ON THE ABSOLUTE MATRIX SUMMABILITY OF A FOURIER SERIES

Aribindi Satyanarayan Rao

In this paper, the author gives sufficient conditions for a Fourier series at an arbitrary but fixed point to be absolutely matrix summable.

1. Introduction. Let $\sum_{0}^{\infty} u_{n}$ be an infinite series with partial sums s_{n}, and let $A=\left(a_{n k}\right)$ be a triangular infinite matrix of real numbers (see Hardy [2]). The series $\sum u_{n}$ is said to be absolutely summable A, or summable $|A|$, if

$$
\sum_{1}^{\infty}\left|\tau_{n}-\tau_{n-1}\right|<\infty,
$$

where

$$
\tau_{n}=\sum_{k=0}^{n} a_{n k} s_{k}
$$

Let $f(t)$ be a Lebesgue-integrable function of period 2π, with Fourier series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{0}^{\infty} A_{n}(t) \tag{1.1}
\end{equation*}
$$

With a fixed point x, we set

$$
\begin{gather*}
\phi(t)=\phi_{x}(t)=\frac{1}{2}[f(x+t)+f(x-t)], \tag{1.2}\\
\Phi(t)=\int_{0}^{t}|\phi(u)| d u . \tag{1.3}
\end{gather*}
$$

We establish the following theorem for the absolute matrix summability of the Fourier series (1.1) of $f(t)$ at $t=x$.

Theorem. Let $A=\left(a_{n k}\right)$ be a triangular infinite matrix of real numbers such that $\Delta a_{n k}=a_{n k}-a_{n, k+1}$ is monotonic with respect to $n \geqq k$ for each fixed $k \geqq 0$.

Let $\alpha(t)$ be a positive function such that $t^{r} / \alpha(t)$, for some r with $0<r<1$, is nondecreasing for $t \geqq t_{o}$. Suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n\left|a_{n n}\right|}{\alpha(n)}<\infty, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Delta a_{m, 0}\right|+\sum_{n=1}^{m-1} \frac{n\left|\Delta a_{m n}\right|}{\alpha(n)}=O(1) \quad \text { as } m \rightarrow \infty \tag{1.5}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
\Phi(t)=O\left[\frac{t}{\alpha(1 / t)}\right] \quad \text { as } t \rightarrow 0+ \tag{1.6}
\end{equation*}
$$

If all of the above conditions hold, then the Fourier series (1.1) of $f(t)$ at $t=x$ is summable $|A|$.

We shall require the following lemmas.
Lemma 1. If $\alpha(t)$ is defined as in the theorem, then

$$
\begin{equation*}
\int_{t_{0}}^{t} \frac{d u}{\alpha(u)}=O\left[\frac{t}{\alpha(t)}\right] \quad \text { for all } t \geqq t_{o} . \tag{2.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\int_{t_{0}}^{t} \frac{d u}{\alpha(u)} & =\int_{t_{0}}^{t} \frac{u^{r}}{\alpha(u)} \cdot \frac{d u}{u^{r}} \\
& \leqq \frac{t^{r}}{\alpha(t)} \int_{t_{0}}^{t} \frac{d u}{u^{r}} \leqq \frac{t^{r}}{\alpha(t)} \cdot \frac{t^{-r+1}}{1-r}=O\left[\frac{t}{\alpha(t)}\right] .
\end{aligned}
$$

Lemma 2. If $A=\left(a_{n k}\right)$ is defined as in the theorem and if

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left|t_{n}\right| \cdot\left|a_{n n}\right|<\infty \tag{2.2}\\
\sum_{n=0}^{m-1}\left|t_{n}\right| \cdot\left|\Delta a_{m n}\right|=O(1) \quad \text { as } m \rightarrow \infty \tag{2.3}
\end{gather*}
$$

where

$$
t_{n}=\sum_{k=0}^{n} s_{k}
$$

then $\sum u_{n}$ is summable $|A|$.
Proof. By Abel's transformation,

$$
\begin{aligned}
\tau_{n}-\tau_{n-1} & =\sum_{k=0}^{n}\left(a_{n k}-a_{n-1, k}\right) s_{k} \\
& =\sum_{k=0}^{n-1}\left(\Delta a_{n k}-\Delta a_{n-1, k}\right) t_{k}+a_{n n} t_{n}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{n=1}^{m} \sum_{k=0}^{n-1}\left|\Delta a_{n k}-\Delta a_{n-1, k}\right| \cdot\left|t_{k}\right| \\
= & \sum_{k=0}^{m-1}\left|t_{k}\right| \cdot\left(\sum_{n=k+1}^{m}\left|\Delta a_{n k}-\Delta a_{n-1, k}\right|\right)=\sum_{k=0}^{m-1}\left|t_{k}\right| \cdot\left|\Delta a_{m k}-a_{k k}\right| .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{m}\left|\tau_{n}-\tau_{n-1}\right| \leqq & \sum_{n=0}^{m-1}\left|t_{n}\right| \cdot\left|\Delta a_{m n}\right|
\end{aligned}+2 \sum_{n=0}^{m}\left|t_{n}\right| \cdot\left|a_{n n}\right|=O(1)
$$

This completes the proof of the lemma.
3. Proof of the Theorem. We write

$$
s_{n}(x)=\sum_{0}^{n} A_{k}(x), t_{n}(x)=\sum_{0}^{n} s_{k}(x) .
$$

By (1.6), there exists $\delta(0<\delta<1)$ such that

$$
\begin{equation*}
\Phi(t) \leqq K \frac{t}{\alpha(1 / t)} \quad \text { for } 0<t \leqq \delta \tag{3.1}
\end{equation*}
$$

where K is a positive constant (not necessarily the same at each occurrence). Now, for $n>\delta^{-1}$,

$$
\begin{align*}
\pi t_{n}(x) & =\int_{0}^{\pi} \phi(t)\left[\frac{\sin (n+1)(t / 2)}{\sin (t / 2)}\right]^{2} d t \tag{3.2}\\
& =\int_{0}^{n^{-1}}+\int_{n^{-1}}^{\delta}+\int_{\delta}^{\pi}=I_{1}+I_{2}+I_{3}, \text { say }
\end{align*}
$$

We observe that
(3.3) $\left[\frac{\sin (n+1) \cdot(t / 2)}{\sin (t / 2)}\right]^{2}= \begin{cases}O\left(n^{2}\right) & \text { for } \sin t / 2 \neq 0 \text { and } n \geqq 1, \\ O\left(1 / t^{2}\right) & \text { for } 0<t \leqq \pi .\end{cases}$

So, by (3.1),

$$
\begin{equation*}
\left|I_{1}\right| \leqq K n^{2} \int_{0}^{n^{-1}}|\phi(t)| d t \leqq K \frac{n}{\alpha(n)} \tag{3.4}
\end{equation*}
$$

Further, assuming $t^{r} / \alpha(t)$ nondecreasing for $t \geqq \delta^{-1}$,

$$
\begin{align*}
\left|I_{2}\right| & \leqq K \int_{n^{-1}}^{\delta} \frac{|\phi(t)|}{t^{2}} d t \\
& =K\left\{\left[\frac{\Phi(t)}{t^{2}}\right]_{n^{-1}}^{\delta}+2 \int_{n^{-1}}^{\delta} \frac{\Phi(t)}{t^{3}} d t\right\} \\
& \leqq K\left[\frac{\Phi(\delta)}{\delta^{2}}+\int_{n^{-1}}^{\delta} \frac{d t}{t^{2} \alpha(1 / t)}\right] \tag{3.5}\\
& =K\left[\frac{\Phi(\delta)}{\delta^{2}}+\int_{\delta^{-1}}^{n} \frac{d u}{\alpha(u)}\right] \\
& \leqq K \frac{n}{\alpha(n)} \quad \text { as } n \rightarrow \infty, \text { by }(2.1)
\end{align*}
$$

Obviously,

$$
\begin{equation*}
I_{3}=O(1) \tag{3.6}
\end{equation*}
$$

From (3.2), (3.4)-(3.6), it follows that

$$
\begin{equation*}
t_{n}(x)=O\left[\frac{n}{\alpha(n)}\right] \quad \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Hence

$$
\begin{align*}
\sum_{n}^{\infty}\left|t_{k}(x)\right| \cdot\left|a_{k k}\right|=O\left[\sum_{n}^{\infty} \frac{k}{\alpha(k)}\left|a_{k k}\right|\right] & =o(1) \tag{3.8}\\
& \text { as } n \rightarrow \infty, \text { by (1.4) }
\end{align*}
$$

Moreover,

$$
\begin{align*}
\sum_{0}^{m-1}\left|t_{n}(x)\right| \cdot\left|\Delta a_{m n}\right| & =\left|t_{0}(x)\right| \cdot\left|\Delta a_{m 0}\right|+O\left[\sum_{1}^{m-1} \frac{n}{\alpha(n)} \cdot\left|\Delta a_{m n}\right|\right] \tag{3.9}\\
& =O(1) \quad \text { as } m \rightarrow \infty, \text { by }(1.5) .
\end{align*}
$$

Now the theorem follows from Lemma 2.
4. Note. Let $A=\left(a_{n k}\right)$ be a triangular infinite matrix of real numbers such that $a_{n n} \geqq 0$ for all $n \geqq 0$ and $\Delta a_{n k}$ is nondecreasing with respect to $n \geqq k$ for each fixed $k \geqq 0$. Let $\alpha(t)$ be defined as in the theorem, and let

$$
\begin{equation*}
\Delta a_{m, 0}+\sum_{n=1}^{m} \frac{n\left(\Delta a_{m n}\right)}{\alpha(n)}=O(1) \quad \text { as } m \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Then, if the condition (1.6) holds, the Fourier series (1.1) of $f(t)$ at $t=x$ is summable $|A|$.

Proof. Let

$$
\tau_{n}(x)=\sum_{k=0}^{n} a_{n k} s_{k}(x)
$$

Then

$$
\begin{align*}
& \sum_{n=1}^{m}\left|\tau_{n}(x)-\tau_{n-1}(x)\right| \\
& \quad \leqq \sum_{n=1}^{m} \sum_{k=0}^{n}\left|\Delta a_{n k}-\Delta a_{n-1}\right| \cdot\left|t_{k}(x)\right| \\
& \quad=\sum_{k=1}^{m}\left|t_{k}(x)\right|\left(\sum_{n=k}^{m}\left|\Delta a_{n k}-\Delta a_{n-1, k}\right|\right)+\left|t_{0}(x)\right| \sum_{n=1}^{m}\left|\Delta a_{n 0}-\Delta a_{n-10}\right| \tag{4.2}\\
& \quad=\sum_{k=1}^{m}\left|t_{k}(x)\right|\left(\Delta a_{m k}\right)+\left|t_{0}(x)\right|\left(\Delta a_{m_{0} 0}-a_{00}\right)
\end{align*}
$$

$$
\begin{aligned}
& \leqq\left|t_{0}(x)\right|\left(\Delta a_{m, 0}\right)+O\left[\sum_{k=1}^{m} \frac{k}{\alpha(k)}\left(\Delta a_{m k}\right)\right], \quad \text { by }(3.7) \\
& =0(1) \quad \text { as } m \rightarrow \infty, \text { by }(4.1) .
\end{aligned}
$$

So the required result follows.

I thank Professors A. Meir and A. Sharma for providing me financial support from their N.R.C. grants during the preparation of this paper.

References

1. S. N. Bhatt, An aspect of local property of $\left|N, p_{n}\right|$ summability of a Fourier series, Indian J. Math. 5 (1963), 87-91.
2. G. H. Hardy, Divergent Series, (Oxford, 1949).
3. L. McFadden, Absolute Nörlund summability, Duke Math. J., 9 (1942), 168-207.

Received May 7, 1971.
University of Alberta
Edmonton, Canada

