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ON PSEUDO-CONFORMAL MAPPINGS OF
CIRCULAR DOMAINS

STEFAN BERGMAN

In the present paper we investigate the condition whether
the bounded domain B of C2 is a pseudo-conformal image of
a circular domain, say C. Under the assumption that this is
the case and that the invariant JB(zu z2; z\, z2) is not a con-
stant, we characterize the center of a circular domain. This
characterization is invariant with respect to pseudoconformal
transformations. Assuming that B is a pseudoconformal image
of a circular domain C and that there is in B one and only
one point, say (ti, t2) which satisfies the conditions mentioned
above, we determine the representative R(B\ U, t2) of B. If
B is a pseudo-conformal image of a circular domain C and
(ίi, t2) is the image in B of the center of C, then the repre-
sentive R(B; tίf t2) is a circular domain. The pair of functions
v10, v01 mapping B onto R(B; U, t2) can be written explicitly in
terms of the kernel function of B.

A homeomorphism T of a domain, say B, of the zl9 22-space, zk =

%k + iVk, k = 1, 2, by a pair of holomorphic function

( 1 ) z* = s*(Si, z2) , (zl9 z2)eB ,

of two complex variables is denoted a PCT (pseudo-conformal trans-
formation).

A domain which admits the group

of PCT's onto itself (automorphisms) is called a circular domain.
We assume that at every boundary point Q of C the Levi expres-

sion is negative (see (11), p. 11 and (16), p. 12, of [1]). (Hypothesis 1)
To decide whether a domain, say B, belongs to a given class of

domains, for instance, whether B is a pseudo-conformal image of a
circular domain C, is one of the interesting problems of the theory
of PCT's. In the following we shall show that the theory of the
kernel function permits us to answer this question in certain in-
stances. In addition, if, B= T(C), we shall determine the function pair
mapping B onto the circular domain C.

REMARK. Concerning the application of the kernel function in the
theory of conformal mapping of simply and multiply connected domains
onto canonical domains and onto each other, see [3], Chapter VI, [5]
and [6].
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The first step in our approach (under the assumption that B =
T(C), i.e., that B is a pseudo-conformal image of a circular domain
C) is the determination of the image of the center 0 of C in B.

Using the considerations on p. 183 ff. of [3], we assume that the
invariant (with respect to PCT's)

is known and is not constant. (Hypothesis 2)
In accordance with the considerations on p. 183 of [3] JB is

invariant with respect to PCT's. Consequently,

(4) JC(Z,Z) = JB(Z*,Z*)

Jc(z, z) is a real analytic function of zl9 z2y zl9 z2 in C. From formula
(33), p. 19, of [2] it follows that

(5) Jc(z,z)>0, zeC.

Since we assumed that at every boundary point of C Levi's expression,
L(Φ), is negative, it follows that for every boundary point Q of C

(6) £

holds (see (1), p. 12, of [2]).1 Since J(z, z) is not constant in C, it
must assume its maximum or minimum in C.

In Theorems 1 — 3 we shall discuss some properties of a connected
set which includes the origin 0 where Jc(z, z) has a (local) maximum
or a minimum. These properties are preserved in PCT's and enable
us to determine the image T(O) of the center 0 in B = T(C).

THEOREM 1. If J(zl9 z2) has a maximum, minimum or minimax
at an isolated point P of B = T(C), then

(7) P=T(O).

Proof. Let C = CΠ [y2 — 0]. The function J(zl9 x2) is defined in C.
If J(zl9 x2) assumes a value, say c0, at a point z°l9 x% (z°ly x°2) Φ 0, then
J(zl9 z2) = c0 along a line

( 8 ) o\z\, x°2) = [z, = z\ei<p

9 z2 = x\eiφ

9 0 ^ φ ^ 2π] ,

the orbit of (z°l9 x°2). If and only if z\ = 0, x°2 = 0 (i.e., if (z°l9 x°2) is the
origin 0), o1 degenerates to a point. In accordance with (4), if JB(z*9 z*)

* We assume here that we approach Q in the sense A1 in a way described in [2],
p. 10.
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has a minimum or a maximum at an isolated point P, PeB, then (7)
holds.

THEOREM 2. It is impossible that J(z, z) has a maximum or a
minimum along a (one-dimensional) connected set including 0.

(We assume here that the set does not include a segment of an
orbit.)

Proof. Suppose that

( 9 ) p = U P(α) > a > 0, P(0) - (0, 0) = 0

is a (one-dimensional) connected set consisting of points P(s), 0 ̂  s ̂  α,
where Jc(z, 2) assumes a minimum or a maximum. Then to every point
Pv(a), 0 < a ^ a, corresponds the orbit o\Pv(a)), along which Jc(z, z)
assumes a constant value. Thus Jc(z, z) assumes the same value on

(10) U o\Pv(a)) , 0 rg a ^ a .
(2 = 0

Each o^P^α:)), α: constant, a > 0, is one dimensional. Two different
orbits o\PXa)) and o^P^αs)), ̂  ^ a2, are disjoint and therefore (10)
is a two-dimensional set. Γ[ | jLo o'(Pv(α:))] is also two dimensional
since T is a homeomorphism.

In the following we shall consider two cases where J(z, z) equals
a maximum or a minimum in a three-dimensional segment s3.

THEOREM 3a. Suppose that Jc(z, z) = maximum (or minimum) in
a (three-dimensional) set s3, P e s3. We assume that s3 is connected
in C, s3 — P is a sum of two (or in general n, n < 00) disconnected
sets. Then P is the center O of C.

If B — T(C), i.e., if B is a pseudo-conformal image of C, then
T(sz) has the property indicated above and if T(sz) — P* is a sum of n,
n > 1, disconnected parts, then P * = T(O).

Proof. If two parts, say s\ and s\, s\ e C, are connected at one
point, say (2?, z°2), I2JI2 + \z°2\

2 > 0, then they are connected along a
line segment

(11) oι(zl, s® - \z\eι\ z\e1^ Q^φ^2π\.

If we delete one point, say Q = (z\eiφ\ z\ei<fή, from (11), then s\ and s\
will still be connected along

(12) [z\eiψ, z°2e
ίφ, 0 ^ φ ^ 2π] - (z\eiφ\ z°2e

iφή .

Thus by deleting the point Q, si and s2

2 can become disconnected only
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if Q = 0 = (0, 0), in which case the orbit (11) degenerates to a point.

THEOREM 3b. Suppose that J(z, z) = maximum (or minimum),
zeC, is a connected set s3, P e s\ s3 = si U si (J P, and that one can
define sufficiently small neighborhoods N(sl) and N(s§ such that N(sl) (J
N(s3

2) U P is connected and N(s\) (J N(s*2) is not connected. Then P = 0.

Proof. Suppose that the point Q = (zj, 22) Φ 0 belongs to s\
Then the orbit (11) must also belong to s\ Let Pk e JV(sϊ), A; = 1,2.
According to the assumption of the the theorem, one can connect P1

and P 2 by a line segment passing the point Q — (s?, z°2). Since

(13) |*ί|2 + | * S | 2 > 0 ,

one can also connect P1 and P2 by a segment passing by the point
Q* = {z\e1^, z\e^)y 0 < φ, < 2π. N(sf) - P and iSΓ(s3) - P become dis-
connected only if the assumption (13) does not hold, i.e., if P =
0 = (0, 0).

REMARK. It is interesting to give an example of a set s3 and to
describe a construction of JV(s3) possessing the properties indicated in
Theorem 3b. Suppose that si lies in x2 > 0, si in x2 < 0, and that
they are connected by a one-dimensional set which lies in s3 and which
includes O (it lies in x2 = 0). Let Q Φ O, Qes3. To construct the
desired neighborhood, we draw around every point Q £ s3 — O a hyper-
sphere ii(Q, ^) with the center at Q and of radius <o > 0, p = p(Q) <

where d(Q) denotes the distance between Q and x2 = 0. Then
= [ U #(<2, l/2cZ(Q)), Qesl]. Obviously N(sf) has no points lying in

x2 = 0. Naturally, instead #2 = 0 one can use another hypersurface
possessing the necessary property.

THEOREM 4. Suppose that J assumes its maximum (or minimum)
on a two-dimensional connected set s2, O e s2. We assume that s2 — O
is a sum of n disconnected segments, 1 < n < oo. Then O is the
center of C.

Proof. The proof proceeds as the proof of Theorem 3a. To every
point P, P Φ O, of s2 Π (y2 = 0) corresponds the orbit (8), i.e.,

s2 = U oι{Pv{a)) , 0 ^ a < a .
β = Q

Suppose that Px and P2 are two points of s2 which lie in different
orbits oι{Pk), k = 1.2. If the line segment connecting P1 and P 2 passes
through O, the segments si, Pk e s\ — O, sl{Js2

2 = s2 — O are disconnected.
We note that if we delete a point Q, Q Φ O, then β2 and s\ can be
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connected by a segment passing through another point of the orbit
o\Q). Only for Q = 0 this orbit shrinks to a point.

REMARK. It is not necessary to consider the case where the
domain s (where JB(z, z) = maximum (or minimum)) is four dimensional.
If this holds, then

(14) Js(z, z) = const , (zl9 z2) e B ,

is in contradiction with Hypothesis 2.
Obviously there exist situations for which our procedures do not

enable us to determine the location of T(O) in B. For example,
suppose that s2 is a segment in C Π [x2 — 0, y2 = 0].

In some of these cases we can use in addition to J a second
invariant (with respect to PCT's) J2(z, z) which is linearly independent
of J(z, z). Concerning conditions for such domains B, see [4]. We
assume that the intersection

(15) [J(z, z) = const = cj Π [J2(z, z) = const = c2]

either includes an isolated point or a closed Jordan curve.

THEOREM 5a. Suppose that the set (15) in B consists of discon-
nected components and one of these components is an isolated point,
say Q. Then Q = T(O).

Proof. Suppose that (15) in C is a point {z\, z°2) Φ 0. Since C
admits the group (2) of PCT's onto itself, the orbit

(16) o\z°L, z°2) = [zk = z \ e ι \ 0 ^ φ ^ 2 π , k = l , 2 ]

must belong to (15). (16) is a closed Jordan curve and its image
T{oι(z\, z§) is also a closed Jordan curve. It degenerates to a point
only if « z°2) = O.

THEOREM 5b. Suppose that (15) includes a closed Jordan curve,
say p\ If we draw around every point Rep1 a (invariant) hypersphere
α3(i2, p) of radius p, then for p sufficiently small all hyperspheres
σz(R, p), Rep1, have no common point. If p increases, there exists a
smallest p, say p = pQ, such that all σs(R, pQ) have a common point,
say Q. Then

(17) Q = T(O) .

Proof. Since the construction described in Theorem 5b is invariant
with respect to PCT, we can consider it either in C or in B = T(C).
We shall consider it in C. By PCT (2)pι goes onto itself. Therefore
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the invariant distance, say pQ, of every point Rep1 from 0 is the
same. For p < p0 all hyperspheres σB(R, p) have no common point.
Suppose that there exists a point, say S, S Φ 0, such that the invariant
distance between p1 and S is ρι < ρ0. Then p1 would be simultaneously
an orbit around two different points, 0 and S. But the orbits around
the two different points cannot coincide. If p = p0, where ρ0 is the
invariant distance of pι from 0, all (closed) hyperspheres σ*(R, p0)
will have the point 0 in common. Thus (17) holds.

Suppose that the domain B (in the z19 z2-space) is a pseudoconformal
image of a circular domain C, i.e., B = Γ(C). The previous considera-
tions in most cases enable us to determine in B the image t = T(0),
t = (tl9 t2) of the center 0 of C. In the following we shall indicate,
using the above result, how we can determine the pair vί0(z, t), voι(z, t),
z = (zl9 z2), t = (ίx, ί2) of analytic functions which transform B onto a
circular domain.

We shall use, without proof, the following:

LEMMA. A circular domain, say C, is transformed by a linear
PCT again onto a circular domain.

A mapping pair wk(zl9 z2) is said to be normalized at t = (tl9 t2) if

(21) wk(tl9 t2) = tk9 dzn _ _

δkn = 0 for k Φ n, δkn = 1 for k = n, k = 1, 2, p = 1, 2.
In (50), (51), pp. 188,189 of [3] the pair Vt = (vι0(z, t), voι{z, t)) normalized

at t is given (in terms of the kernel function Kb(z, t)) which maps B
onto the representative R(B, t) of By see Theorem, p. 186 of [3].

THEOREM 6. Suppose that B is a pseudo-conformal image of a
circular domain C, i.e., B = T(C), where T is a PCT. Let t* = (if, t2)
be the image in B of the center 0 of C. Then the representative
R(B, t*)9 t* = T(O), is a circular domain. Here R(B, t*)9 t* = T(O),
is the domain which we obtain from B using the PCT

(22) z, - vlo(z, t) , z2 = voι(z, t) .

(^10, v01) is the pair of functions introduced in (50), (51), pp. 188-189
of [3].

Proof. According to our considerations R(B, t) and C are both
representatives of B with respect to the same point t = T(O). According
to [3], p. 190, two representatives of B with respect to the same point
can be transformed into each other by a linear PCT, say by
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v*10 = aήv
10 + aήv

01 ,

(23) avμ constants ,

v ^ = a2Ίv
10 + aήv

01 .

In accordance with Lemma 1, R{B, t) is also a circular domain
since C is a circular domain and (23) is a linear PCT.
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