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TOPOLOGIES ON SEQUENCE SPACES

WILLIAM H. RUCKLE

A study is made of two means to topologize a space of
sequences. The first method rests upon the duality of every
sequence space S with the sequence space φ (finitely Φ 0) by
means of the form

(fai), (bj)) - Σ a& (*i) e S> ̂  e Ψ
3

The second method is a generalization of the Kothe-Toeplitz
duality theory. The Kδthe dual Sa of a sequence space S
consists of all (bj) such that (a,jbj) e I1 (absolutely convergent
series) for (a/) e S. Other spaces may take the role of I1 in
the above definition. A means to construct a topology on S
is determined using this generalized dual. Finally, a parti-
cularly suitable type of space (the sum space) to play the role
of I1 is defined.

Our motivation is primarily the inexact but nevertheless meaningful
question: what is the "natural" topology for an arbitrary space of
sequences S. We consider two classes of topologies on S. Both classes
include the topologies studied by Kothe and Toeplitz [10] and Garling
[3, 4]. Our most important result is Theorem 4.10 which establishes
a relationship between these two classes.

The first method of topologizing a space of sequences is based
upon the observation that every sequence space S is in duality with
the space φ of finitely nonzero sequences by means of the natural
pairing

= Σ *& (*s) e S,
ύ

It is thus possible to define upon S topologies having a neighborhood
base at 0 consisting of polars of a subfamily of the collection of all
S-bounded subsets of φ. A few basis observations are made concerning
this topology in § 3.

The second method is a direct extension of the Kothe-Toeplitz
duality theory [10]. The Kothe-Toeplitz dual, Sa, of a sequence space
S consists of all sequences (bj) such that ΣΓ=i lαAI < °° f° r e a c h (%)
in S. In other words, Sa consists of all (bj) such that (asbj) e I1

(absolutely convergent series) for each (α,-) e S. It is easy to see how
S and Sa are in duality. In §4 we examine the consequences of
allowing other spaces to play the role of I1 in the above alternative
definition. Thus for S a sequence space and T a sequence space with
a linear topological structure Sτ consists of all sequences (bj) such that

235



236 WILLIAM H. RUCKLE

(ctjbj) e T for each (as) e. S. Although S and Sτ may not be in duality
there is a very natural way to determine topologies on S using Sτ

and T. Many of the results of §4 are generalizations of the results
of Kothe and Toeplitz to this new setting.

A particularly suitable type of space to use for T is the sum
space which is related to the summation of series. The spaces φ, I1

and cs (convergent series) are all sum spaces, but there are many
other examples. Examples of sum spaces and ways to generate them
are presented in [13].

2* Notation and algebraic preliminaries* The results of this
paper apply to both complex and real spaces of sequences. No further
distinctions regarding the scalar field will be made. The letters,
s, t, u, v with or without subscripts will denote sequences. For s the
sequence {aίy α2, •} s(j) means a5 the ith coordinate of s. If A is any
subset of {1, 2, •••} then s[A] is the sequence for which

βCO JeA

0 3$A.

In particular, if A is the set {1, 2, , n}, s[A] is written s[^ n]. The
sequence s[{j}] will always be written s[j]. The sequence consisting
entirely of one's is denoted by e.

The operations of addition, scalar multiplication, and multiplication
of sequences are defined coordinatewise. Thus, for instance, u = st
means u(j) = s(j)t(j) for each j . The set of all sequences, which will
be denoted by ω, is a linear algebra under these operations. A
sequence space is a set of sequences which is closed under addition
and scalar multiplication. If in addition a set is closed under multi-
plication it is called a sequence algebra.

For A and B, sets of sequences, A + B is the set of all s + t
with s e A, t e B AB is the set of all si. with s e A and t e B; aA
is the set of all as with s e A. For s and t sequences such that st
is summable the linear form

(s, ί) = Σ s(j)t(j)

is defined.
The following statement is not difficult to verify.

PROPOSITION 2.1. If {Sa: a e A} is a family of sequence spaces
(algebras) f\a Sa is a sequence space (algebra). The set of all finite
sums Sί + s2 + + sn with {sί9 s2, , s j £ \Ja Sa and n arbitrary
is a sequence space (not necessarily an algebra) which is equal to
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Π {T: T is a sequence space containing each S}.

For B a set of sequences and t a sequence tB is the set of all
sequences ts as s ranges over B. The set of all sequences s for which
is e ΰ is denoted by t~γB. If t(j) Φ 0 for each j and t'(j) = l/t(j)
for each j then t~"B = ί'5 so that t(t"ιB) = B. If ί(i) is not different
from 0 for each j it is still true that t{t~ιB) c B and t~ι{tB) z> B.

If A and 5 are sets of sequences AB is the set of all s such that
ts £ B for each t e A. In other words

(2.1) AB - n{*-\B:ieA}

which may be the empty set. However, if S is a sequence space t~xS
and ίS are clearly sequence spaces. Hence As at least contains the
zero sequence, and is in fact a sequence space which will be called
the S-dual of A.

If S is the space I1 of all sequences s such that ΣΓ=i ISC?)I < °°
and T is any sequence space, Ts is the Kothe-Toeplitz (a — ) dual of
T introduced in [10], §2, Definition 1. If S is the space cs of all
sequences s such that ΣΓ=i SU) converges, Ts is the space called the
"flr-dual" of T by Chillingworth in [2] and the /3-dual of T by Kothe
and others [9], p. 427. For S and T arbitrary sequence spaces Ts is
the space called (T—*S) by G. Goes [5, p. 137 and elsewhere]. For
S equal to bs, the space of all sequences s for which sup% | Σ?=i s(i) I <
oo, and Γ arbitrary, Ts corresponds to the 7-dual of T of Garling
[4] and others. In relation to α:-duality (2.1) corresponds to Satz 1
of [8]

For S and T, sequence spaces, T is called S-perfect if Tss (i.e.
(Ts)s is equal to T (cf. [10], § 2, Definition 2).

PROPOSITION 2.2. Let A, B and C be sets of sequences and S, T
and U sequence spaces.

(a) φc — ω.
(b) A a B implies AG =) Bc.
(c) A c Acc.
(d) Ac is C-perfect.
(e) 1/ A <md JB δoίfe contain 0, (A + JB)'7 = A'7 f] Bu.
(f) 5 c C implies AB c Ac.
(g) A β n c - AB Π Ac.
(h) (S Π ϊ7)^ 3 (S^ + Tu)uu and equality need not hold.
(i) If S and T are U-perfect (S Π T)π = (Su + Tu)uu.
(j) 1/ S α^d Γ are U-perfect so is S Π T.
(k) A is always A-perfect.
(1) ( A 5 f - A{B°] = B{A<J].
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Proof. Statements (a), (b), (c) and (f) follow immediately from
the relevant definitions so we omit their proof. We also omit the
proofs of statements (d), (e), (g), (i) and (k) which are not hard.

(h) By (b), (S Π T)u Z) (Su + Tu) so by (b) applied twice (S f]

T)uuu 33 (Su + Tσγu% B u t (g η T)UUϋ = ( g R T)U foy ( d ) #

Let φ be the space of all sequences which are finitely nonzero,
and let S — φ + [e]. That is, S consists of all sequences which are
eventually constant. If s(j) — ( — ΐ)j for each j ,

(s n ssy1 = φ11 = ω

while

(S11 + (βS)11)1111 = (I1 + I1)1111 = I1 .

(j) By (i), (S n Γ ) ^ - (S^ + Tu)uuu and by (d) (Su + Γ σ ) ^ ^ =
(S^ + Tϋ)u which is S'7^ Π Tuu = S Π T by (e) because S and T are
[/-perfect.

(1) If v e (AB)C and seA,vseBc since for ί e B, vst e C. Thus
ve A{B°}. On the other hand if ve A{BC}, se A and te B, vsteC since
vs G β^. Hence v e (AB)C.

The set A^ is called the set of multipliers of A and written Λf(A).
If S is a sequence space M(S) is a sequence algebra called the multi-
plier algebra of S [11].

PROPOSITION 2.3. (a) If S is a sequence algebra M(S) 3 S. If A
contains e, M(A) c A. Thus if S is a sequence algebra containing e,
M(S) - S.

(b) For A and B sets of sequences M(AB) — (AAB)B and is thus
B-perfect.

(c) M(An) contains both M(A) and M(B).

Proof, (a) Obvious.
(b) By 2.2 (b), (AAB)B = {AB}{AB} which is M(AB).
(c) If v e M(A) and teA,vteAso that uvt eBΐorue AE. Thus

vu e AB for ue AB which implies v e M(AB).
If se M(B), sute B for ue AB and te A. Hence sue AB for ue AB

which implies seM(AB).
For A an arbitrary subset of φ, Aiω), the polar of A in ω is the

set of all sequences s such that

sup{|(s, t)\:teA} ^ 1 .

If S is an arbitrary sequence space the polar of A in S, A{S) is A{ω) Π
S. For B an arbitrary subset of ω, B{φ), the polar of B in φ is the
set of all teψ such that
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sup {|0, t)\:seB} ^ 1 .

If A and B are sets of sequences such that BA czA, A is called
β-invariant. It is clear that A is .B-invariant if and only if B c M(A)
so that M(A) is the maximal set under which A is invariant.

PROPOSITION 2.4. (a) If A is a subset of φ which is B-invariant
then A{ω) is B-invariant. If S is a sequence space which is B-invariant
then AiS) is B-invariant.

(b) If A is a subset of ω which is B-invariant, then A{ω) is
invariant under B.

(c) If B is a semigroup of sequences AB is B-invariant.

Proof, (a) Let Λ denote the set of all s e φ such that | Σ i SU) I =
1. Then it is easy to see that AΛ = A[ω). If A is 5-invariant Be
M(A) and by 2.3(c), M(A) c M{AA). The second assertion of (a) is
an immediate consequence of the fact that if AΣ and A2 are J5-invariant
so is At Π A2.

The proofs of (b) and (c) are obvious.

3. ^-Topologies on sequence spaces* The coordinate functional
are defined by Eά{s) = s(j). A K-space is a sequence space S with a
locally convex topology on which each E3- is continuous. For S a
locally convex sequence space containing φ, S° denotes the closure of
φ in S, and Sf denotes the space of all sequence [f(e[j])} as/ranges
over £*, the topological dual space of S.

PROPOSITION 3.1. If Sis a locally convex sequence space containing
φ, Sf = (S°)f, and (Sψ is algebraically isomorphic to (S0)* under the
correspondence offe(S0)* to {f(e[j])} in (S°)f.

Proof. The first assertion is a direct consequence of the Hahn-
Banach theorem. The second results from the fact that if / e (S0)*
is such that f(e[j]) = 0 for each j then / = 0.

PROPOSITION 3.2. Let S be a locally convex sequence space contain-
ing φ, and let & be the family of all continuous seminorms on S.
If for each p in &>, Ap consists of all s in φ such that p(s) ^ 1 then
Sf is precisely equal to

Proof. Denote the above union by T. If feS* there is
such that
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for each s e S and hence for each seφ. If tf is the sequence defined
by tg(j) = f(e[j]) for each j then f(s) = (s, £/) for each seφ. Thus
ί/ e A;ω) which implies that Sf c T.

Conversely, if ί e A^ω) for some p e &> then the linear functional

ft(s) = (ί, s) s 6 ^

is continuous on φ given the relative topology of S. This functional
can be extended to all of S by the Hahn-Banach theorem. For the
extension of ft to S,

fMΛ) = t(j)

for each j so that ί e Sf.
In 3.2 the hypothesis can be weakened by requiring only that &

be a family of continuous seminorms on S which is directed by the
relation <£ and determines the topology of So

The bilinear form (s, t), teφ, se S provides a duality between
φ and each sequence space S. A locally convex topology on a sequence
space S is called a ^-topology if there is a fundamental system of
neighborhoods of 0 in S having the form {A{S):Aeφ} where φ is a
family of S-bounded subsets of φ. Note that A{S) is the absolute
polar of A with respect to the aforementioned duality.

If S is a sequence space and & is a family of S-bounded subsets
of φ, the .^-topology on S is defined to be the coarsest locally convex
topology on S for which each BίS), Be & is a neighborhood of 0. A
collection .& of S-bounded subsets of φ is called T-saturated for T
an arbitrary sequence space if (1) J S e . ^ and BLczB implies Bte^;
(2) Be .^ implies aBe έ%ΐ for each scalar a; (3) Bly B2, , Bn in
& implies (U?=i Btfτn* is in &. By the bipolar theorem (UJU B3)

{τ)^
consists of the σ(φ, T) closure of AUi=i-^i) i n Ψ where Γ denotes
absolutely convex hull. Thus if & is ^-saturated and 2\ c T2 then
.^? is Γ2-saturated. The Γ-saturated hull of & is by definition the
smallest T-saturated collection of subsets of ψ containing &. If S c T
then each B is the saturated hull of & is S-bounded. Hence if φ
contains & and is contained in the S-saturated hull of &, the «^-
topology and ^-topology coincide on S. The .^φ-topology on S is the
,^-topology for which , ^ is the (S-saturated) family of all S-bounded
subsets of φ.

The following statement is a direct consequence of 3.2 and its
proof need not be given.

PROPOSITION 3.3. If a sequence space S containing φ has the
^-topology where έ% is an S-saturated family of S-bounded subsets
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of ψ then Sf is precisely equal to

The hypothesis of 3.3 can be weakened by requiring only that &
have the property that for each B in the S-saturated hull of & there
is Bγ in & with Bx ZD B.

We mension the following theorem and its corollary since they
are analogous to the uniqueness and inclusion theorems of Zeller [15]
for î SΓ-spaces which have proven very useful. In the work of Zeller
the Closed Graph Theorem is essential while the present results rest
upon the Uniform Boundedness Principle. Since there are (pathelogical)
.FΈΓ-spaces which do not have a <p-topology the present work does not
include that of Zeller, Conversely since there are iΓ-spaces which have
barrelled ^-topologies but are not FiΓ-spaces (e.g. φ with its Mackey
topology) the work of Zeller is not more general than this. It is easy
to show that if {e[n]ι n = 1, 2, •} is a basis for a sequence space S
then S has a ^^-topology. Thus the results of Jones and Retherford
[6] on bases in barrelled spaces can be derived from Theorem 3.4.

The proofs of both Theorem 3.4 and its corollary are very easy
and we omit them.

THEOREM 3.4. For a sequence space S there is at most one barrelled
φ-topology for which S is a K-space> namely, the ^ψ-topology.

COROLLARY. If S and T are both barrelled K-spaces having a
φ-topology and S c T then the inclusion map of S into T is continuous.

4* Duality of a sequence space with respect to a sum space*
Let S be a sequence space with a locally convex topology and T an
arbitrary spaces of sequences. For U a subspace of Ts, a locally
convex topology is determined on T by the collection of seminorms

PΛS) = p(us) ue U

where p ranges over the family of continuous seminorms on S (or
over a fundamental subfamily). This topology will be called the
σS(T, U) topology on T. If S is a ϋC-space and φ a U, then T with
the σS{T, U) topology is iΓ-space. Throughout this section it is always
assumed that these conditions are fulfilled. The σS(T, U) is thus
the projective topology on T with respect to the linear maps fu(t) =
ut as u ranges over U. See [14] p. 51. A net {tv} in T converges
to t in σS(T> U) if and only if {utv} converges to ut in S for each u
in Ts.
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EXAMPLES, (a) If S = l\ Ts is the α-dual of T in the sense
of Kothe and Toeplitz [10]. They defined a sequence {tn} in T to be
convergent (to t) if \\mn (tn, u) exists ( = ί) for each u in Ts. This
definition does not explicitly define the intended topology on T because
by a well known theorem [1], p. 137 a sequence in I1 converges weakly
if and only if it converges strongly. Thus the topology on T which
provides such convergent sequences could have arisen from either the
weak or normed topology on I1. In later work Kothe discussed a
variety of topologies on T based upon the natural duality between
T and Tι\ See for instance [7] or [8],

(b) Chillingworth [2] studied sequential convergence in T with
respect to Tcs where cs has its weak topology. The complications
involved in such an approach were observed by Kothe and Toeplitz
at the end of [10]. They arise primarily because cs with its weak
topology is not sequentially complete.

(c) If S = bs with the BK-topology given by the norm

|β||=sup{|Σ«(J)|}

then the σS(T, U) topology is determined by the means of the semi-
norms

where u ranges over U. Thus the σbs{T, Ths) topology on T coincides
with the σj(T, Tr)-tojx>logy studied by Garling [4],

PROPOSITION 4.1. Let S have AK and φa Ucz Ts. Then with
the topology oS{T, U), T has AK. If T is sequentially complete with
the topology σS(T, U) then T is S-perfect and in fact equal to Us.
(cf. [10] §3, Satz 2, §4, Satz 1; [8], Satz 3, p. 74).

Proof. If te T and ue U then tu[^n] = t[tίn]u-+tu in S so
that t[^ri\-*t in T. Thus T has AK.

Let T be σS(T, U) sequentially complete. Since UaTs,UsZD
TSSZ) T. If te Us, t[^n] is in T for each n and {t[^n]} is Cauchy
since t[^n]u-+tu for each ue U. Thus \imn t[<,n] = te T so that
Us c T.

PROPOSITION 4.2. Let S z> φ he (sequentially) complete, (a) If
T is S-perfect then T is (sequentially) complete in the topology
σS(T, Ts). (b) Ts is (sequentially) complete in the topology σS(Ts, T).
(cf. [10] § 3, Satz 5 § 4, Satz 2 [8] Satz 4, p. 74.)
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Proof. Let {sv} be a Cauchy net (sequence) in T. Then since
σS(T, Ts) makes T a iί-space {sv(j)} converges, say to aj9 for each j.
If s is the sequence with s(j) = aό for each j and t e Ts, then tsu e S
for each v and {tsu} converges necessarily to ts. Hence tse S so
se Tss = T, and {£J converges in σS(T, Ts) to s. A similar argument
establishes (b).

It is clear that a subset A of T is σS(T, I^-bounded if and only
if uA is bounded in S for each ue Ts. A subset A of T is said to
be completely bounded if AB is bounded in S for each σS(Ts, T)-
bounded set B of TSm It is obvious that completely bounded sets are
bounded.

PROPOSITION 4.3. // S is sequentially complete and A is σS(T, Ts)-
bounded in T then A is completely hounded in T. (cf. [10] § 5,
Satz 1).

Proof. Suppose A were a σS(Ts, T)-bounded subset of S which
is not completely bounded. Then there would be a σS(Ts, T)-bounded
subset B of Ts and a continuous seminorm p on S such that p(AB)
is not bounded. Let {tn} be a sequence in A and {un} a sequence in
B such that

p(tnun) > 4n

for n = 1, 2, .
An increasing subsequence of integers k(l), k(2), can be defined

by induction such that:

( a ) 2~k{m) sup {p(tnu): ueB} < 2~m

( b ) 2~k[m) sup {p(tun): ueA}< 2~m

where n = 1, 2, •••, jfc(m — 1). The series ΣΓ=i2"fc(i)wΛ(J ) converges
absolutely to a point u in Ts with respect to the σS(Ts, T) topology.
This is because Ts is σS(T\ T)-complete by 4.1 (b) and for each
t G T and each continuous seminorm q on £

Σ g(2-fc(i)%(i)ί) ^ Σ 2-/ί(i) sup {q(ut):ueB}
3=1 3=i-

S sup {q(ut):u e B) < co .

But this leads to a contradiction of the boundedness of A in T since

p{tu) ^ pfe(.)2-/^%/c(%)) - Σ 2- fc ί^ί)(ί fc(n)^( i ))

This is because
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Σ 2-"^p(twuk(i)) < Σ 2-3" by (b)

and

Σ 2'^p(tkίn)uk(j)) < Σ 2 - by (a) .
j — n + 1 j = m + l

For U a subspace of T5, the topology βS(T, U) on T is deter-
mined by the seminorms

(4.1) pA(t) = sup {p(tu): ueA}

where A ranges over the collection of T-bounded subsets of U and p
ranges over the collection of continuous seminorms on S.

PROPOSITION 4.4. Let S and T contain φ, and suppose Ts with
the βS(Ts, T) topology has AK. A sequence in T is σS(T, Ts)-Cauchy
if and only if it is (τS(T, T3)-bounded and coordinatewise convergent.
(cf. [10] §5, Satz 6).

Proof. It is clear that a σS(T, Γ5)-Cauchy sequence in T is
σS(T, Ts)-bounded and coordinatewise convergent.

Let {tn} be a sequence in T which is σS(T, Γ5)-bounded and coor-
dinatewise convergent. It will suffice to prove that {utn} is a Cauchy
sequence in S for each ue Ts. Let ε > 0 and p a continuous seminorm
be given. Since Ts has AK with the βS(Ts, T) topology there is k0

such that

pB(u - u[^k]) < β/3 for k ^ k0

where B = {tn}. Since {tn} is coordinatewise convergent there is n
such that p(utn[^k0] — utm[^k0]) < ε/3 for m, n > n0. Thus for
n, m > n0

0,

p(utn - utm) ^ p(utn - utn[^

+ p(utw[^k] - utm)

^ pB(u - u[^k]) + p(utn[£k] - utm[k])

+ pB(u - u[^k])

^ ε/3 + ε/3 + ε/3 - ε .

Throughout the remainder of §4, S will represent a iΓ-space
containing φ which has a ^-topology. The (not uniquely determined)
family of S-bounded subsets of φ whose polars in S form a funda-
mental system of neighborhoods of zero in S will be denoted by &.

PROROSITION 4.5. Let S 3 φ he a K-space having a φ topology.
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For each sequence space T both the σS(T, T3) and βS{T, Ts) topologies
on T are-φ-topologies. A fundamental system of zero neighborhoods
in σS(T, Ts) consists of sets of the form

(uBYτ)ue Ts,Be^.

A fundamental system of zero-neighborhoods in β{T, Ts) consists of
sets having the form

(AB){S)

where A is a σS(T, Ts) bounded subset of T3 and Be^?.

Proof. A fundamental system of seminorms determining the
topology σS(T, Ts) consists of those having the form

pu(t) = p{nt) ueTs

where p is defined on S by

p(s) = sup{|(s, v)\:ve B) .

Thus

p u { t ) = s u p { | ( u t , v ) \ : v e B} = s u p { |(t, s)\:ve u B )

so that pu(t) ̂  1 if and only if te(uB)iS).
The topology βS{T, Ts) is determined by a system of seminorms

each of which has the form

pA(t) = sup {p(ut): ue A} te T

where A is a T-bounded subset of Ts and p is a continuous seminorm
on S having the form (5.1). Thus for te T we have

pA(t) = sup {sup {|{ut, v)\:ue A, veB}}

= sup {|{ut, v)\: ue A, ve B}

= sup{|(ί, s)\:seAB} .

Consequently pA{t) ̂  1 if and only if te{AB){S).

PROPOSITION 4.6. Let S ID φ be a K-space having a φ-topology,
namely the ̂ -topology where it is assumed that each member of the
T-saturated hull of ^ is contained in a member of &, and let T be
a sequence space containing φ.

(a) If T has the σS{T, T3)~topology

Tf = U {uB{ψHω): Be.^,ue Ts} .

(b) If T has the βS{T, Ts)-topology
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Γ' = U {(AByv)iω): Be.^A is a σS(Ts, T)-bounded subset of Ts) .

Proof, ( a ) By 4.5 and 3.3

Tf = {(uB){*Hω): Be.^ue Ts} .

It may be assumed that each B is absolutely convex since BiS) =
β(s)«p)(S) a n d B(s)«p) 3 B i s absolutely convex. Since S D ̂  and δ is
S-bounded B and hence JB

(9)(ω) is ^-bounded, and hence compact in ω.
The operator t—+ut is continuous and linear from ω into a). Thus
uB{φ){ω) is absolutely convex and compact in ω so that uB{ψnω)Z)(uB){ψ){ω).
On the other hand (uB){ψ){ω) is the closure of ^ £ in ω and ^β (^ ) ( ω ) is
the image of the closure of B under a continuous map. Thus (uB){ψnω) z>
uB(φHω) so that the two sets are equal. This implies that T7 has the
desired form.

(b) This follows immediately from 4.5 and 3.3.
A sum space is defined to be a iΓ-space S containing φ on which

a φ-topology is defined and such that Sf — M(S). It is easy to see
that cs, bs, I1 and φ (φ having its weak or Mackey topologies) are all
sum spaces. The concept of sum space is studied in the paper [131
in which further examples are established e.g., cs Π lp for 1 ̂  p < °o
and ms the space of mean series summable sequences as well as all
rearrangements of these spaces.

THEOREM 4.7. // S is a sum space and T ID φ is an arbitrary
sequence space given the σS(T, Ts) topology Tf — Ts.

Proof. If veTf there is ueTs and teBiφUω) where Be & such
that v = tu. But B^Uω) c Sf = M(S) c M(TS) so that v = tue Ts.

If u e Ts define g on T by g(t) — E{ut) where E is any continuous
linear functional on S such that E(e[j]) — 1 for each j . There is such
a function because e e Sf. Then for each j ,

g(e[j]) = E(e[j]u) = u(j)

so u e Tf.
Throughout the remainder of this section, S will denote a sum

space which is a jBiί-space, and A will denote the unit ball of Sf —
M(S) when M(S) is interpreted as a J3i£-algebra of operators on S.
Thus

A = {teM(S):tBa B)

where B is the unit ball of S, and so A is a multiplicative semigroup
containing e.
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PROPOSITION 4.8, Let S denote a BK-sum space and A the unit
ball of Sf. If T is S-perfect then T is A-invariant. (cf. [10] § 3,
Satz 4).

Proof. If ueA,teT and v e Ts(ut)v = u(tv) e S since tveS and
u e M(S). Thus ut e Tss = T.

PROPOSITION 4.9. Let S denote a BK-sum space and A the unit
ball ofSf. If T is A-invariant then the σS{T, Ts) and βS(T, Ts) topo-
logies are locally A-invariant.

Proof. σS(T, Ts). By 4.5 a fundamental system of zero neigh-
borhoods for σS(T, Ts) consists of T-polars of sets of the form

auB^u e f , α > 0 ,

Since B is A-invariant so is B{φ), auB{ψ) for ue Ts and a > 0 as well
as (auB{φ)Yτ) since T is A-invariant.

βS(T, Ts). An argument essentially the same as the one in the
preceding paragraph will show that the σS(Ts, T) topology on Ts

is locally A-invariant, Thus if C is a T-bounded subset of Ts, AC
is also T-bounded since it is the image of C under an equicontinuous
set of operators. Thus a fundamental system of zero-neighborhoods
for βS(T9 Ts) consists of Γ-polars of sets having the form

ACB^ C is σS(Ts, T)-bounded in Ts.

Since each such set is A-invariant so is its T-polar because T is A-
invariant so that βS(T, Ts) is locally A-invariant.

COROLLARY. In an A-invariant space T ZD φ, the A-invariant
hull AB of a σS(T, Ts) bounded set B is itself σS(T, Ts) bounded (cf.
[10] §5, Satz 2).

Proof. This is immediate since AB is the image under B of an
equicontinuous family of operators.

THEOREM 4.10. Let S denote a BK-sum space and A the unit
ball of Sf. If T is A-invariant the βS(T, Ts) topology on T coincides
with the βφ-topology0

Proof. By 4.5 the βS(T, Ts) topology on T is a ^-topology thus
weaker than the βψ-topology.

Let C be a σ(φ, T)-bounded subset of φ. For each te T define
the following seminorm on Sf
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Pt(v) = sup{|(tv, u)\:ueC} veSf .

Since C is σ(φ, Γ)-bounded and T is A-invariant (hence Sf invariant)
pt(v) < co for each v e Sf. Furthermore, Sf is a ϋΓ-space so pt is the
supremum of continuous seminorms on Sf (recall C c φ). Since Sf

is a barrelled space pt is continuous on Sf. There is thus α* > 0 such
that

Pt{v) < at\\v\\f

where || ||/ is the norm on Sf. Hence, if te T and || \\s is the norm
on S,

sup {|| tu\\s: ueC} = sup {sup |(tu, v)\:ve A), ueC}

= sup{|(tv, u)\:veA,ueC}

= sup {pt(v): v e A} < at .

Thus C is also a σS(Ts, T) bounded subset of Ts. As in the proof
of 4.9, AC is also σS(Ts, Γ)-bounded. By 4.5 the polars in T of such
subsets of φ form a basis system of zero neighborhoods in the βS(T, Ts)
topology on T. Since AC => C, (AC)[T) c Cm. Thus the /SS(Γ, T5)
topology on T is stronger than the /S^-topology on Γ so that the two
topologies must coincide.

EXAMPLE. The /S^-topology on bv is the normed topology. How-
ever, bvμ = I1, and the βlι{bvy I

1) topology on bv is the relative topology
on bv as a subspace of m, which is a weaker topology.

REFERENCES

1. S. Banach, Theόrie des Operation Lineάires, Warsaw, 1932.
2. H. R. Chillingworth, Generalized 'duaV sequence spaces, Nederl. Akad. Wetensch.
Indag. Math., 20 (1958), 307-315.
3. D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phill. Soc, 63 (1967),
997-1019.
4. , The β and γ-duality of sequence spaces, ibid., 963-981.
5. G. Goes, Complementary spaces of Fourier coefficients, convolutions and generalized
matrix transformations and operators between BX-spaces, J. Math. Mech., 10 (1961),
135-157.
6. 0. T. Jones and J. R. Retherford, On similar bases in barrelled spaces, Proc. Amer.
Math. Soc, 18 (1967), 677-680.
7. G. Kothe, Lόsbarkeithabedingungen fur Gleichungen mit unendlich vielen unbekannten,
J. fur Math., 178 (1938), 193-213.
8. , Neubegrundung der Theorie der vollkommen Rdume, Math. Nachr., 4 (1951),
70-80.
9. 1 Topologische Lineare Rdume I, 1st edn., Berlin-Heidelberg-New York:
Springer 1960.
10. G. Kothe and O. Toeplitz, Lineare Rάume mit unendlichvielen Koordinaten und
Ringe unendlicher Matrizen, J. fur Math., 171 (1934) 193-226.



TOPOLOGIES ON SEQUENCE SPACES 249

11. R. J. McGivney, and W. H. Ruckle, Multiplier algebras of biorthogonal systems,
Pacific J. Math., 29 (1969), 375-388.
12. W. H. Ruckle, Lattices of sequence spaces, Duke Math. J., 35 (1968), 491-504.
13. , An abstract concept of the sum of a numerical series, Canad. J. Math.,
22 (1970), 863-874.
14. H. H. Schaefer, Topological Vector Spaces, 1st edn., New York, MacMillan 1966.
15. K. Zeller, Allegemeine Eigenschaften von Limitierungsverfahren, Math. Z., 53
(1951), 473-487.

Received March 3, 1971 and in revised form June 6, 1971.

CLEMSON UNIVERSITY






