader and to permit us to establish
notation and terminology. This material has been drawn from papers
by Dickson [4], Gabriel [8], and the Walkers [18], which may be
consulted for a more detailed treatment. Other excellent sources are
a paper of Goldman [9] and the recent monograph by Lambek [12],
which also includes an extensive bibliography of work in this area.

Throughout this paper all rings will be assumed to be associative
and to have identities, and all modules to be unital. In order to
eliminate the necessity for opposite rings, module homomorphisms will
be written opposite the scalars with which they commute. All other
mappings will be written on the right. Also, unless specified other-
wise, the notation used is cumulative.

For a ring A, let A^/ί denote the category of left A-modules. A
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torsion class in A Λ £ is a nonvoid class JΞf £ A<^€ which is closed
under homomorphic images, extensions, and arbitrary direct sums. If
^ is also closed under submodules, it is called a hereditary torsion
class. Corresponding to each torsion class J7~ in A^£, there is a unique
torsion-free class,

= {Me A^€ I Hom^JV, M) = 0 for all Ne

The torsion-free class j ^ ~ is closed under submodules, extensions, and
arbitrary direct products. If ^~ is hereditary, ^ is also closed
under injective hulls. For any Me A^£ there is a unique submodule
t(M) of M— the ^"-torsion submodule of M— such that t(M) e J7~ and
MJt(M) e jr.

Gabriel [8] has exhibited a one-to-one correspondence between
hereditary torsion classes in A^€ and idempotent filters / of left ideals
of A. The correspondences are

= {I\I is a left ideal of A with

and

/ > ^ " ( / ) = {Me A ^ I (0: m) e / for all m e M) ,

where (0: m) = {a e A | am = 0}. A filter / * is faithful if for any ae A,
(0: α) G / implies a = 0. A hereditary torsion class is called faithful
when its associated filter of left ideals is faithful. Thus jj^ is faith-
ful if and only if AA e ^".

Let ^ be a hereditary torsion class in A^. A module Me A.^
is ^"-injective if the functor Hom^(—, M) is exact on all short exact
sequences 0 — N' — JNΓ— iV/r -> 0 with iV" e ^ 7

Let j ^ denote the quotient category of A^£ with respect to the
hereditary torsion class jxT (See [8, pp. 365-369].) For any Me Λ^,
define the localization of M with respect to Jf via

L(M) = Hom^(A, M) = lim HomA(I, M/t(M)) ,

where / is directed by inverse inclusion. Since Stf is an abelian
category,

Q = Hom^ (A, A)

is a ring, called the ring of left quotients of A with respect to
For each MeA^f, the natural composition

Hom^ (A, A) x Hoπw (A, M) > Horrid (A, M)

makes L(M) a left Q-module. Furthermore, each map of modules in

A^/f induces a unique Q-homomorphism between their localizations.
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Thus L may be viewed as a functor from A ^ to q ^ . This functor
is covariant, additive, and left exact [18, Section 3J.

For each Me A^€, there exists a canonical group homomorphism
σ(M): M—>L(M). Moreover, σ(A):A—>Q is a ring homomorphism.
Thus each Q-module may also be regarded as an A-module. Hence
we may, and often shall, view L as a functor from A ^ to A^£.
When this is done, σ becomes a natural transformation from the
identity functor on A ^ to the functor L.

For each Me A^f, L{M) is ^"-injective and ^-torsion-free. Fur-
thermore, the kernel and cokernel of σ(M) belong to ^ 7 These pro-
perties characterize L(M), as is shown by the next proposition. We
shall deal with L(M) and with Q primarily in terms of this charac-
terization.

PROPOSITION 1.1. Let M and X belong to A^f and suppose that
X is ^"-injective and J7~ -torsion-free. If there exists an A-homomor-
phism f from M into X such that kerf and cokerf are in ^ 7 then
there is a unique A-isomorphism 7 from X to L(M) such that f°Ί~
σ(M). When M = A, L(M) is the ring of left quotients of A with
respect to ^~. In this case, if X is a ring in a manner compatible
with its structure as an A-module, 7 is a ring isomorphism.

Proof. Since ker / e J7~ and X is ^"-torsion-free, ker / = t(M).
Similarly, kerσ(M) = t(M). Thus there exists a unique A-isomorphism
7' of im/ onto imσ{M) such that f°Ίr — σ(M). Since coker/e,^7"*
and L(M) is ^-injective, 7' extends to an A-homomorphism 7 of X
into L{M). Moreover, 7 is unique since Hom^ (coker /, L{M)) = 0. By
symmetry, there exists a unique A-homomorphism d of L(M) into X
such that σ(M)oδ — f. Thus 7°δ is an endomorphism of X which is
the identity on im/. Hence 7°δ = lx since Hom^ (coker/, X) = 0.
Similarly, <5o7 = 1L{M), and so 7 is an isomorphism. The last assertion
is immediate from the uniqueness of the ring structure on Q [9,
Theorem 4.1].

PROPOSITION 1.2. For any M and N in A^-£l Hom^ (L(M), L(N)) ~
Homρ (L(M), L(N)). In particular, since Q = L(A) as left Q-modules,
Q = End,, (L(A)).

Proof. The first statement is [18, Lemma 3.7]. The remainder
is obvious.

Let M, M', Xe A^& and /: M: —> Mr be an A-homomorphism. In
order to simplify notation, we denote Hom^ (/, l x ) : Hom^ (ikF, X) —>
Hom4(M, X) by/*.
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LEMMA 1.3. Let f be an A-homomorphism from M to M' with
ker / and coker / in J7. If X is a ^-injective and J7~-torsion-free
A-module, then f* is an isomorphism from ΉomA(Mr, X) to ΈlomA(M, X).

Proof. Since X is ^"-injective and coker / e ^ 7 applying the
functor Hom^ ( , X) to the exact sequences

0 > ker / > M-?-> im / > 0

and

0 > im / —̂ -> Mr • coker / > 0

yields exact sequences

0 > Hom^ (im /, X) -^-* Horn, (M, X) > Hom^ (ker /, X)

and

0 > Hom^(coker /, X) * Ή.omΛ{M', X) -̂ -» Hom^ίim /, X) * 0 .

Since X is j^~-torsion-free and both ker / and coker / are in
Hom^ (ker f,X) = 0 and Hom^ (coker /, X) = 0. Thus /* and ί*
are isomorphisms. Composing these maps gives an isomorphism of
Hom^ (ikF, X) onto Hom4 (M, X); a direct verification shows that this
composition equals /*.

Among torsion classes in A^/f the £r(A)-torsion class is of special
importance. A left ideal I of A is dense if Hom4 (A/I, E(A)) = 0. The
dense ideals of A form an idempotent filter which contains all
faithful idempotent filters of A. Thus the corresponding hereditary
torsion class is maximal among all faithful hereditary torsion classes
in A^/ί. This class is called the E(A)-torsion class. The ring of quo-
tients of A with respect to the E{A)-torsion class is called the maxi-
mal ring of left quotients of A and is denoted by Q{A). If Q' is a
ring of left quotients of A with respect to a faithful hereditary tor-
sion class in A^f, there is a unique ring homomorphism of Q' into Q
extending the identity map on A. In fact, this is true if Q' is a
rational extension of A in the sense of Lambek [11].

The functor

has a right adjoint

H = Hom5 (P,

That is, there is an isomorphism
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Hom5 (F(M), N) = Horn, (AT, H(N)) ,

natural in M e R^^ and Ne s^^ [13]. This is equivalent to the exist-
ence of natural transformations

β: IR^ > HF and a: FH > Is^

such that

F{β(M))oa{F(M)) = lF{M) and β{H{N))o H{a{N)) = 1H{N)

for all MeR^f and Nes^£ [13, Proposition 8.5]. In this case, for
^£ one may define

a(N): P ®R Honis (P, ΛΓ) > N

via O (x) g)(a(N)) = (p)g for all p e P and ge Hom^ (P, N). Similarly,
for MeR^f, one may define

β(M): M > Hom5 (P, P ® Jlf)

via](p)((m)β(M)) = p(x)m for meJIί and pe P.
If the module PΛ is finitely generated and projective, the functor

F defined above also has a left adjoint

G = P* ®* ( ):

where P* = HomΛ (P, i2). That is, there is an isomorphism

Horn,, (G(N), M) = Hom5 (N, F{M)) ,

natural in i l ί e ^ / and Nes^/t. This is equivalent to the existence
of natural transformations

βΊGF >IR^ and oί\l8^ > FG

such that

a>(F(M))oF(β'(M)) = lF(Jf) and G(a'(N))oβ'(G(N)) = lσm

for all Me ̂ ^ ^ and Ne s^/ί. In this case, for Me R^^f one may define

(9®P® m)βf{M) = #(p)m

for"ge P*, pe P, and meM. Similarly, for Nes,^ one may define

for neN, where {x{} and {/J are a "dual basis" for PR. (See [3,
Chapter II, Proposition 4.5].) Since S= ΈndR(PR), both α and a! are
natural equivalences of functors when PR is finitely generated and
projective.
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If PR is projective, the trace ideal T of P is Σ/im(/)> where
f e P* = Hom^ (P, R). Thus T is an ideal of R, and it is immediate
from the "dual basis lemma" that P T= P and T2 = T. Further-
more, when PR is finitely generated, T is also the trace ideal of RP*.

For the functor F = P®R ( ), let

Ker.P= {MeR^€\F{M) = 0} .

If P is a projective module with trace ideal T, then it is easily verified
that

KerF= { i l ί e ^ | T M= 0} .

PROPOSITION 1.4. Let PR be a projective module with trace ideal
T. Then Ker F is a hereditary torsion class in R^/έ whose associated

filter of left ideals is {I\I is a left ideal of R and I Ξ2 T). Thus
Ker F is faithful if and only if T is a dense left ideal of R. This
occurs if and only if PR is a faithful module.

Proof. Since F is additive, exact, and commutes with direct sums,
it is easy to see that Ker F is a hereditary torsion class. A left ideal
I is in its associated filter iff R/IeKerF iff T-R = Γ g l . The next
statement follows since the filter of dense left ideals is a faithful filter
which contains all faithful idempotent filters. Finally, since the tor-
sion submodule of R with respect to Ker F is {r e R \ PR = 0}, it is clear
that Ker F is faithful iff PR is faithful.

When PR is projective, we shall denote the torsion class Ker F by
ĵ V, the associated torsion submodule by tτ, and the corresponding
torsion-free class and filter by j ^ τ and/ Γ respectively. The localiza-
tion functor for this torsion class will be denoted by Lτ and the ring
of left quotients of R with respect to ^~τ by Qτ.

Unless otherwise indicated, throughout the rest of this paper PR

is a projective right i2-module, S = End^ (PB), and Γis the trace ideal
of P in R. For the rest of this section and all of §§ 3 and 4, it will
be assumed in addition that PR is finitely generated. We note that
if S is an arbitrary ring, SP is a generator for s^f, and R = End^P),
then all of the above hypotheses are satisfied [3, Chapter II, Proposi-
tions 4.1, 4.4, and Theorem 3.4]. The notation introduced in this
section will be employed freely throughout the rest of the paper.

LEMMA 1.5. For any J l ί e ^ the exact sequences

B'(M)
0 > ker β'{M) > GF(M) p-±-J M > coker β'{M) > 0

0 » k e r β(M) > M ^ l HF(M) > coker β{M) > 0
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have ker β'(M), ker β(M), coker β'{M)9 and coker β(M) all in ^ τ .

Proof. Since both a and a! are natural equivalences, a(F(M)) and
α'(i^(ilf)) are both isomorphisms. Thus from the adjointness relations
F{β{M))oa{F{M)) = 1FW and ct{F(M)°F(β'(M)) = W>, we conclude
that F{β{M)) and F(β'{M)) are isomorphisms. The result is immedi-
ate from this observation and the exactness of F.

REMARK. When PR is projective, but not necessarily finitely
generated, it follows from the adjointness relation F(β(M))<>a(FM)) =
1F{M) and the exactness of F that ker β(M) belongs to

PROPOSITION 1.6. For any left S-module N, H(N) is in ^~τ and
is ^-injective. Thus for any left R-module M, HF(M) is isomor-
phic to LT(M) via a map 7 such that β(M)oj = σ(M). Hence if M
is in S^T and is ^"τ-injective, β(M) is an isomorphism.

Proof. Let Mf e J ^ . Then Horn,, (ΛΓ, H(N)) = Horn* (F(M'), N) =
Hom5 (0, N) = 0. Thus H(N) e J ^ . To show H(N) is j r -injective,
it suffices to prove that Ext^ (R/I, H(N)) = 0 for each Ie/T. The
usual exact sequence

0 >I-^->R >R/I >0

yields an exact sequence

0 > Horn,, (R/I, H(N)) > Horn* (12, H(N)) - ^ HomΛ(I, H(N))

> Ext i, (R/I, H{N)) > 0 .

Since F is exact and F(R/I) = 0, F(i) is an isomorphism. Thus
^ (F(ϊ), 1N) is an isomorphism. By adjointness Hom^ (i, H(1N)) —

(i, 1H(N)) = i* is an isomorphism. Hence Extι

Λ (R/I, H(N)) = 0.
Lemma 1.5 implies that ker β(M) and coker β(M) are in J7~τ.

Combining these facts with those established in the preceding para-
graph and applying 1.1 yields the desired isomorphism 7. The last
statement is now immediate.

REMARK. The first assertion of Proposition 1.6 remains valid when
PR is projective but not necessarily finitely generated.

2* Double centralizers of projective modules* Each right 12-
module MR is in a natural way a left module over its endomorphism
ring C = ΐlomR (M, M). The endomorphism ring D = Homc (M, M) of
M as a left C-module is called the double centralizer of the module
M. There is a canonical ring homomorphism p(M) of R into D, given
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by sending each element of R onto the right multiplication which it
defines on M. The module M is said to have the double centralίzer
property if p(M) is onto.

In this section we describe the double centralizer of a projective
module. In particular, we determine those faithful projective modules
that have the double centralizer property. These results yield genera-
lizations of theorems of Fuller [6], Tachikawa [16], and Mochizuki
[14].

Throughout this section PR denotes a projective right ϋί-module
which is not assumed to be finitely generated, S = End^ (PR), and
R = Ends(P) is the double centralizer of P. We recall that J7~τ denotes
the hereditary torsion class in R^ί consisting of all modules whose
annihilators contain the trace ideal T of PR. We use freely the nota-
tion and terminology introduced in section one.

THEOREM 2.1. Let PR be a projective right R-module and Qτ be
the ring of left quotients of R with respect to ^~τ. Then there exists a
ring isomorphism Ί of the double centralizer R of PR onto Qτ such
that p(P)oy = σ(R). Thus R may be described by R ~ End^ (T/tτ(T)).

Proof. Since P®RR=P, HF(R) = Hom^P, P®RR)~Ή.oms(P, P) =
R. A direct verification shows that the composition of β(R)\R—+
HF(R) with this isomorphism is p(P). It, therefore, follows from the
remark following 1.6 that RR is ^^-injective and is in J^. Further,
the remark following 1.5 implies that ker ρ(P) e ^ τ . Thus 1.1 will
imply the existence of 7 if it can be shown that coker p{P) e J/~^. It,
therefore, suffices to see that TR ϋ im p(P). This follows from the
fact that f(x)r = (f((x)r))ρ(P) for all xePR, feΐlomR (P, R), and re
R. To verify this, it must be shown that these functions have the
same value at each y e P. In order to do this, we define a mapping
sy of P into itself by sy(w) = yf(w) for all we P. A direct verifica-
tion shows that syeS. Hence (y)(f((x)f))p(P) = yf((x)f) = sy((x)r) =
(sy(x))r = (yf(x))f = (y)(f(x)r).

Since the filter /τ of left ideals corresponding to j?~τ has T as
minimal element, it follows directly from the definition of the quotient
category that Qτ = Homβ (T, R/tτ(R)). However, T2 = T implies that
for any ge Homβ (T, R/tτ{R)), im g C T/tτ(R) Π T = T/tτ(T). Further,
since T/tΓ(T) e J?ϊ, any such g must have tτ(T) £Ξ ker g. Thus Qτ =
EnάR(T/tτ(T)).

A ring R is said to be semi-prime if R has no nonzero nilpotent
ideals. Equivalently, R is semi-prime if for any 0 Φ r e R, there is
an rf e R such that rrfr ^ 0 . R is prime if any nonzero ideal of R
has zero annihilator.
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COROLLARY 2.2. Let PR be a protective right R-module with double
centralizer R. If R is semi-prime, then R = ΈnάR(RT). Thus R
semi-prime (prime) implies R is semi-prime (prime).

Proof. Assume R is semi-prime. Since tτ(T) = {t e T\ Tt = 0},
{tτ{T)f = 0 and hence tτ{T) = 0. Thus the first assertion follows from
2.1. The second assertion is now immediate from [19, Proposition 1.2].

COROLLARY 2.3. If PR is a faithful protective right R-module, its
double centralizer is R = {qe Q(R) \ Tq S T}, where Q(R) is the maximal
ring of left quotients of R.

Proof. Since PR is faithful, the torsion class ^ τ is faithful by
1.4. Thus RR, and hence RT, is in ^ τ . Since T is a dense left ideal
of R by 1.4, R = End,, (T) = {qe Q(R) \ Tq S T}, where the first isomor-
phism follows from 2.1 and the second from [11, Proposition 5, p. 97].

COROLLARY 2.4. // PR is a faithful protective right R-module, then
PR has the double centralizer property if and only if Έxtι

R(R/T, R) = 0.

Proof. Since PR is faithful, 1.4 implies that RRe^τ. Hence
R = Qτ iff R is .^-injective. However, since T is the minimal ele-
ment of the filter/^ and RRe^τ, this occurs iff Ext1* (22/T, R) = 0.
The conclusion is now immediate from 2.1.

Let M be an 22-module which has a direct sum decomposition
M = φ ΣαeΛ Ma with the endomorphism ring of each Ma a local ring.
If {Mβ}βeΓ is a set of representatives for distinct isomorphism classes
of Mas, the basic submodule of M is defined to be M = 0 ^ e r ^
It follows from Azumaya's generalization of the Krull-Schmidt theorem
[1, Theorem 1] that the basic submodule of M is uniquely determined
to within isomorphism.

The next several results will be concerned with right perfect rings.
The definition and basic properties of these rings, as well as any
terminology not defined here, may be found in [2].

COROLLARY 2.5. If R is a right perfect ring, there exists a faith-
ful, finitely generated protective right R-module PR whose double cen-
tralizer is isomorphic to the maximal ring of left quotients of R.

Proof. Let RM be the projective cover of the basic submodule of
the left socle of R, and let PR = Hom^ (M, R). Since RM is finitely
generated and projective, so is PR by [3, Chapter II, Proposition 4.1
and Theorem 3.4]. Moreover, they have the same trace ideal T. This
corollary will follow from 2.1 if we show that the filter /τ is equal to
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the filter of dense left ideals of R. Since T is the minimal element
of the filter /ζ, it will suffice to show that T is a dense left ideal
which is contained in all dense left ideals of R.

If X is a minimal left ideal of R, T X = X since X is a homo-
morphic image of M and T M = M. Thus the right annihilator of
T in R intersects the left socle of R in zero. Since the left socle of
a right perfect ring is an essential left ideal, the right annihilator of
T in R is zero. Thus PR is faithful, and hence T is a dense left
ideal of R by 1.4.

Let D be a dense left ideal of R, i.e., assume HomΛ (R/D, E(R)) =
0. Suppose Hom^ (M, R/D) Φ 0. Since M is finitely generated, this
implies that R/D contains a submodule RK which has a simple epimor-
phic image isomorphic to a simple epimorphic image of M. But each
of these is in the left socle of R, so Hom^ (R/D, E(R)) Φ 0. This con-
tradiction implies Horn,, (M, R/D) = 0. Thus for all feRomR (M, R),
imf^D and hence T S D.

If R is right perfect and PR is a projective right iϋ-module, PR ~
0Σ;>e/i^i2 where eλ is a primitive idempotent in R for each λ in the
index set Λ. Since the endomorphism ring eλReλ of eλR is a local ring,
the basic submodule PR of PR is defined. PΛ is a finitely generated
projective module having the same trace ideal T as PR and is a direct
summand of any projective right i?-module having T as trace ideal.
We note that a simple left i?-module belongs to J7~~τ if and only if it
is not a homomorphic image of P* = Hom^ (P, i?). Thus the following
theorem generalizes half of [6, Theorem 4].

THEOREM 2.6. If R is a right perfect ring and PR is a faithful
projective right R-module with trace ideal T, then PR has the double
centralizer property if and only if Ext^(X, R) = 0 for every simple
left R-module X in

Proof. We first show that for any Me R^£, Hom^ (R/T, M) = 0
iff Hom^ (X, M) = 0 for all simple modules X in _^V Since T is the
minimal element of the filter/ζ, Hom^ (R/T, M) = 0 iff ϋ ί e ^ . As
R is right perfect, M has an essential socle and hence M belongs to

iff its socle does. Thus we conclude that HomΛ (R/T, M) = 0 iff
(X, M) = 0 for all simple modules X in J/>.

Since P^ is faithful, T is a dense left ideal of R by 1.4 and hence
(R/T, E(R)) = 0. Thus Horn,, (X, E(R)) = 0 for all simple modules

X in j?~τ. The exact sequence

0 > R • E(R) > E(R)/R • 0

gives exact sequences
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0 > RomR(R/T,R) >KomR(R/T, E{R)) >RomR(R/T, E(R)/R)
( } •Ext1

Λ(iί/Γ,ie) >0

and

0 > HomΛ (X, R) • Horn,, (X, E{R)) > Horn, (X, E(R)/R)
( 2 ) >Έxtι

R(X,R) >0

for any simple module Xin J7~τ Since Ή.omR (R/T, E{R)) = 0, sequence
(1) gives KomR (R/T, E(R)/R) ~ ΈxtR(R/T, R). Thus by 2.4, PR has
the double centralizer property iff Horn, (R/T, E(R)/R) = 0. By the
result of the first paragraph, this is equivalent to HomΛ (X, E(R)/R) —
0 for all simple modules X in ^~τ. Since HomΛ (X, E(R)) = 0 for all
such X, sequence (2) gives Horn, (X, E(R)/R) ~ ExVR (X, R) for all
simple modules X in ̂ τ . Thus PR has the double centralizer property
iff Extk (X, R) = 0 for all simple modules X in

The next result generalizes one half of [6, Theorem 5].

COROLLARY 2.7. If R is right perfect, a necessary and sufficient
condition for every faithful protective right R-module to have the
double centralizer property is that ΈxtR (X, R) = 0 for every simple
left R-module X which is not isomorphic to a left ideal of R.

Proof. Let PR be the module defined in the proof of 2.5. Then
a simple module X is not isomorphic to a left ideal of R iff Xe ̂ ~τ.
It therefore follows from 2.6 that the condition is necessary.

Conversely, suppose PR is an arbitrary faithful projective module.
If M is a minimal left ideal of R, P®RM = P-M φ 0. Thus Λf g ^ τ .
Hence if X is a simple module in ^f~τ, X is not isomorphic to a minimal
left ideal of R. Thus the condition is sufficient by 2.6.

Finally, we obtain a generalization of theorems of Tachikawa [16,
Theorem 1.4] and Mochizuki [14, Theorem 3.1]. For a given module
W, a module M is said to have W-dominant dimension ^ n if there
is an exact sequence 0 —> M —> X1 —* —> Xn, where each X{ is a direct
product of copies of W.

COROLLARY 2.8. // the E(R)-dominant dimension of RR is 2: 2,
every faithful projective right R-module has the double centralizer
property. If R is right perfect, the converse is true.

Proof. Assume the jE^-dominant dimension of R is Ξ> 2. Then
since E(R) is injective, there is an exact sequence 0 —> E(R)/R —*
ΠE(R). This gives an exact sequence
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0->HomΛ(JR/T, E(R)/R)-+RomR(R/T, ΠE(R)) = ΠKomR(R/T, E{R))

Since PR is faithful, RT is a dense left ideal of R by 1.4. Thus
Horn,, (R/T, E(R)) = 0, and hence Hom^ (R/T, E(R)/R) = 0. This implies
Ext^ (R/T, R) = 0, as in the proof of 2.6. Thus the conclusion follows
from 2.4.

Conversely, assume R is right perfect and each faithful protective
right iϋ-module has the double centralizer property. Let PR be the
module defined in the proof of 2.5. Then it follows from 2.6 that
Ext^ (X, R) = 0 for every simple module X in ^ τ . As in the proof
of 2.6, this implies Hom^ (X, E(R)/R) = 0 for every such X. But PB

was chosen so that the simple modules in ^7~τ are precisely those
simple modules not isomorphic to minimal left ideals of R. Since R
is right perfect, E(R)/R has an essential socle and, as we have just
shown, each simple submodule of E(R)/R is isomorphic to a minimal
left ideal of R. Hence there exists a monomorphism from E(R)/R
into a direct product of copies of E(R). Thus RR has E(R)-dominant
dimension ^ 2.

3* Correspondence of torsion classes* If ^ΓR is a hereditary
torsion class in R^£, define

= {Ne s^r IJV ~ F(M) for some Me

Similarly, for a hereditary torsion class j?~s in s^f, define

= {Me B^t\ F(M) e

These definitions will be used to establish a one-to-one correspondence
between the hereditary torsion classes in s ^ and those in R ^
containing

LEMMA 3.1. If ^~R~Ξ± ^~τ and MeJ^R, then GF(M)e^R and
HF(M) e ̂ R. Thus if Ne F(jΓR), H(N) e j ^ and G(N) e

Proof. The sequence 0 —• ker β'{M) —• GF{M) —> M is exact, Me
, and by 1.5, ker β'{M) e J7~τ g J7~R. Since ^/~R is closed under

submodules and extensions, this implies that GF(M) e ^~R. The proof
that HF(M) e J7~R is similar. The last statement is now immediate
from the definition of

PROPOSITION 3.2. F*~{^~s) is a hereditary torsion class in R^// con-
taining J^. If J^~R Ξ2 J^~τ, then F(J?R) is a hereditary torsion class
in

Proof. Since {0} S ^ and F*~({0}) = J ^ , it is clear that F-(^~s) 3
That F*~(j7~s) is closed under direct sums is immediate from the
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fact that J ^ has this property, since F commutes with direct sums.
Finally, if 0->ikΓ-+M-+ikf"-+0 is exact in s ^ , Q-+F(M')-+F{M)-+
F{M") —>0 is exact in SκΛT. Thus F(M) e J ^ iff F(M') and F(ikP') e
^ ς . Hence ik feF^(^) iff M' and F ' e ί 1 ^ ) . It follows that
F*~(j7~s) is a hereditary torsion class.

Now let ^~R a ^ . Clearly F(^"R) is closed under direct sums.
Let 0 —• N' —> N —• JV" —• 0 be an exact sequence in s^/ί. Then 0 —>
H(N')->H(N) and G(JV) — G(ΛΓ") -> 0 are exact sequences in Λ ^
If NeF{^rR), 3.1 implies that iί(ΛΓ) and G(N)e^R. Thus JT(iV")
and G(JV") e j ^ . Since ΛΓ = FH{N') e F{^~R) and JSΓ" •==; FG{N") e
FiJTn), the class F{^R) is closed under both submodules and homomor-
phic images. Suppose that both iV and iSΓ" e F(^R). Then 3.1 implies
that # ( # ' ) and H(N") e jrR. Since the sequence 0 — H(N') -> H(N) -^
ίf(ΛΓ") is exact, H(N) e ̂ rR. Thus iV ~ FH(N) e F(^~R), and so F ( j ^ )
is closed under extensions. Hence F{%^r

R) is a hereditary torsion class
in s^€.

THEOREM 3.3. The mappings ^~R-+F{^~R) and ^ s { S )
are inclusion-preserving, inverse one-to-one correspondences between the
hereditary torsion classes in s^//f and those hereditary torsion classes
in R^f containing J7~τ.

Proof. The mappings clearly preserve inclusion. Thus by 3.2, it
suffices to show that F{F^(^S)) = ̂ ~s and F^{F{^~R)) = ̂ ~R if J^> a

Clearly F{F~{^S)) S ^ Suppose Nejrs. Since N = FH(N),
eF-{^"s) and hence NeF(F-(^)). Thus ^~S = F(F~(^).

It is apparent that , / B S Γ f T O ) . Let Me F*"(F(^i)). Then
~R), and so 3.1 implies HF{M)e^~R. Since the sequence

ker/9(M)-^lί->iϊF(ikΓ) is exact, HF(M) e ̂ l, and ker/9(M)e
by 1.5, we have Me j ^ , . Thus j ^ , = i

The most useful rings of left quotients are those constructed with
respect to faithful hereditary torsion classes. We thus ask under
what circumstances the above correspondence gives a one-to-one cor-
respondence of the faithful hereditary torsion classes in s^€ with
those in R^// containing j?~Tm

PROPOSITION 3.4. Let ^7~R and SΓS correspond as in Theorem 3.3.
Then Me J^R if and only if Me J ^ and F(M) e ^ .

Proof. Let Me ̂ "R. Since ^7~R B ^ , we have ^R S ^ , and so
Me jrτ% For any Ne ^~8 = F{^B)9 Hom5 (N, F{M)) ~ HomΛ (G(N), M)
= 0 since Me^l and G{N)e^~R by 3.1. Thus F(M)eJ^s.

Conversely, let Me^τ and F{M)etβ
r

s, but suppose MίJ^.
Then there is a nonzero submodule jRΓof M with ifG ̂ > , but
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Hence F{K) is a nonzero submodule of F{M) with F(K) e F{^~R) =
This contradicts the fact that F(M)e^s. Thus

REMARK. Note that if ^R and J7~s correspond as in 3.3 and
is faithful, then J7~s is faithful. For since RR e J?~R, we must have

SP = F(RR) e ̂  by 3.4. Since SP is a generator, sSe J^. The con-
verse is false. The following examples illustrate how a faithful J7"s

can correspond to a non-faithful J7~R.

EXAMPLES 3.5. (a). Let S be any ring with nontrivial E(S)-
torsion theory and 0 Φ SX an S-module which is E(S)-torsion. Then
sP = sSξ& SX is a generator in s^£. Let # = End5 (5P). Then PΛ is
faithful, finitely generated, and projective. Hence J7"τ is faithful by
1.4. By 3.4, each faithful hereditary torsion class in R^τ€ containing
^7~τ corresponds to a faithful hereditary torsion class with respect to
which SP is torsion-free. Since SP is not torsion-free with respect to
the j&(S)-torsion class, this torsion class cannot correspond to a faith-
ful torsion class in R^/f.

(b). If PR is not faithful, then J7~τ is not faithful and hence
neither is any torsion class containing j?~τ. Thus no torsion class in

s^y£ corresponds to a faithful torsion class in R^£.
We use the notation E(S)-torsion-free to mean torsion-free with

respect to the i?(S)-torsion class in 5 ^ C

THEOREM 3.6. The correspondence of Theorem 3.3 induces a one-
to-one correspondence of the faithful hereditary torsion classes in s^/f
and the faithful hereditary torsion classes in R^J? containing J7~τ if
and only if PR is faithful and SP is E(S)-torsion-free.

Proof. Assume the correspondence is as desired. Since {0} is a
faithful hereditary torsion class in s^£, ^"({0}) = ^ is faithful.
Hence PR must be faithful by 1.4. Furthermore, the £r(S)-torsion
class corresponds to a torsion class <f7~R with RRej^~R. Thus 3.4
implies F(RR) — SP is £r(S)-torsion-free.

Conversely, let PR be faithful and SP be £r(S)-torsion-free. Then
J7"τ is faithful by 1.4. By the remark just preceding 3.5, it suffices
to show that J7~s faithful implies ^R — F*~{^s) faithful. If J7~s is
faithful, ^~s contains all E(S)-torsion-free modules, and so
Thus RRe^l by 3.4, and hence ^r

R is faithful.

COROLLARY 3.7. If PR is faithful and SP is E{S)-torsion-free, the
E(S)- and E(R)-torsion classes correspond under the correspondence of
Theorem 3.3.
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Proof. Both are maximal faithful hereditary torsion classes.

COROLLARY 3.8. If SP is an E(S)-torsion-free generator and R =
sP), the correspondence of Theorem 3.3 induces a one-to-one cor-

respondence of the faithful hereditary torsion classes in s^f and those
in R^/fS containing ^~τ. In particular, the E(S)-and E(R)-torsion
classes correspond.

REMARK. A left S-module N is torsionless if there is a monomor-
phism of JV into a direct product of copies of S. Hence all torsion-
less and, in particular, protective left S-modules are i?(S)-torsion-free.
Thus Corollary 3.8 is valid for torsionless or projective generators.

Two modules are similar if each is isomorphic to a direct summand
of a finite direct sum of copies of the other.

LEMMA 3.9. If SP is a generator and Ends(sP) is a semi-prime
ring, then SP is torsionless.

Proof. Since SP is a generator and SS is finitely generated, there
is an epimorphism of a finite direct sum of copies of SP onto S. Since

SS is projective, this epimorphism splits and so this finite direct sum
of copies of SP has the form S 0 I . Thus SP is similar to a module
of this type. But similar modules have Morita-equivalent endomor-
phism rings [7, Theorem 1.5], and a ring Morita equivalent to a semi-
prime ring is semi-prime [19, Proposition 1.2]. Hence it suffices to
prove this lemma for modules of the type S ® X. In particular, it is
enough to show SX torsionless.

If End6, (S 0 X) is semi-prime, a standard matrix argument shows
that for any nonzero x e Hom5 (S, X) ~ X, there exists g e Hom5 (X, S)
such that xgx Φ 0. If x = (ΐ)x, this yields (x)gx Φ 0. In particular,
(x)g Φ 0. Since x Φ 0 is arbitrary, X is torsionless.

We note in passing that the condition, for any nonzero xe X there
is a homomorphism g:X—+S such that (x)gx Φ 0, is a generalization
to modules of the concept of semi-prime rings of some independent
interest. Such modules might reasonably be termed semi-prime
modules. A similar condition, for any nonzero x and y in X there
is a homomorphism g: X~^ S such that (x)gy Φ 0, is a generalization
to modules of the concept of prime rings. This arises in the proof
of 3.9 if we assume that E n d s ( S 0 X ) is prime.

Finally, we obtain conditions on the ring R alone giving a one-
to-one correspondence between the faithful hereditary torsion classes
in s^/P and those in R^f containing

PROPOSITION 3.10. If R is a semi-prime ring, PR is a faithful
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finitely generated projective right R-module, and S = End^ (PB), then
the correspondence of Theorem 3.3 induces a one-to-one correspondence
between the faithful hereditary torsion classes in &^/ί? and those in

R^ίS containing J/V. In particular, the E(S)-and E(R)-torsion clasess
correspond.

Proof. We showed in 2.2 that End5 (SP) = EndΛ(ΛΓ). Since RT
is torsionless and R is semi-prime, End^ (SP) = End^ (BT) is semi-prime
by [19, Proposition 1.2]. By 3.9, SP is torsionless, whence SP is
i?(S)-torsion-free. The result then follows by 3.6.

REMARK. If R is prime and PR Φ 0, the condition that PR be
faithful is redundant.

4* Endomorphism rings* We recall that unless we indicate
otherwise PR will denote a finitely generated projective module and
that S = End^ (PR). We also make the standing assumption that ^'s
and J^~R Ξ2 ̂ Γτ are torsion classes in s^/? and R^//, with torsion-free
classes J ^ and ̂ ^ , respectively, which correspond as in Theorem 3.3.
We denote that associated localization functors by Ls and LR and the
corresponding rings of left quotients by Qs and QR, respectively.

LEMMA 4.1. If M is in J^Γ and M is jT^-injective, F(M) is
J/~s-injective.

Proof. Let /: SN' -+ SN be a monomorphism with coker / e j / ^ ,
and let g: N' -> F(M). Then H(f): H(N') — H(N) is a monomorphism
with coker H{f) isomorphic to a submodule of H[NINf). But H(N/Nr) e
J7~B by 3.1, which implies coker H{f) e ^ > . Now i l ί e i ^ . by hypo-
thesis, and since RM is ^^-injective and J ^ a ^\, M is j ^ y injec-
tive. Therefore, 1.6 implies that M ~ HF{M). Thus HF{M) is JΓR-
injective, and so there exists I: H(N) —* HF(M) such that H(f)<>l =
H(g). Applying the functor F and recalling that FH is naturally
equivalent to the identity functor on s^/fy we obtain I: N —> F(M)
such that f°ϊ= g. Thus F(M) is J^-injectiveβ

PROPOSITION 4.2. For any MeR^/f, there exists a unique isomor-
phism 7 from F(LR(M)) to LS(F(M)) such that F(σ(M))oy = σ(F(M)).

Proof. Since LR(M) is in ^ R and is J^>-injective, F(LR(M)) is
in j ^ s by 3.4 and is j^-injective by 4.1. Furthermore, since ker σ(M)
and coker σ(M) are in ̂ R and F is exact, keri^(σ(M)) and cokerF{σM))
are in j?s. The desired conclusion is now immediate from 1.1.
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THEOREM 4.3. Let PR be a finitely generated projective right
R-module, with S — End^ (PR). If QR and Qs are rings of left quo-
tients of R and S with respect to hereditary torsion classes J7~R and
J/"S which correspond as in Theorem 3.3, then P®RQR is a finitely
generated projective right QR-module with Qs ~ EndQi2 (P ®^ QR) and

Proof. It is clear that P ®^ QR is a finitely generated projective
right (^-module. By 4.2, P®RQR ~ LS(SP). Thus P®RQR is j / >
injective and is in jβs. It follows [9, Corollary 4.2] that P(&RQR

has a unique structure as a left ζ)5-module which extends its natural
structure as a left S-module. Since SP is a generator and SS is finitely
generated, 5S is a direct summand of a finite direct sum of copies of

SP. Hence since Ls is an additive functor, LS(SS) = Qs is a direct
summand of a finite direct sum of copies of LS(SP). Thus LS(SP),
and hence also P ® ^ Q Λ , is a left ©^-generator.

It is immediate from 4.2 that ker F(σ(R)) and coker F(σ(R)) are
in j ^ . Composing F{σ(R)) with the canonical isomorphism of P onto
P®RR yields an S-homomorphism /: SP-^SP®R QR given by (p)f =
p (x) 1QR. Furthermore, ker / and coker / are in j?~s. Thus 1.3 implies
that Hom5 (P, P®R QR) = End5 (P®R QR). By 1.6, we also have QR ^
Honis (P, P®i2 QR) via β(QB). Composing these maps gives an abelian
group isomorphism QR = End5 (P®^ QR) = Endρ^ (P®^ QR), with the
equality coming via 1.2. However, a direct verification shows that
this composition is just the canonical mapping taking each element of
QR into the right multiplication it defines on P®RQR. Thus it is a
ring isomorphism.

Since P®RQR is a left (^-generator with QR ~ EndρiS (P®^ QB),
and since generators have the double centralizer property [3, Chapter
II, Proposition 4.4 and Theorem 3.4], Qs ~ ΈndQji(P®RQR).

COROLLARY 4.4. Let R be a semi-prime ring, PR be a faithful
finitely generated projective right R-module, and S = Endβ (PR). If
Q(R) and Q(S) are the maximal rings of left quotients of R and S,
respectively, then P ® β Q(R) is a faithful finitely generated projective
right Q(R)-module and Q(S) = Endρ(β) (P®,, Q(R)).

Proof. Immediate from 3.10 and 4<,3.

If R is a prime ring, the assumption that PR is faithful is redun-
dant.

COROLLARY 4.5. Let S be an arbitrary ring, SP an E(S)-torsion-
free left S-generator, and R — End5 (SP). If Q(R) and Q(S) are the
maximal rings of left quotients of R and S, respectively, then P ® R Q(R)
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is a left Q(S)-generator and Q(R) = EτιάQ{S) (P(&RQ(R))

Proof. Immediate from 3.7 and 4.3.

In particular, Corollary 4.5 is valid when SP is a projective left
S-generator. This raises the question of whether, in this case,
P ®i? Q(R) is a projective left Q(S)-generator. The following example
shows that, in general, the answer is no.

EXAMPLE 4.6. Let S be the full ring of linear transformations
of an infinite-dimensional vector space, P = © ΣαeΛsS, and R =
EndsGP). Since S is a left self-injective regular ring, the localiza-
tion of each i?(S)-torsion-free module with respect to the i£(S)-torsion
class is its injective hull. In particular Q(S) = S. However, if A is
chosen so that \A\ > \S\, SP<8RQ(R) = E(SP) is not a projective left
S-module.

Our proof of this fact depends on Kaplansky's characterization of
projective modules over regular rings [10] and the fact that the (up
to isomorphism) unique minimal left ideal of S is not J-injective.

However, if the filter/£ corresponding to Jy~s has a cofinal set of
finitely generated left ideals, SP projective does imply that P(&RQR

is left Q5-projective. For in this case, Ls commutes with direct sums
[18, Lemma 3.1], and hence when SP is projective, P ® ^ QR ~ LS(SP) =
Qs ®. P-

COROLLARY 4.7. Let S be an arbitary ring, SP be a projective
left S-generator, and R = End^ (SP). Let J3~s be a hereditary torsion
class in s^/f whose filter /s has a cofinal set of finitely generated left
ideals, and let <9~~R correspond to ^ s as in Theorem 3.3. // Qs and
QB are the rings of left quotients of S and R with respect to ^ s and
^/~R, respectively, then Qs ® 5 P is a projective left Qs-generator and

REMARK. In particular, suppose SP is a projective left S-generator
and the filter of dense left ideals of S contains a cofinal set of finitely
generated left ideals. If Q(S) and Q(R) are the maximal rings of left
quotients of S and R, respectively, then Q(S) ® 5 P is a projective
left Q(S)-generator with Q(R) = Endρ(S) (Q(S) ® s P). This occurs, for
example, when S is left Noetherian or Q(S) is semi-simple Artinian.
(See [15, Theorem 1.6].)

A left S-module SP is a progenerator if it is a finitely generated
projective generator. If SP is a progenerator and R — End5 (SP), then
PR is also a progenerator [3, Chapter II, Theorem 3.4]. Two rings
R and S are said to be Morita equivalent if there exists a category
equivalence between B ι / / and s^/f. This can occur if and only if



RINGS OF QUOTIENTS OF ENDOMORPHISM 665

there is a left S-progenerator SP with R = Ends (SP), in which case
the equivalence is given by the functor F = P®R{ ). (See [3,
Chapter II].)

Our results give the following generalization of a theorem of
Turnidge [17, Theorem 2.4].

COROLLARY 4.8. Let R and S be Morita equivalent via the bi-
module SPR. Then the correspondence of Theorem 3.3 is a one-to-one
correspondence of the hereditary torsion classes in R^t and s^^ which
induces a one-to-one correspondence of the faithful classes. If QR and
Qs are rings of quotients with respect to corresponding classes, then
QR and Qs are Morita equivalent via Qs $$s P = P QR QR. In parti-
cular, the maximal rings of left quotients Q{R) and Q(S) are Morita
equivalent via Q(S) ®s P = P(&R Q(R).

Proof. Since PR is a generator, T = R whence j?~τ = {0}. Thus
the correspondence of 3.3 is a one-to-one correspondence between the
hereditary torsion classes in R^ί€ and s^€. If J7~R and J7~s are cor-
responding classes, it is immediate from 3.8 that J7~R is faithful
iff ^ is faithful. Finally, SP finitely generated and projective implies
LS(SP) = Qs®s P since Ls is an additive functor. The remaining as-
sertions follow from 4.2 and 4.3.

For a ring A, the essential (or large) left ideals of A form a
filter contaning the filter of dense ideals. (See [8, pp. 416-420].) In
general, the filter of essential left ideals is neither idempotent nor
faithful. The essential left ideals of A form an idempotent faithful
filter if and only if the left singular ideal of A,

Z{AA) = {ae A\(0: a) is essential in A} ,

is zero. Since the assumption that Z(A) = 0 plays a key role in many
results concerning the maximal ring of left quotients of A, we examine
it briefly.

For a left A-module X, the singular submodule of X is defined
to be

Z(AX) = {x e X\ (0: x) is essential in A) .

THEOREM 4.9. Let PR be a faithful finitely generated projective
right R-module with S = EndΛ (PR). Then Z{RR) = 0 if and only if
Z(SP) = 0. In particular, Z{RR) = 0 implies Z(SS) = 0 and Q(S) ~
Endρ(i2) (P<8)R Q(R)), where Q(R) and Q(S) are the maximal rings of
left quotients of R and S, respectively.

Proof. Assume Z(RR) — 0. Since R = End5 (SP) may be identified
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with a subring of Q(R) containing R by 2.3, it follows from [5, Pro-
position 3, p. 70] that Z(^R) — 0. Recall that in proving 3.9 it was
shown that since SP is a generator, it is similar to a module of the
form S φ X Further, similar modules have Morita-equivalent endo-
morphism rings [7, Theorem 1.5]. But 4.7 implies that the property
of having zero singular ideal is preserved under Morita equivalence.
This follows from the Morita invariance of regularity since a ring has
zero singular ideal if and only if its maximal ring of left quotients
is regular [5, Theorem 1, p. 69 and Proposition 3, p. 70]. Thus it
will suffice to show that if SP = S © X and R = End5 (S © X) with
Z(RR) = 0, then Z(SS) = 0 and Z(SX) = 0.

In this case, R has the form

Hom5 (X, S) Ends (X)

where we have made the usual identifications of Hom5 (S, S) with S
and Homs (S, X) with X. If se Z(SS) and xe Z(SX), a direct verifica-
tion shows that the left annihilators of the elements

s 0\ /0 x

o o) and to o,
are essential in R, and so these elements belong to Z(RR). Thus
s = 0 and x = 0, and hence Z(SS) = 0 and Z(SX) = 0.

Conversely, since Z(SP) = 0 and SP is a left S-generator, Z(SS) =
0. Thus the filter of dense left ideals and the filter of essential left
ideals of S coincide. Hence Z(SP) = 0 implies SP is J5YS)-torsion-free.
By 3.7, 4.3, and 4.2, Q(R) = End^ (LS{SP)). Since Z(SS) and Z(SP) are
both zero, LS(SP) ~ E(SP), the injective hull of SP. Thus [5, Lemma
G, p. 69] implies that Q(R) is regular, and hence Z(RR) — 0.

The last assertion is immediate from 3.7 and 4.3.

A module M is called finite dimensional if there do not exist
infinitely many nonzero submodules of M whose sum is direct.

COROLLARY 4.10. Let PR be a faithful, finitely generated projec-
tive right R-module with S = Endβ (PR)° Then the maximal ring of
left quotients of R is semi-simple Artinian if and only if

(i) Z(SP) = 0, and
(ii) SP is finite dimensional.

If these conditions are satisfied, the maximal rings of left quotients
Q(R) and Q(S) of R and S, respectively, are Morita equivalent via
the module P<8)RQ(R).
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Proof. Assume Q(R) is semi-simple Artinian. Then Q(R) is regu-
lar, and hence Z(RR) = 0 [5, Proposition 3, p. 70]. Thus 4.8 implies
Z(SP) = 0. It follows from 3.7 and 4.2 that P®R Q(R) = LS(SP), where
the localization is with respect to the £r(S)-torsion theory. However,
since Z(SS) and Z(SP) are both zero, LS(SP) = E{SP), the injective hull
of SP. Hence by 1.2 and 4.3, Q(R) = End5 (E(SP)). Thus SP is finite
dimensional. For otherwise, End<? (E(SP)) contains arbitrarily large
finite sets of orthogonal idempotents; but this is impossible since Q(R)
is semi-simple Artinian.

Conversely, assume Z(SP) = 0 and SP is finite dimensional. Then
Z(RR) - 0 by 4.8 and hence Q(R) is regular [5, Theorem 1, p. 69].
It follows exactly as in the preceding paragraph that Q(R) =
End5 (E(SP)). Since SP is finite dimensional, this implies Q(R) is
semi-perfect by [11, Proposition 2, p. 103]. Hence Q(R) is semi-simple
Artinian.

If Q(R) is semi-simple Artinian, 4.8 implies Q(S) =
EndQ{R) (P®RQ(R)). By 4.3, P®RQ(R) is a finitely generated pro-
jective faithful right Q(j?)-module. Since Q(R) is semi-simple Artinian,
this implies P §&R Q{R) is a Q(i2)-progenerator. Thus Q(R) and Q(S)
are Morita equivalent via P®RQ(R)-
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