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DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL

CRITICAL SET, I

P. T. CHURCH AND J. G. TIMOURIAN

Let /: Mn -> Np be Cn with n — p = 0 or 1, let p ^ 2, and
let RP-i(f) be the critical set of /. If dim (J?P-i(/)) ^ 0 and
dim (/CRP-i(/)) ^ p - 2, then (1.1) at each α? e Mn, f is locally
topologically equivalent to one of the following maps:

(a) the projection map p: Rn —> Rp,
(b) σ:C^C defined by σ(z) = zd (d = 2, 3, . . .), where C

is the complex plane, or
(c) τ: CxC-> Cxi? defined by T(S,W) = (2S M;, | W | 2 - | Z | 2 ) ,

where w is the complex conjugate of w.
In particular, either / is locally topologically equivalent

to p at each xeMn, or (n,p)=(2,2) or (4,3).

In a sequel the hypothesis on dim f(Rp-i(f)) is eliminated.

For a Cr(r ^ 1) map / : M" -* JVP let i2ff(/) be the set of points
x e Mn at which the rank of (the derivative map of) / is at most q.
The critical set of / is defined to be Rp^(f) (in case n < p, Rp^{f) =
Afn), and according to the Rank Theorem [2, p, 155] at each xe Mn —
Rp-i(f), f is locally Cr equivalent (1.3) to the map p: Rn-+Rp defined
by p(Xi, x2, •••#*) = (Λ?I, 2̂, •••, Λ?P). Thus (1.1) is a generalization of
the Rank Theorem for n — p — 0 or 1, and p >̂ 2; moreover for n — p =
1 it answers a question of Milnor (1,7).

Note that while / is only Cn, the maps p} σ, and τ are real analytic.
Simple examples (1.4) show that "topologically" cannot be replaced by
" C w " and that no reasonable classification is possible if p = 1. Pro-
positions more general than (1.1) are also given ((4.7) and (4.9)).

Theorem (1.1) was announced in the talks [2] and [20]. For
n = p = 2 (1.1) was essentially proved by Stoilow [2, pp. 147 and 148]
and for n = p ^ 3 by Church [2, p. 155]. Both [6, p. 72, (1.5)] and
[2, p. 159] deal with maps having a small singular set, and [13, §11]
discusses maps with isolated critical points. The map τ is due to N.
Kuiper [13, p. 102] and it is topologically equivalent to the cone map

of the Hopf fibration ψ: S3 -+ S2 (1.10).

Convention 1.2. A symbol such as Mn denotes a separable n-
manifold, without boundary unless otherwise specified (except for obvi-
ous cases). A manifold with boundary may have empty boundary.

The boundary of a space X is denoted by X or dX (in case
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X is a manifold), the interior of X by int X, and the closure of X
by X or Cl[X]. The distance between two points is d(x, y), and
S(x, ε) = {y: d(x, y) < s). The space of real (resp., complex) numbers
is denoted by R (resp., C), euclidean w-space by Rn, its origin by 0,
the closed ball Cl[S(0, 1)] in Rn by Dn, and the sphere 3D by Sn~\

A map is a continuous function, the restriction of a function /
to X is denoted by f\X, and the composition of two functions by gf
or gof. Homeomorphism of topological spaces and isomorphism of groups
is denoted by e&. The map π: X x Y-+ X is projection, and c is used
for the identity map on a space.

Given maps ψ: X-+ Fand φ: U—> V, define ψxφ:XxU-+Vx Y
by (ψxφ)(x, u) = (ψ(x), Φ(u)). Define the open cone c(X) as the identi-
fication space obtained from X x [0, 1) by identifying X x {0} to a
point x*, and let the cone map C(ΊJΓ): C(X) —+c(Y) be the map induced
by f x c.

DEFINITION 1.3. If /: Mn ~-> Np and g: Kn —> Lp are Cr maps on
Cr manifolds (r = 0, 1, •••)> then / and g are Cr equivalent if and
only if there are Cr diffeomorphisms a: Mn —> Kn and β: Np —> Lp such
that goa = βof. The map / at x is locally Cr equivalent to g at u
if there are open neighborhoods U of x and F of /(#) such that -
f\U: U—> V is C r equivalent to ^ with a{x) = u. A C° diffeomor-
phism is a homeomorphism, and (locally) topologically equivalent means
(locally) C° equivalent.

REMARK 1.4. Suppose that / is any one of p, σ, or τ, and let
TJ\ Rn —> Rn be a C°° homeomorphism such that rj fixes the origin,
TJ I (J?w — A) is a C°° diίfeomorphism, where A is the closure of a sequ-
ence of points converging to the origin, and the rank of the Jacobian
matrix of rj at points in A is zero. Since the rank of / at any point
in A away from the origin is not maximal, f°Ύ) is not locally C1 dif-
feomorphically equivalent at the origin to any of the maps in (1.1).
Thus in the statement of (1.1) "topologically" cannot be replaced by
"Cn". For examples to show that no reasonable classification is pos-
sible if p = 1 take height functions on compact manifolds which have
an infinite collection of local maxima.

DEFINITION 1.5. Given Mn and Np manifolds with (possibly empty)
boundary, n ^ p, and a map /: Mn —> Np, we now define the branch
set Bf c M\ Let Rm

+ = {xeRm: xm ^ 0}, let F = Rn~p or R\~p, and
let G = Rp or Rl (not respectively). Then x$Bf if and only if / at
x is locally topologically equivalent to π: F x G—+G at (0, 0). Occa-
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sionally the notation B(f) is used.

In (1.1) Bp = φ while Bσ and Bτ (and thus Bf) are discrete.
With the definition of Bf the Rank Theorem [2, p. 155] for n ^ p

becomes:

R A N K THEOREM 1.6. Iff: Mn — Np is Cr(r ^l),n^ p, and dMn =

dNp = φ, then Bf c Rp^(f).

Question 1.7. (Milnor [13, p. 100, first problem]). Let f: Rn-^RP

be a (real) polynomial map with an isolated critical point at 0. For
what dimensions n ^ p ^ 2 do nontrivial examples exist?

The topic of [13], except for § 11, is certain complex polynomial
maps /: CnJrl —> C with 0 as the only critical point. These maps have
a deep and very interesting structure related to exotic spheres, and
their properties led Milnor to ask about real polynomial maps.

After posing this question Milnor says "It is not quite clear what
'non-triviaP should mean here. Certainly the projection is a trivial
example". One natural definition is: f is nontrivial at x if and
only if xe Bf, i.e. / is trivial at x if and only if / at x is locally
topologically equivalent to the projection map p.

In the complex polynomial case the study of a singularity employs
a certain fibration, and analogous fibration exists in the real poly-
nomial case. Milnor formulates his ("tentative") definition of non-
trivial [13, p. 97 and p. 100] in terms of this fibration; we omit it
here because it is technical. While Milnor's definition appears to be
quite different from the definition we have given above, Church and
Lamotke have shown [4] that they agree (at least for n Φ 4). With
our formulation we can ask Milnor's question in other contexts.

Let/: Mn~+Np (n ^ p ^ 2) be continuous, Cr (r = 1, 2, •; or oo),
or real analytic. For what dimensions (n, p) can / have a nonempty
discrete (or 0-dimensional) branch set Bf, and, up to local topological
equivalence, what are the examples? For n — p = 0 or 1 Theorem
(1.1) answers a Cn version of this question, and a fortiori answers
Milnor's question for these dimensions. A continuous version is dis-
cussed in (4.9).

In sequels [5] the hypothesis on dim /(i2p_1(/)) is removed, and
analogous results for n — p — 2 are proved in both continuous and Cn

contexts. At first glance it seems very special to consider only the
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cases 0 <^ n — p ^ 2 in these theorems, but for every (n, p) with
n — p ^ 4 and p ^ 2, Church and Lamotke constructed [4] a con-
tinuous counterexample with isolated branch point. Moreover, for
n — p = 3 and p ^ 6, the nonexistence of examples depends on the
Poincare Conjecture. Thus our restriction 0 ̂  n — p ^ 2 in these
papers is reasonable.

DEFINITION 1.8. A map /: X—• Y is proper if, for each compact
set Kd Y, f~ι(K) is compact; / is light if, for each y e Y, dim (f~\y)) ^
0; and / is monotone if each f~ι{y) is connected. It is quasi-
monotone if, for each connected open set U c Y and component V of
f-\U),f{V)= U[23, p. 151].

THEOREM 1.9. (Cheeger and Kister [1, p. 151]; see also [2, p. 170]).
If f: Mn —> Nn is a proper map, n ^ p, and Bf — φ, then f is the
projection map of a fiber bundle.

(While they assume that / is monotone, this hypothesis is not
used in their proof. The manifolds may have nonempty boundary.)

REMARK 1.10. If ψ: S3—> S2 is the Hopf fibration, then τ in (1.1)
is topologically equivalent to the cone map c{ψ).

Proof. Let S\r) and S2(r) be the spheres about (0, 0) of radius
r in C x C and C x R, respectively, and let ξ: C x C - {(0, 0)} —> C x
R - {(0, 0)} and ζ r: S\r) -> S\r) be the restrictions of τ. Then ζ, is
f [13, p. 102, (11.6)], ξ is proper, and since R2{τ) = {(0, 0)}, Bζ = φ
(1.6). Thus (1.9) £ is a bundle map over S2 x (0, oo), so that ξ is
topologically equivalent to ζ1 x c [17, p. 53, (11.4)], and the conclu-
sion results.

Outline of the Proof of (1.1) 1.11. For almost all the proof we work
in a purely topological context, assuming topological analogs of the
hypotheses of (1.1) or less. The lemmas of § 2 show that for each x e Mn

there is a manifold neighborhood U of x such that the restriction map

g = f\U, g: U-> f(U), is proper and Bgf)dU= φ. If Bg = φ, then g
is a bundle map (1.9); thus, in general, g can be viewed as a bundle map
with singularities. In § 3 we show that g is open. In § 4 we suppose
that x is not a point component of g~ι(g{x)) and deduce (4.5) that g is a
bundle map near x, which implies that x £ Bf. (We use § 3 and the
'almost bundle property' of § 2 here.) Hence for each xe Bf, x is a
point component of f~ι{f{x))', this is the situation of [6] and that
paper yields the desired conclusion. Differentiability is used only as
it is used in [6], i.e. to deduce in (1.1) that f(Bf) is 0-dimensional



DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL CRITICAL SET, I 619

and nicely embedded.

In several cases lemmas are stated and proved in somewhat greater
generality than needed here, for use in [5] and [7].

2* Extended embeddings*

DEFINITION 2.1. A map g: Jn~m x Rm -> Lp~m x Rm is called a
layer map if for each t e Rm, g(Jn~m x {£}) c Lp~m x {£}. (In case g is
an embedding it is called an isotopy.) The restriction map

g\(Jn"m x {t}):Jn~m x {£} >Lp~m x {£}

is denoted by gt, and its branch set by B(gt). Frequently it is con-
venient to view gt as a map of Jn~m into Lp~m.

LEMMA 2.2. Let 7»: J9P —» (int β n " p ) x Dp be disjoint embeddings
with Ύi(t) = (a,i(t), t) (i = 1, 2, , ft). 7%ew ί/̂ erβ is cm isotopy h: Dn~p x
Dp-+Dn~~p x Z^ stwΛ ίfcαί λ, agrees with the identity map on (Dn~px
{0}) U (dDn-p x Dp), α^d h(7i(t)) = (α,(0), ί).

Proof. Let X — {^(0): i = 1, 2, , k}. The 7» define an isotopy

r.X x Dp > (int Dn~p) x Dp

by sending (α*(0), t) to (α^ί), £), which is readily extended to a neigh-
borhood of X by sending (u, t) to (w — α^O) + a^t), t) for w near α^O).
The desired ambient isotopy h: Dn~p x Dp —> Dw~p x D2' extending 7 is
given by Lees' Neighborhood ^-Isotopy Extension Theorem [12, p.
530].

DEFINITION 2.3. Let /: Mn —>Np be a map, let ye WaNp, and
let Qaf"ι{y). Define the embedding λ: Q x [y] —> Mn by X(q, y) = q
for each qeQ. An embedding v: Q x W-+Mn extending λ with

Q x W — -̂> ikί%

TΓ • > iV2'

commutative is called an extended embedding of Q over W. For each
w e W let vw'.Q-+ f~ι{w) be the embedding defined by vw{q) = v(q, w).

An extended embedding with Q a single point space is called a
cross-section over W. (In case / is a fiber bundle, it is a cross-sec-
tion in the usual sense.)
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LEMMA 2.4. Let f: Mn —>NP be a map, let n ^ p, let y e Np, and
let p c f~ι(y) — Bf be a compact (n — p)-submanifold with bicollared
boundary (e.g. let P be a closed bicollar of a bicollared compact (n —
p — l)-submanifold Qaf~ι(y) — Bf).

(a) Then there is an open p-cell neighborhood D of y and an
extended embedding μ: P x D —> Mn such that Bf Π imag μ = φ (in the
example let v = μ\Q x D).

(b) Given v and Q as in (a) (or Q = φ), 3 > 0, and a family ^
of components of f~\y) — Q such that L = \j{J: Je ^ \ has compact
closure, L — L c Q, and either ( i) ^ is finite or (ii) each diam J <
3/3, then there is a p-cell neighborhood E of y in D such that for each
Je ^ the component K of f~ι(E)-\m&g v containing J has ( i) d(x, J ) <
δ/3 for each x e K, resp. (ii) diam K < δ.

Proof of (a). We will assume that the reader has read the proofs
of the Theorem and the Remark in [1] and has them at hand. Let
Mn, Np, and y be denoted by W, Y, and yQ9 and let the (n — ^-mani-
fold P' be the union of P and a bicollar of its boundary. For each
xeP, there are closed neighborhoods U of y0 in Y and V of x in W,
and a homeomorphism h: B(2) x U-+ V such that foh is the projec-
tion map onto U (since x$Bf). In fact it is possible to choose the
closed neighborhood U and a collection of such embeddings {hό: j =
1, 2, , k} on 5(2) x ?7 such that P c UiU i n t ^i(5(l)) and Z " 1 ^ ) Π
^•(B(2)) c int P\ For yeU define Λί, = f~\y) - £/ (so P c P ' c M,o)
and hy)j: B(2) -> My by ^,,-(0 = h3{y,t). The proofs of [1] now yield
the embedding required for (a).

Proof of (b). Let W e TkP be compact with L a int TF; we may
suppose that δ < d(L, bdy W). Let P be a closed bicollar of Q (P =
φ if Q = 0) and μ: P x D —> M% be as in (a); we may suppose that Z>
is sufficiently small and P is a sufficiently small bicollar of Q that
d(x, Q) < 3/3 for each a? e imag // (remember that Q = //(Q, y)). Let L'
be L — int P (since L — L a Q, U is compact). Each component ϋΓ of
L (resp. of f~\D) — imag v) contains one and only one component Kr of
L' (resp., of f~\D) - int imag μ). Let £/r c Np (r = 1, 2, . •) be closed
p-cells such that Er+1 c Er and Πr-^r = M Then it suffices to prove
that (*) there exists an integer r such that, for each Je ^ the com-
ponent H of f~ι(Er) — int imag μ containing J— int P has d(x, J— int P) <
3/3 for each xeH.

Suppose the contrary. Then there are components Jr of Π', com-
ponents iJ r of f~\Er) — int imag μ with J r c Hr, yr e Hr with d(Jr, yr) ^
3/3, and paths Γr c iϊ,. joining some point xr e Jr to yr. We may sup-
pose that Γr c TF, that xr —> a?0, and that yr —> i/0. Thus x0 eL', Γ =
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limsup/V is connected [23, p. 14, (9.1)], and diam Γ1 >̂ <?/3 Now Γ
is contained in some component J' of ZΛ In case (i) there are only
a finite number of components of Z/, and since they are compact, all
but a finite number of the Jr are in fact Jf; since d(J\ y0) ^ <5/3, a
contradiction results. In case (ii), since diamJ'< 3/3 and d i a m Γ ^
<?/3, a contradiction results also.

LEMMA 2.5. Let f: Mn ~^Nn be a map with 0 ^ n — p and n —
pΦ 4 or 5, let ye Np, let dim (Bf Π f~\y)) ^ 0, let X cz Bf Π f~ι(y)
be compact, and let ε > 0. Then there is a compact (n — p — l)-mani-
fold Q (or φ), an open p-cell neighborhood D of y in Np, and an
extended embedding v: Q x D-+ Mn such that each component K of
f~\D) — imag v meeting X has diam K < ε, their union has compact
closure, and imag v Π Bf = φ.

Proof. Let Γ, T c f~\y) be compact with X c int T\ T c int T
(interior relative to f~ι(y)), and let η > 0 be less than both d(X, bdy T7')
and d(T\ bdy Γ). We may suppose that e < η. Let X' = Γ' Π 5/,
and let ?7, = {x e Γ: d(a?, Xr) ^ 1/fe} (Λ = 1, 2, . .).

We will first prove that (1) for k sufficiently large, each component
of Uk has diameter less than ε. Suppose the contrary. Then there
are a subsequence {m(k)}, components Γk of Um(k), and points xk, yke
Γk with d(xk, yk) ^ ε. We may suppose that xk -* x0 and yk —> yQ.
Thus JΓ = limsup Γk is connected [23, p. 14, (9.1)], and since d(x0, y0) ^
e, diam Γ ^ ε. If fc is fixed, then for each j ^ k, Γ3 c J7m(i) c Um{k),
so that Γ c Um{k). Thus Γ c Π&ϋ'mίfc) = X, contradicting the fact that
X is totally disconnected (since X d Bf f] f"\y)). Thus (1) is true.

If a generalized continuum fails to be locally connected, it fails at
(at least) a subcontinuum of points [23, p. 19, (12.3)]. Since f~\y) —
Bf is an (n — p)-manifold (or φ) and Bf f] f~ι{y) is totally disconnected,
each component Λ of f~ι{y) is locally connected. Hence (2) if U is
open in Λ, then each component of U is open in Λ.

Let k be the number given by (1), and (3) let V be a component
of Uk meeting X. Then diam V< ε, so that V a T. Let bdy V
refer to the boundary of V in the component Λv of f~ι{y) containing
V, and let x ebdy V. Since 7 c Uk, d(x, Xr) g 1/fc; suppose d(x, Xf) =
α < I/A:. The component W of {̂  e Av: d(x, u) < 1/fc — a} containing x
is open in Λv (by (2)), WaUk, and thus W c i n t F (relative to Λr),
contradicting the choice of x; thus (4) d(x; X) = I/A for each x e
bdyF.

Let zί be the closure of the union of bdy V for V satisfying (3)
(actually the union is closed). For each xe A, d(x, X') — I/A, and since
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J c f and T ΓΊ Bf = X', Δ f] Bf = φ. Let L be the (n - p)-manifold
int T — Bf (possibly empty). Siebenmann and Kirby have shown (see
[15, p. 949] that a topological manifold with dimension not 4 or 5
has a handle decomposition, so in particular there are compact (n — p)-
manifolds with boundary {Lj} (j = 1, 2, , k or j = 1, 2, •) such
that Lj c int Lj+1 and L = [J3 Lj. Since Δ is compact, there is a j
such that Δ c int Lj. Since dL3 is collared, there is a compact (w —
p)-manifold Pn with boundary (or ̂ ) such that Δ c int Pn, Pn c int L, ,
(and so Pn cz L), and 3P% is bicollared in L. Let Q = dPn.

Since each component Y of /-1(p) — Q meeting X is contained
in some V satisfying (3), diam Y < ε. Let μ and v be the extended
embeddings given by (2.4a and b); the conclusion results.

COROLLARY 2.6. Let f: Mn -+NP be a map with 0 ̂  n - p and
n Φ 4,5, let x e Mn, and let dim (Bf Π /"1(/(^))) ^ 0. Then there is a
connected (not neccessarίly compact) manifold Kn c Mn with boundary
such that xeintKn( = Kn - diP), ίλe closure Kn of Kn in Mn is
compact, there is an open p-cell D c Np with f{Kn) c D, and the
restriction map g: Kn —> D is proper with Bg Π dKn = φ.

For example, let f:R2—+R be projection on the first factor, let
x = (0, 0), and let K2 = (-1, 1) x [-1, 1].

Proof. We may suppose that x e Bf. Apply (2.5) where X = {x},
and let Kn be the closure in f"\D) of K. Thus Kn is a manifold
with boundary, and dKn c imagv (which may be empty). Let Y be
a compact subset of the open 2-cell D. Since bdy Kn (bdy taken rela-
tive to Mn) is the disjoint union of dKn and a subset of /""^(bdyi)),
flf-^y) = /^(Γ) Π Kn = /^(Γ) ΓΊ i H (closure in Mw), and so is compact;
thus # is proper.

3* Open maps*

DEFINITION 3.1. For /: Mn — Np and a? 6 M", let Γ(a ) = Γ/(ίc)
be the component of f~ι{f{x)) containing x. If, for every neighbor-
hood U of x, f(x) eint/(C7), then / is open at x.

LEMMA 3.2. Let f: Mn —> Np be a map with n ^ p, and let x e Mn

with dim {f~\f{x)) Π Bf) ^ 0 and Γ(x) Φ {x}. Then f is open at x.

Proof. Let U be an open neighborhood of x in Mn. For n = p,
f~\y) — Bf is discrete, so the hypotheses cannot be satisfied. Thus
n > p, and there is z e (Γ(x) Π U) - Bf, so that f{x) = f{z) e int f(U).
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Since U is arbitrary, / is open at x.

LEMMA 3.3. Let f: Mn —>NP be a map, and let xeMn with Γ(x) =
{x}. Then there is an open p-cell D about f(x) such that, if K is the
component of f~ι{D) containing x, f: K —* D is a proper map.

Proof. Use the proof of [6, p. 74, (1.14)].

LEMMA 3.4. Let f: Mn-+Np be a map with n^p and dimif^iy)Π
Bf) ^ 0 for every y e Np, and let Ef be the set of points at which f
fails to be open.

(a) Then either Ef = φ (so that f is open) or dim f(Ef) ^ p — 1.
(b) In particular, if dim f(Bf) ^ p — 2, then f is open.

Proof. Let x e Ef. By (3.2) we may as well assume that (1)
Γ(x) = {x}; let g: K—+D be the proper map given by (3.3). (In case
n — p Φ 4,5, we could use (2.6) instead.) Then Eg = Ef Π K.

We observe that (2) if VczK is open, then int g{V) Φ φ, i.e.
d i m ^ F ) — p [11, p. 46]. If V<ϊ- Bg, the conclusion is immediate. If
F c Bg, let Ud V be a closed w-cell. The map g\ U: U-> g(U) is light
(from the dimension hypothesis), so that [11, p. 91, VI. 7] dim^(C7) ^
n. Since n ^ p, dim g(V) = dim g(U) = n = p.

Now suppose that g{K) Φ D and dim g(Eg) ^ p — 2. Since g is
proper, g(K) is closed, so that D — g(K) is a nonempty open subset
of D. By (2) int g{K) Φ φ. Thus D - bdy #(if) is not connected, and
hence [11, p. 48] dim bdy g(K) = p — 1. There is a 2 e iΓ with 0(2) e
(bdyg(iΓ)) — g(Eg), and since βr is open at z, g(z) e int g{K), so a con-
tradiction results. Thus (3) dim g{Eg) ^ p — 2 implies

It is immediate from (2) that (4) dim g(Eg) ^ p — 2 implies

g~\g{Eg))\ - K.

From (1), (3), and (4) if dim g(Eg) ^ p — 2, then # satisfies the
hypotheses of [23, p. 149, (7.81)] at x, and so g(Eg) locally separates
β at a;. A contradiction of [11, p. 48] results, and hence dim g(Eg) ^
p — 1, yielding conclusion (a).

Since Ef c Bf, conclusion (b) follows from (a).

4* O-regular maps*

DEFINITION 4.1. Let X and Y be metric spaces, let /: X—> Ybe
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open, and let xeX. The map / is 0-regular at x if, for every ε > 0,
there is a δ > 0 such that if ye Y and u, veS(x, δ) Π f~\y), then
there is an arc from u to v in S(x, ε) n f~\y). If / is proper, onto,
and 0-regular at each xe X, then / is 0-regular.

LEMMA 4.2. If Mn and Np are manifolds with boundary, f: Mn—>
Np is a map, and x e Mn — Bf, then f is 0-regular at x.

The proof is immediate from (1.5).

LEMMA 4.3. Let X be a separable metric space, let A a X be
closed, let X — A = Mn and Np be manifolds with boundary, let n> p,
let f: X—> Np be proper, open, and onto, and let B = B(f\Mn) U A (1.5).
Suppose that f(B) is nowhere dense, dim (B Π f~ι{y)) ^ 0 for each
yeNp, and f"ι(z) is connected for each zeNp — f(B).

(a) Then f~\y) is path connected for each y e Np.
(b) // / is 0-regular, F ^ Sl or [0, 1], and f~\z) ^ F for each

zeNp — f(B), then f is a bundle map with fiber F.

Proof. Each y e Np has a compact neighborhood V, and f~\ V)
is compact. There are zke V — f(B) with zk —>y, and f~\zk) —• f~ι{y)
[23, p. 10, and p. 130, (4.32)], so that f~ι{y) is connected [23, p. 14].
Since f~~ι{y) is locally connected except possibly at most 0-dimen-
sional set B Π f~ι{y), it is locally connected [23, p.19, (12.3)], and so
path connected [23, p. 38, (5.2)].

Under the hypotheses of (b) f~ι{zk) —> f~ι{y) 0-regularly [21, p.
482], and thus ([21, p. 484, Theorem 2] and [22, p. 341, Theorem 5.1])
f-\y)**F. By [8, p. 115, Theorem 7] f\f~\V) is bundle map, and
(b) results. This lemma is used in (4.5) and [7], and its considerable
generality is required for the latter applications.

DEFINITION 4.4. Given /: Mn -> Np, the singular set Af (see [6])
is defined as follows: x e Mn — Af if and only if there are open neigh-
borhoods U of Γ(x) and V of f(x) such that f\U: U->V is topologi-
cally equivalent to the projection map π: V x Γ(x) —* V. Thus (1.5)
Bf c Af. See (4.6).

LEMMA 4.5. Let f: Mn —> Np be a proper map with n^ p, 3Mn

possibly nonempty, Bf c int Mn, dim f(Bf) ^ p — 2, and dim {f~\y) Π
Bf) ^ 0 for each y e Np.

(a) If Γ(x) Φ {x} (see (3.1)), then there are open neighborhoods U
of Γ(x) and V of f(x) such that f\U:U—>V is a proper, open, mono-
tone (onto) map.
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(b) If, in addition, n — p Φ 4 , 5 , then f \ U is O-regular.
(c) //, in addition, n = p + 1, then f \ U is a bundle map (thus

Afnu= Φ).
(d) If Γ(x) Φ {x} for every x e Mn and Mn and Np are connected,

then f = ψoφy where φ is monotone and ψ is a k-to-one covering map.

Proof. By (3.4) / is open. The hypotheses that Γ(x) Φ {X} and
dim (f~\f{x)) Π Bf) ^ 0 imply that n > p. lίp^l, then Bf = φ, and
the conclusions follow from (4.2), [18, p. 63, (2.3)], and [19, p. 661,
(2.1)]. Thus we may suppose that n > p ^ 2.

Let x e Γ(x) — Bf. There is a cross section μ at x over an open
p-cell V c Np. Let U be the component of / - 1 ( V) containing Γ(x)
and let g: U-> V be the restriction of /. Since dim {g~\y) Π (Bg) £ 0,
each dimg-'^^n-p; thus by [11, p. 91, Theorem VI 7] dim(flΓ
n — 2, so that U' = U — g~ι(g(Bg)) is path connected.

Let a: Uf —> V — ^(.βff) be the restriction of #; since o: is a proper
map with Ba = φ, a can be factored a = 7°/5, where /3 is a monotone
map and 7 is a covering map [18, p. 63, (2.3)]. Now β°μ\(V — g{Bg))
is a global cross-section of 7, so that [16, p. 77 (6) and (7)] 7 is a
homeomorphism. Thus a is monotone, and by [18, p. 64, (2.5); the
proof is still valid for dMn Φ φ and Bf c int Mn] g is monotone onto.
Conclusion (a) results.

Now suppose that Γ(x) Φ {X} for every x e Mn. Since / is open,
and thus quasi-monotone, there is a natural number k such that each
f~ι(y) has at most k components, and for y e Np — f(Bf), f~ι(y) has
exactly k components [18, p. 64, (2.5)]. Let yeNp, and let A (i =
1,2, •• ,h^k) be the components of f~ι{y). Let Ui and F* be as
given by (a) for Γi9 and let V be a p-cell neighborhood of y such
that VafXiVi and the /^ are in distinct components of f~ι(V).
Since / is quasi-monotone, each component of f~ι{V) meets some Γif

so there are exactly h components Wi9 where T^c W<. Since f\ Wϊ. Wi~^
V is monotone, for each z e V — f(Bf), f~ι{z) has h components; thus
h = k. From [18, p. 63, (2.1)] (d) follows.

For xe U — Bg, g is 0-regular at x (4.2). Thus, to prove (b) it
suffices to prove that g (or equivalently /) is 0-regular at each x e Bg.
For xe Bg and ε > 0, let K be as given in (2.5) for g and X — {x},
and let ζ: K —> D be the restriction of #. Thus ίΓ c S(x, e) c £7. Since
# has a global cross-section, Γg{u) Φ {U} for every ue U; thus /\(w) ^
{u}, and by (d) ζ = ψoφ, where φ is monotone and ψ is a covering
map. Since D is simply connected, f is a homeomorphism, so that ζ
is monotone.
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By (4.3) (a) ζr\y) is path connected for each yeD. Choose δ > 0
such that S(x, <?) c int K. Since

S(x, δ) Π f~\y) c ζr\y) c S(x, e) Π Z" 1 ^) ,

/ is 0-regular at x. Conclusion (b) results.

If n = p + 1, then #| (C7- g~ι(g{Bg))) is bundle map (1.9) with fiber
a compact, connected 1-manifold F, i.e., E p& S1 or [0, 1], and conclu-
sion (c) follows from (4.3(b)).

LEMMA 4.6. Let f: Mn -+ Np be a proper map with Γ(x) c Bf (3.1)
for every xeBf. Then Bf = Af (4.4).

Proof. If x £ Af, then x £ Bf. If x $ Bf, then from the hypothesis
Γ(x) Π Bf = φ. There is an open p-cell neighborhood V of f(x) such
that the component U of f~\V) containing Γ(x) is disjoint from Bf.
Since f\U: U-^V is also proper, it is a bundle map (1.9), and since V
is contractible, the bundle is trivial. Thus x$Af.

PROPOSITION 4.7. Let f: Mn —• Np be Cn with n = p or p + 1, BfΦ
φ, dim /(By) ^ p - 2, αwd dim {f~ι{y) ί l ΰ / ^ 0 /or βαc/̂  7/ e Np. Then
dim β/ = 2p — n — 2 and there is a closed subset X c Bf such that
dim X < 2p — n — 2 αwd, /or eαc/̂  xe Bf — X, f at x is locally topolo-
gically equivalent to the layer map

c(ψ) x c: D2{n-p+1) x R2*-n-z _> Dn~p+2 x i?^-%-2

(see (1.2)), where c(ψ) = σ (see (1.1)) if n = p, and c(ψ) = τ, i.e. (1.10)
the cone map of the Hopf fibration ψ: S3 —+ S2, if n = p + 1.

Proof. Let X be the set of all xe Bf such that / at x is not
locally equivalent to c(ψ); then X is closed.

Let xeBf, and let iΓ be the neighborhood of x and g: K—>D be
the proper map given by (2.6). If n = p, then for each yeD, g~\y) —
Bf is discrete and dim (g~\y) Π -B/) ^ 0, so that g is light, i.e. each
Γ(u) = {u}. If n = p + 1 it follows from (4.5(c)) that for each u G Bg,
Γ(u) = {u}. There is an open p-cell neighborhood U (Z D of f(x)
sufficiently small that the component V of f"\U) containing x has
V c int K. Since K is compact, the restriction map h: V—+U is proper,
so that (4.6) Bh = Ah.

Since dim f(Bf) ^ p — 2 and Bf Φ φ, p :> 2. In case n = p,h is
light, and since dim Λ(JBA) ^ p — 2, the Jacobian determinant of h is
(locally) nonnegative or nonpositive [3, p. 94, (2.3) and p. 98, (1.7)].
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In both cases by [6, p. 83, (4.1)] there is a closed set Yh c h(Ah)
such that dim Yh < dim h(Ah) and, for each xe Ah — h~ι{Yh), h at x is
locally topologically equivalent to c(ψ) x c. Thus dim h(Ah) — 2p —
n — 2 and dim Ah ^ 2p — n — 2. Since & | Ah is light, dim AΛ ^
dim fe(AA) [11, p. 91, Theorem VI 7], so that dim Ah = 2p - n - 2, and
dim (AΛ c / r 1 ^ ) ) ^ dim Yh ^ 2p - n - 2. Since Ah = Bh and VΠ
Xcz Ahf] h~ι(Yh), dim (VΠ X) < 2p — n - 2; since a e ΰ ; was arbitrary
and V is a neighborhood of x, dim X < 2p — n — 2.

REMARK 4.8. Theorem (1.1) is a Corollary of (4.7). (Use the
Rank Theorem (1.6).)

The next result (4.9) is a topological analog of (1.1). If /: Mp+1 —>
Np is continuous with p ^ 2 and Bf discrete, then / satisfies the
hypotheses of (4.9); in this case the result was proved by Timourian
[19].

PROPOSITION 4.9. Let f: Mn —>NP be a map with n = p or p + 1
and p^2, let dim Bf ^ 0, and let dim f{Bf) ^ 0 . Ifp^S suppose
in addition that for each y e f(Bf) and neighborhood W of y9 there is
an open p-cell U such that y e U czW and U — f(Bf) is simply con-
nected. Then at each x e Mn, f is locally topologically equivalent to
one of the maps p, σ, or τ of (1.1).

Proof. By the first two paragraphs of the proof of (4.7), for each
xe Bf there is a neighborhood V of x such that the restriction h: V—>
U of / is proper and Bh = Ah. By [6, p. 75, (2.3)] at each ueBh,h
at u is locally topologically equivalent to σ or to c(ψ), where ψ is the
Hopf map, i.e. to σ or τ by (1.10).

PROPOSITION 4.10. Let f: Jn~m x Rm -* Lp~m x Rm be a Cn~p+1 layer
map with n — p = 0, 1, or 2, and dim (Bf Π f~\y, t)) ̂  0 for each
t e Rm. Then Bf = Cl[\Jt{B{ft)}: t e Rm].

By Sard's Theorem (e.g. [2, p. 156]) dim (ft(R^m^(f(t))) ^p-
m - 1, and by the Rank Theorem (1.6) (Lp~m x {*}) - f{Bf) is dense
in Lp~m x {t} for each t e Rp~m. Our proof uses only this last state-
ment, rather than Cn~p+1.

Proof. If (x, s) ί Bf, then there is a layer embedding λ: ( D ^ x
Dp~m) x Dm->Jn~m x # m witn (α?, s) e int imagλ, Dp-m c Z/~w, TΓ: Dn~p x
(ΰ p ~ m x Dm)->Lp~m x i?m projection, and /oλ = π. For each (v, t) e
int imag λ, \t: D

n~p x Dp~m —> Jn~m is an embedding with v e int imag λ,
and fto\t = πt. Thus (v, t) ί J5(/,), so that (a?, s)
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Suppose that (x, s) $ Cl[\Jt B{ft)], but (x, s) e Bf. Choose rj > 0
such that S((x, s), rj) Π Cl[\Jt B(ft)] = φ, and let K be the set given
by (2.5) for /, X — {(x, s)}, and ε = η, over (we may suppose) D = U x
V, where Ϊ7 and V are open (p — m) — and m-cells, respectively. Let
K be the closure of K in / ^ ( t f x V), and let / : J? -> EΓ x F and gt: K n
(J%-m x {£}) —> Ϊ7 x {£} be restrictions of / . Each is a proper map.
Since B(gt) = φ, each ^ is a bundle map (1.9): call its fiber Ft.

For ue V there exists y with (y, u) e (U x {u}) — g(Bg). Choose
open fc-cell Γ and m-cell A neighborhoods of y and u, respectively,
such that (Γ x A) Π flr(B^) = ^. Since g\g~\Γ x J) is a bundle map
(1.9), Ft is independent of t for teA. Since % is arbitrary and V is
connected, Ft is independent of t for ί e 7, i.e., g~ι(y, t) is independent
of y and ί.

By (3.2) g is open, and thus [23, p. 152, (8.1) and (8.11)] quasi-
monotone. Since the number of components of g~\y, t) is independent
of y and t, g = fo^, where ^ is monotone and ψ is a covering map
[18, p. 63, (2.1)]. Since U x V is simply connected, f is a homeo-
morphism, so that g is monotone, i.e., Ft is connected. In case n — p =
0 each gt is a homeomorphism, so that the open map g is also one-to-
one and onto—thus g is a homeomorphism, contradicting the choice of
(x, s). In case n — p = 1 or 2 to obtain a contradiction it suffices [10,
p. 527, Theorem B and p. 530, Corollary 2] to prove that g is 0-regular.

Given (z, u) e Bg and ε > 0, let Γ c g~ι{g{zy u)) — dK be a closed
(n - p)-cell with (s, %) e int T, dT Π S, = φ, and dim Γ < ε. Let Mn =
K, Q = dT, and let v: Q x D —* iΓ be the extended embedding given
by (2.4 (a)); we may suppose (2.4 (b)) that the component Xof g~ι(D) —
imag v containing int T has dim X < ε and X Π 3iΓ = 0. Since each
g~ι{y, t) is a compact connected (w — p) — manifold with nonempty
boundary (n - p = 1 or 2) and v(Q x {t}) ̂  dT^ Sn~p~ι, it follows
from the cohomology sequence with compact supports of this pair that
9~~\V> 0 — v(Q x ί̂ }) has either one or two components. Since g~ι{y, t) Π
X contains any component it meets, there are two and g~ι{y, t) Π X
is one of them. Choose S > 0 such that S((z, u), δ) c X. Then for
every (y, t) e U x V,

so that g is 0-regular at (2;, u). Since ^ is 0-regular at each X&Bf

(4.2), ^ is 0-regular.

While (4.10) is not used in this paper, [7] refers to (4.10) and
(4.11), they will be used elsewhere, and the proof of (4.10) fits natu-



DIFFERENTIABLE MAPS WITH 0-DIMENSIONAL CRITICAL SET, I 629

rally into this section. For these reasons, they are given here.

REMARK 4.11. The hypothesis dim (Bf Π f'\y, t)) ^ 0 is (surpri-
singly) essential. There is a proper layer map / : ([ —2, 2] x R) x R—>
R x R such that each ft is topologically equivalent to the projection
map, / 0 is the projection map, and Bf = ([ — 1, 1] x R) x {0}. For example
each f~\Q, t) (t Φ 0) might be the union of the three subsets of
( [-2, 2] x R) x {t} denned by:

(1) x = sin t^y for \y\ ^ 3τr£/2, (2) y = Sπt/2 for - 2 ^ x ^ - 1
and (3) 7/ = — 3ττ£/2 for 1 ^ a; ^ 2. Open maps similar to this have
been defined in [14, p. 9] and [9, p. 341].
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