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ON THE ABSOLUTE MATRIX SUMMABILITY OF
A FOURIER SERIES

ARIBINDI SATYANARAYAN RAO

In this paper, the author gives sufficient conditions for
a Fourier series at an arbitrary but fixed point to be absolutely
matrix summable.

1* Introduction* Let Σo° wn be an infinite series with partial
sums sn, and let A — (aHk) be a triangular infinite matrix of real
numbers (see Hardy [2]). The series Σ ^ n is said to be absolutely
summable A, or summable \A\, if

where

Let f(t) be a Lebesgue-integrable function of period 2π, with
Fourier series

-J oo oo

(1.1) — α0 + Σ (α» cos nt + bn sin nt) = Σ An(t)
2 i o

With a fixed point a;, we set

(1.2) φ(t) = φ.(t) - hf(x + t) + /(* - ί)] ,

(1.3) Φ(t) =

We establish the following theorem for the absolute matrix sum-
mability of the Fourier series (1.1) of f(t) at t = x.

THEOREM. Let A = (ank) be a triangular infinite matrix of real
numbers such that Aank — ank — an;k+ί is monotonic with respect to
n ^ k for each fixed k ^ 0.

Let a(t) be a positive function such that tr/a(t), for some r with
0 < r < 1, is nondecreasing for t Ξ> t0. Suppose that

(1.4) Σ ^ W < oo ,
n=i a{n)
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(1.5) I Δ a n Λ I + = 0(1) as m

Further, let

(1.6) Φ(t) = θ\—
L oc\

as t -* 0 +

J/ all of the above conditions hold, then the Fourier series (1.1) of
f(t) at t = x is summable \A\.

We shall require the following lemmas.

LEMMA 1. If a(t) is defined as in the theorem, then

(2.1) ('_*» =

Proof.

Γ* du = f* ur ^ du

)toa(u) JtQa(u)' ur

a(t)
for

< _v_v du_ < tr

 m r r + 1

 = Qr t I
= α(ί) J*o ̂ r = α(ί) " 1 - r L α(ί) J #

LEMMA 2. If A — (ank) is defined as in the theorem and if

(2.2)

(2.3) |ί. = 0(1) (8ffl-oo,

tn — 2-1
fc=O

then Σ^w ^ s summable \A\.

Proof. By Abel's transformation,

n

A;=0

Σ anntn

Now

m %—l

ΣΣ
n = l k=Qm—l

— V Aa ) m—lv
- α»
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Thus,

Σ I τn - τn^
m—l

n=0
MO + 2Σ lί l lcU =

as m-> oo , by (2.2) and (2.3).

This completes the proof of the lemma.

3* Proof of the Theorem. We write

n n

Sn(%) = Σ Ak(x), tjx) = Σ sk(x) .
0 0

By (1.6), there exists δ(0 < δ < 1) such that

t
(3.1) Φ(t) ̂  K- for 0 < t g δ ,

where K is a positive constant (not necessarily the same at each oc-
currence). Now, for n > δ"1,

π t n { x ) =

(3.2) sin (t/2)

= Γ + Γ + Γ = /L + /2 + I3 , say.
Jθ J n " 1 }δ

We observe that

/g 3v Γ sin (^ + 1) - (t/2) T = ί0(O for sin ί/2 ^ 0 and n ^ 1 ,
L s i n (t/2) J \θ(l/f) for 0 < t ^ π .

So, by (3.1),

(3.4) lI^^Knf X

Jo α(w)

Further, assuming trja(t) nondecreasing for t ^ δ~\

J.-i ί2

(3.5) r dt -I
J ^ ί αίl/rtJ

ίί.
as , by (2.1).
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Obviously,

(3.6) J3 = 0(1) .

From (3.2), (3.4)-(3.6), it follows that

(3.7) tn(x) = θΓ-^—Ί as n-
L a(n) J

Hence

Σ I tk(x) I I akk I = θ\± - £ τ - l α " !1 = 0(1)

as , by (1.4).

(3.8)

Moreover,

m—l

(3.9) ?
= 0(1) a s m - ^ o o , by (1.5).

Now the theorem follows from Lemma 2.

4* NOTE. Let A = (αnft) be a triangular infinite matrix of real
numbers such that ann ^ 0 for all n ^ 0 and JαπA. is nondecreasing
with respect to n ^ k for each fixed k ^ 0. Let α(ί) be defined as
in the theorem, and let

(4.1) ^ 1 = 0(1) a s m ^ o o ,

Then, if the condition (1.6) holds, the Fourier series (1.1) of f{t) at
t = x is summable \A\.

Proof. Let

Then

(4.2)

n=ι k=0

m

= Σ «»(

X)\(Y

x)\{Δa.

- Aan_,

\Aank-

.») + |<

*I IM*)I

- Δa^_uk\)

0(x)\(Jan0

+ \to(x)

— «oo)
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rg \tQ(x)\(Aam,«) + θ\± -A-(Jαm f c)Ί , by (3.7)
L*=i a(k) J(k)

= 0(1) a s m - ^ o o , by (4.1),

So the required result follows.
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