
PACIFIC JOURNAL OF MATHEMATICS
Vol. 42, No. 1, 1972

RELLICH DENSITIES AND AN APPLICATION TO
UNCONDITIONALLY NONOSCILLATORY

ELLIPTIC EQUATIONS

JOHN PIEPENBRINK

Sufficient conditions for embeddings between weighted
Sobolev spaces to be compact are derived. These theorems
are generalizations of the well known selection principle of
Rellich. These results are then applied to the study of the
oscillational properties of self-adjoint second order elliptic
equations. In addition to reproving some results of Headley
and Swanson, new nonoscillation criteria are furnished for
these equations.

1* Introduction* Let Ω be a domain, bounded or unbounded,
in Euclidean w-space En, p(x) a positive measurable function, x —
(α?i, •••,#»), and a(x) a symmetric matrix with measurable entries
such that the smallest eigenvalue of a(x) for each x in Ω positive.
Define the weighted strong Sobolev spaces HΩ(p) and HΩ(p, a) as the
closure of the sets of functions u, C1 on Ω for which the integrals

(1.1) ( p(x) [u(x)Y dx
JΩ

(1.2) ί {p(x) [u(x)Y + Σ a^u^Ujix)} dx
JΩ

are finite. The closures are taken with respect to norms given by
(1.1) and (1.2). The weighted weak Sobolev spaces WΩ(p) and WΩ(p, a)
consist of functions u with (1.1) or (1.2) respectively being finite.
Here Ui(x) is the distributional derivative du/dXi.

We will say that the pair (p, a) has the strong Rellich compact-
ness property if the inclusion map HΩ(p, a) —> HQ(p) is compact. This
means that each sequence in HQ(p, a) which is uniformly bounded in
its norm has a subsequence which is convergent in the norm for
HΏ(p). The classical Rellich selection principle states that if Ω is
bounded and smooth, then (1,1) has the strong Rellich compactness
property where I is the identity matrix. The weak Rellich compact-
ness property is defined analogously with WQ(p), WΩ(p, a) taking the
place of HΩ(p), HΩ{p, a).

This paper investigates the case where Ω = En, n^2. The

arguments however apply eqully well to quasi-conical domains, i.e.

domains which contain a cone {x\x v ^a\x\}, where v is some unit

vector, and a is a positive constant. Theorem 3.1 and 3.2 of § 3

provide sufficient conditions for (p, a) to have either the strong or
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weak Rellich compactness property. Theorem 3.2 is based on a
Sobolev type lemma communicated to the author by N. Meyers. A
proof of this lemma is included as an appendix. Theorem 3.3 gives
a simple condition on p(x) in case a(x) is uniformly definite on En

which ensures that the inclusion map HEn(p, a) Π L2(En) —* HEn(p) is
compact. This weaker result is still sufficient for the application in
§ 5. In § 4 we give a necessary condition on p when a is uniformly
definite. An example shows that the sufficient conditions of Theorems
3.2 and 3.3 are the best of their kind in this case.

In § 5 we apply the preceding results to the determination of
the oscillatory properties of the elliptic equation

(1.3) Lu — Σ (G*i(#)wy) + p(x)u = 0 .

We say that (1.3) is nonoscillatory if there is a positive constant R
such that for each bounded domain N with smooth boundary exterior
to the sphere {x \ \ x | ^ R}, the Dirichlet problem

Lu = 0 in N

u = 0 on dN

has nontrivial solution. (1.3) is said to be unconditionally non-
oscillatory if for each positive λ, (1.3) with p(x) replaced by \p(x) is
nonoscillatory.

Theorem 5.1, which asserts that if (p, a) has the Rellich com-
pactness property then (1.3) is unconditionally nonoscillatory, combined
with the results of § 3 yields results which differ from the recent
nonoscillation theorems of Swanson and Headley, [1] and [2], in two
respects. Our conditions apply directly to the coefficients aiS{x) and
p(x), rather than to pointwise majorants. Furthermore our results
are not based on the oscillation theory for ordinary differential equa-
tions. There is, however, some overlap between the results of [1] and
[2] and ours, which will be pointed out later.

2* The case of a bounded domain* Our results for the un-
bounded domain En will follow from a process of Cantor diagonali-
zation over compact subdomains. Therefore we will need conditions
guaranteeing that (p, a) has a Rellich compctness property for a bounded
domain Ω with smooth boundary dΩ. The first result in this direc-
tion follows from an imbedding theorem for weighted Sobolev spaces
due to Stampachia and Murthy [7], which in turn followed easily
from the corresponding result for classical Sobolev spaces, see Sobolev
[5]. A special case of the Stampachia-Murthy Theorem is stated as
a lemma:
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LEMMA 2.1. Let Ω be a bounded domain in En with smooth
boundary. Suppose X{x) is the smallest eigenvalue of a(x) and λ"1^)
and p~ι(x) are in !/(£?) for some t ^ n. If 1 + 1/t < 2 < n(l + 1/ί),
then the embedding WΩ(py a) —» Lq~2{Ω) is compact, where q is defined
by

(2.1) ! = l/i + λ) _ JL.
K J q 2\ t) n

From Lemma 2.1 follows our first result.

THEOREM 2.1. Suppose the conditions of Lemma 2.1 hold. If in
addition p{x) is in LS{Ω) where s — (q — ε)(q — ε — 2)"1, then (p, a)
has the weak Rellich compactness property on Ω.

By Holder's inequality

Qp(x)\u(x)\*dxj ^[(^Ju(x)r*dx) (]ol3>(*)r) J f

or
11/2

[\p(x)\u(x)\*dxj2 ^

where | | π | | g _ ε is the norm of u in Lq~~2(Ω). Thus the imbedding
Lq~~s(Ω) —> WΩ{p) is continuous. Since by Lemma 2.1 the imbedding
WΩ(p, a) —• Lq~*(Ω) is compact, and since the composition of a compact
map and a continuous map is compact we have the desired con-
clusion.

A second compactness theorem can be obtained independently of
the Sobolev imbedding theorems. Yet despite its apparent simplicity
it permits p(x) which are inadmissable in Lemma 2.1. This generality
is obtained at the expense of restricting ourselves to the strong
spaces.

THEOREM 2.2. Let Ω be bounded and convex and p(x) be non-
negative and measurable. If p{x) is bouded above and has a positive
lower bound on some open subset of Ω, then (p, I) has the strong
Rellich compactness property.

Proof. Let us assume that B is a bounded subset of HΩ(p, I ) .
It suffices to assume that BaCι(Ω). Pick xQ in Ω such that p(x)^p0

for I x — xQ I <£ elβ Thus if u is in B, Vu is in L2{Ω) and u is in
L2(S(x0, βj), where S(x0, ε,) = {x | x — x01 ^ ε j . Now fix ε0, 0 < ε0 < εx.
For any ε such that ε0 <; ε <; εx set uε(x) = u(x0 + e(x — xo)/(\x — xo\)).
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Introduce spherical coordinates (r, θ), r = | x — x0| and

/y Λ>

°

Then

I u(x) |2 dτ - Γ1 τr~ι \ I i φ 0 + rθ) |2

εo<r<εχ Jθ

εo<|a;—

^ S? -

U εo<r<εχ Jθ

So for u in B there is an ε, ε0 <̂  ε ^ ex with

(2.2)

where d is a constant independent of the particular u in I>. Now
if R is the diameter of β, also by (2.2)

|2 dθ dr( I uε(x) |2 dx £ \E rn~ι [ I φ0 +
J\χ-xo\^ε Jε Jθ

n n

So for each u in B there is an ε = ε(»), ε0 ^ ε ^ εu such that

(2.3) ( I u,(«) I2 dx ^ C2 ,

and C2 is independent of u and ε.
Also if 1 x — x01 ^ ε

x-xj

Letting ί = s/(\x — xo\) we see that

I u(x) - ue(x) I ̂  I α? - α?01 Γ | F^(α;0 + ί(a? - x0)) \ dt .
Jε/(|z-zo|)

Now square both sides and use the Schwartz inequality, integrating
over I x - xQ | Ξg ελ to derive

- uε(x) \2dx^R2\ [ [ F^(a;0 + ί(α> - α?0) |
2 dt dx .

εjB

We reverse the integrals on the right and set y = xQ + t(x - x0), ob-
taining

f I u(x) - ut(x) \2dx^R2[ — [ I Vu{y)|
2
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or

(2.4) ( I u{x) - uε(x) \2dx^C3\ I Vu{y) \2 dy ,

where C3 only depends on R and ε0. From (2.3) and (2.4) we finally
see that

I u(x) |2 dx = \ I u(x) \2dx+\ | u{x) |2

^ C4 + 2 ί I ί φ ) - uε(x) \2dx + 2\ I ̂ £ (a;) |2 dx

^ C4 + 2C 3 ί \Fu\2dy + 2C2.
JΩ

Thus there is a C independent of u such that

(2.5) ( I u(x) \2dx^C
JΩ

for all u in B.
Now

or

+ - u(x) I < ['
Jo

\h\

Integrate both sides with respect to x and interchange the order of
integration on the right to obtain

(2.6) ί \u{x + h) ~ u{x) |2 dx ^ | h \2 [ \ Vu{x) \2dx^C'\h\2 .
J Ω JΩ

By a well known theorem of Bochner, see [6] p. 38, (2.5) and (2.6)
imply that B is compact in L2(Ω) and since p(x) is bounded above,
B is compact in WQ{p).

We see that the proof of Theorem 2.2 has yielded the following
embedding theorem.

THEOREM 2.3. Let p(x) and Ω be as in Theorem 2.2. Then
HΩ(p, I) is embedded in L2(Ω) by a compact mapping.

It should be observed that in the applications to differential
equations in § 5 only smooth functions are used. Also in many ap-
plications a(x) will be uniformly definite and p(x) bounded from below
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and above by positive constants on bounded subdomains Ω of En. In
this case, where Theorem 2.1 applies anyway, the weak Rellich com-
pactness of (p, a) over Ω follows from the classical Rellich selection
principle referred to in § 1.

3* Ω = En. Throught this and the remaining sections of this
paper the hypothesss of Theorem 2.1 or Theorem 2.2 are assumed to
hold on each bounded subdomain of En.

Our first compactness result gives conditions on p(x) sufficient
for the mapping HEn(p, I) —> HEn{p) to be compact. So it may be
assumed that the hypothesis either of Theorem 2.1 or 2.2 hold on
bounded subdomains. Spherical coordinates (r, θ), r — \ x |, θ = xj\x\
are introduced.

THEOREM 3.1. If p(x) satisfies the local conditions of Theorem
2.1 or 2.2, is continuous and in addition

(3.1) lim Γsup Γrnp{rθ)dr\ = 0 , and inf Γr*~ι p{τθ)dr > 0
α_»oo L 0 J α J θ J l

then (p, I) has the strong Rellich compactness property.

Proof. The theorem is proved if we can establish the ineqality

(3.2) ( p{x) I u{x) |2dx ^ 7Γ( p(x) I u(x) |2dx + ε(a) [ \ Vu{x) | 2 d x \ ,

where s(α)—*0 as α~> <χ>, e(a) and 7 are independent of u in HEn(p, I).
For if {wj is a bounded sequence in -H^Op, /) , by the results of the
preceding section and Cantor diagonalization we can select a sub-
sequence {un]c} which is Cauchy in HΩ(p) for each bounded subdomain
Ω of En. But then (3.2) would show that {uU]c} was Cauchy in HEn(Ω),
and hence convergent. This would establish the desired conclusion.

Thus we need to prove (3.2) for u in HEn{p, I). Without loss
of generality assume that u is in Cι{En). Fix θ and let 1 ^ s < t.
Then

u{tθ) = u{sθ) + Γ Fu(sθ + (r - s)θ) θdz

u\tθ) ^ 2^2(s0) + 2(t - s) Γ I F^(rtf) |2 τ*-1 dr .

Multiply both sides of the inequality by sn~ιp{sθ) and integrate with

sn~ιp{sθ)ds to

derive
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u

2(tθ) g — I T s -^stf) I u(sθ) \2ds + \"(t- s)sn~ιp(sθ)ds
{\--ίp(sθ)ds L J l

< Γ I Vu{τθ) |2 r"-1 dr] .

Now multiply both sides by ί* 1p{tθ) and integrate with respect to t
from t = a to t = », to find that

fco 2 Γ β — ^ ( s ^ ) |i*(βfl) |*dβ f »

1 t*-χp(tθ) I «(ί<?) |2 ώί ̂  — 1 ^ tn~ιp(tθ)dt
ia sn~1p(sθ)ds ]a

2 I t«-\t - s)sn-1p(tθ)p(sθ)ds dt
_ j _ J o JO

8n"1p(sθ)ds

x Γ I Vu{τθ) |2 τ"-1 dτ .
Jo

By reversing the order of integrations

-\t - s)sn~ιp(tθ)p(sθ)dsdt = ϊ[asn~1p(sθ)ds\ϊ[°°tnp(tθ)dt\

Thus condition (3.1) shows that if e(a) is defined by

e(α) = sup [ [ tn-\t - s)sn-1p(tθ)p(sθ)dsdt ,
0 Jα Jo

then

ε(α) > 0 a s α > oo .

Define

7 ^ 2 finf f V ^ K s ^ y 1 for all a ̂  A.
\ 0 Jl /

Then (3.3) implies

Γ tn"ιp{tθ) I w(ί0) |2 dί ̂  7 ΓΓ s"-1 j>(^) I u{sθ) |2 (28

+ e(α) ΓI Vn{τθ) |2 T-^Tjj .

Now if this is integrated over all θ, (3.2) results.

It is clear from the proof that the same conclusion follows if the
condition
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is replaced by

inf Γ rn~ιp(rθ)dr > 0 ,
Θ jδ

where δ is a positive constant.
Our next theorem depends on a lemma related to a Sobolev type

embedding theorem, see [3]. It differs from such embedding results
in that instead of asserting that a function belongs to a certain
Lebesgue class, it states that the function minus a suitable constant
is in the Lebesgue space. This lemma was communicated to the
author by N. Meyers. The proof is given in an appendix.

LEMMA 3.1. Let r be a number with 1 < r < n and define r*
by the expression (r*)"1 = r~ι — n~\ Then if u{x) is a function on
En whose gradient is in Lr(En), there is a function v in Lr*(En) and
a constant k such that

u(x) = v(x) -{- k .

Furthermore the inequality

\\v\\r*^c\\Vu\\r

holds, where c is a constant depending only on u and r.

Now define a function q(x) such that

(3.4) Σ *ιs{x)ViVi ^ Φ ) I V I2

*»i=i

for all x and y in En. Theorem 3.2 gives conditions on p and q
guranteeing that (p} a) has the Rellich compactness property.

THEOREM 3.2. Let q be such that (3.4) holds and a a constant
such that (2n)(n + 2)"1 < a ^ 2. Then if

( i ) p is in La*la*~\En), and
(ii) IIq is in La{*-a)~\E*)

the pair (p, a) has the weak Rellich compactness property.

Proof. By (3.4) we may assume without loss of generality that
a(x) = q(x) I. Let B be a bounded set in W(p, a), so that there is
a constant K with

l p(x) u2 dx + 1 q(x) \Fu\2dx ^ K
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for each u in B. We must find a sequence in B which is convergent
in the norm for W(p).

By Holder's inequality if a < 2

f I Vu \a dx = j [q(x)~l\al* I qφ(x)Vu \a dx

0 "Ί(2-α)/2 ΓΓ ~]a!2

[qix)-1]"1*-** dx\ \\q(x) \ Vu |2 dx\ .

Thus for each u in B

(3.5)where Cx depends only on q(x). Clearly (3.5) also holds when a = 2.
By Lemma 3.1 and (3.5) for each u in B there is a vu in La* and a
constant ku such that

(3.6) t6 = vu + &u ,

and

(3.7) \\vu\\a*^C2,

where C2 does not depend on u.
Now we claim there is a sequence {un} from 5 such that the vUn

associated with un by (3.6) converge in W(p). For by Holder's
inequality

\
(a*—2) [a*

[p(χ)]a [a )
\x\>R

So by hypothesis (i) and (3.7) the estimate

(3.8) ( φ)v2

udx ^ Ci e(R)
J\x\>R

holds, where ε(R) —>0 as R—>oo. By the results of § 2 and Cantor
diagonalization there is a sequence {vuj which converges in the W(p)
norm on each compact subset of En. But then the estimate (3.8) show
that this sequence converges globally in W(p).

If q(x) is not in L\En), the fact that k = 0 in (3.6) follows.
Then we are done since uu = vUn. But if p(x) is in L1(En), then
clearly from (3.6) and (3.8) with R — 0 we have the inequality

I & I = const. || k \\ww ^ const. (|| u \\wm + || vu \\W(P)) ^ C ,

where C is independent of u in Z?. Thus {kn} is a bounded sequence
in R1 and must have a convergent subsequence in Λ1. But this sub-
sequence also converges in W{p). Hence un = v%n + ΛWίi has a con-
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vergent subsequence in W(p). This completes the proof.

If a(x) is uniformly definite then we may choose q(x) to be a
positive constant. Then we may take a = 2 in Theorem 3.2. As a
special case of Theorem 3.2 we have the following corollary.

COROLLARY 3.2. // a(x) is uniformly definite and p(x) is in
Lnl2(En) for n^3, then (p, a) has the weak Rellich compactness pro-
perty.

In the case where a(x) is uniformly definite a simple bound on
the growth of p(x) as x —> °° suffices to ensure a weaker compactness
property of the pair {py a).

THEOREM 3.3. If a(x) is uniformly definite and p(x) = o(\ x |~2)
as x—+ oo, then the inclusion map H(p, a) Π L2(En) —*H(p) is
compact.

Proof. Without loss of generality assume that a(x) = I and let
B be a bounded set in H(p, I) Π L2(#»). For any function in L\En)
with its gradient in U{En) the inequality

(3.9) ί I x |2 ̂ ~2<te ^ (w, - 2)~2 ί I Vu |2 do?

holds, see [4] where (3.9) is proved in greater generality. But then
because of the growth condition on p{x) we have the estimate

(3.10) [ p{x)u2 dx ^ e(R) \ \ Vu |2 dx ,
Jla;|>i2 J

where e(R) —• 0 as R —> ©o. As before we pick a sequence {un} from 1?
which converges in H{p) on each compact subset of En. But (3.10)
then shows that {un} converges globally in H{p), and the proof is
complete.

The following section contains an example to show that in the
case a(x) = I the conditions p(x) e Lnl2(En) and p(x) = o(| a? |~2) of
Corollary 3.2 and Theorem 3.2 are the best of their kind. By this
is meant that p(x) e Lnl2+ε(En) and p{x) = 0(| x |~2) will not be sufficient,

4* A necessary condition* In this section we limit ourselves
to the case a(x) = I. In this case Theorem 4.1 provides a necessary
condition for (p, I) to have the Rellich compactness property.

THEOREM 4.1. Suppose (p, I) has the Rellich compactness property.
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1} n — 2, then p(x) must be in L\E2). If n > 2 then necessarily

(4.1) lim ?-» \ p(x)dx = 0 .

Proof. For positive numbers a and k consider the piecewise C 1

function u(x; a, k) defined to be identically zero for \x\ <La and
I x I ^ a + k + 1, to be one for | x \ = a + 1, and to be linear in | x \
for a <: I x I ̂  a + 1 and a + l^\x\^a + k + l. If Q [u] represents

the quotient Π \ Fu \2 dxj (\ pu2 dx) , then

Q[u(x; a, k)] = c o n s t * [ ( α + 1 } ^ ~ α * + fc~2((α + fc + 1)% ~ ( α

\ pu2 dx

By obvious estimation of the denominator and multiplication of num-
erator and denominator by k2~n we derive the estimate

(4.2) Q[u(x;a, k)]

^ const. [k2~n((a + l)n - an) + (1 + k^ja + 1))" - {k~\a + l))n]

p{x)dx

If n = 2 and lp(̂ )dα? = oo, (4.2) shows that for any α there is a &

such that Q[u(x; a, k)] ^ 1. If w > 2 and (4.1) does not hold there
is a δ > 0 and a sequence {£w} with tm —• co such that

(4.3) if" ί p(a?)dα; ̂  2d
J\χ\<tm

for all m. Now if k = km = 2(tm — a — I), the denominator of the
right side of (4.2) becomes essentially

(tm - (α + 1))2~*Γ( p(α?)da? - ί p(x)dx]
LJθ<|a;|<ίm JO<\x\<a + l J

- ί P(χ)dx - t^n\ p(x)dx\
Jθ<|a;|<ίTO Jθ<|z|<α + 1 J

for all large m. Thus in either case there is a constant K such that
for any given α, there is a k such that Q[ΐφ; α, k)] ^ iΓ.

Thus if either condition of our theorem is violated we can pick
a sequence {un} of piecewise C1 functions with disjoint supports such

that Q[un] fg K. But if we set vn = \pu\dx un, then

pvldx + j I F^w \2dx = 1 + Q[wJ g 1 + iΓ
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for each n. But {vn} clearly cannot have any convergent subsequences
since

I V{Vn — Ό * dX = 2

if n Φ m. Thus if either condition in our theorem is violated, the
pair (p, I) will not have the Rellich compactness property.

As an example consider p(x) — \ x |~~2. By Theorem 4.1 (p, I) does
not have the Rellich compactness property. Yet p(x) is in LnJ2+ε(En)
for each ε > 0 and p(x) = 0(| x \~2) as x—> oo.

5* Unconditionally nonoscillatory equations* Let p(x) and
a(x) be as in § 1 and in addition let them be C°°. We shall show
that if (p, a) has the Rellich compactness property then for each
λ > 0 the equation

n ps

(5.1) Σ (UijUj) + Xpu — 0

is nonoscillatory. We say that in this case the equation

(5.2) Σ ~ (anUj) + Pu = 0
i,ί=i OXi

is unconditionally nonoscillatory.

THEOREM 5.1. Suppose that (p, a) has either the weak or strong
Rellich compactness property. Then (5.2) is unconditionally non-
oscillatory.

Proof. Define C<Γ(| x \ > R) to be the space of C°° functions with
compact supports contained in the set of x with | x \ > R. Define the
function f(R) by

(5.3) f ( R ) - i n f [Q[φ] I Ψ i s i n CΌ~(| x \ > B ) } ,

where

Q M = [j ^ai

Now /(i2) is a continuous function of R and furthermore limB^0Of(R) =
oo. For if lims^oo/ίiί) = L < oo, then we could select a sequence of
functions in Co°°, say {φm}, with disjoint supports such that

lim Q [φm] = L .
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But this contradicts the fact that (p, a) has the Rellich compactness
property since if

then

for all m,

\pfl

and

dx + u
- ( ί

,3

\-l/2

}dx =

if m Φ I. So on the one hand {ψm} forms a bounded set in W(p, a)
or H(p, a) and on the other contains no subsequences convergent in
W(p) or H(p).

Now if λ > 0 pick R so that f{R) > λ. If N is any bounded
smooth subdomain of {x \ \ x \ < R}, the first eigenvalue σγ of the
problem

Σ -Zr-MψMj) + σp(x)u = 0 , in NΣ

6̂ = 0 on dN

is greater than f(R) and so σγ > λ. Thus iV cannot be a nodal
domain for the equation

(5.4) Σ •/- (α*y(»)wy) + λ^(^)^ - 0 .

So (5 4) is nonoscillatory, and (5.2) is unconditionally nonoscillatory.

COROLLARY 5.1. If p and q satisfy the conditions of Theorem 3.2,
then (5.2) is unconditionally nonoscillatory.

COROLLARY 5.2. If a(x) is uniformly definite on En, n Ξ> 3,
either of the following conditions is sufficient for (5.2) to be uncon-
ditionally nonoscillatory:

( i ) p(x) is in Lnl2(En),
(ii) p(x) = o(\ x |~2) as | x \ —> oo.

Condition (ii) of Corollary (5.2) is also obtained as a special case
of a theorem of Headley and Swanson, see [2] Theorem 5. However,
Corollary 5.1 and condition (i) of Corollary 5.2 seem to be new.

Theorem 3.1 coupled with Theorem 5.1 leads to the next corollary.

COROLLARY 5.3. Suppose a(x) is uniformly definite on En and
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p(x) is positive and continuous for each x. If

limΓsup \Γtnp{rθ)dr\ = 0 ,
α-*oo L ί Jo J

then (5.2) is unconditionally nonoscillatory.

Corollary 5.3 can be used to prove a theorem of Headley, see [1],
Theorem 2. If the smallest eigenvalue of a(x) is greater than or
equal to a positive constant K and go(r) = max,^,. b(x), the equation

(5.5) ξ^

is a Sturmian majorant of the equation

(5.6) ^

If we write (5.5) as an ordinary differntial equation in r and trans-
form to remove the first derivative term, as Headley does, we ar-
rive at the equation

Ky" + [0o(r) - K(n -l)(n- 3)/4r2] y = 0 ,

which in turn is majorized by

(5.7) Ky" + gt(τ)y = 0 ,

where g+(r) = max(0, go(r) - K(n - V)(n - 3)/4r2). So if (5.7) is non-
oscillatory so is (5.6). But Corollary 5.3 in the case n = 1 shows
that the condition

S oo

rgt(r)dr < oo
α

suffices. This is Headley's condition.

Appendix: Proof of Lemma 3.1. Suppose that fu •••,/» are
functions in Lr(En) with the property that (dfi)/(dxj) = (df^ftdXi) as
distributions. We shall construct a function v such that

(A.I) | L = Λ ' i = l f f Λ .

uXi

and

(A.2) | | ^ | | r ^ c | | / | | r ,

where (r*)"1 = r1 — w"1, / = {f, •••,/«), and c is a constant that
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depends only on n are r. The proof is based on the validity of the
inequality

(A.3) \\φ\l,Sc\\Vφ\\r

for functions with compact support, see [3].
Let fi(k) be a modification of /,- so that f£h) —*/* in IS as k—* oo.

Set Γ{x) = const. | x \2~n if n ^ 3 and Γ{x) = const, log [ a? [ if n = 2,
so that J Γ — ε, where ε is the Dirac distribution with support at
zero, and Δ = Σ?=i32/(3ί&i). Let £A(#) be a smooth function with
0 S £* g 1, f Λ(») = 1 for I α? I ^ Λ, f A(α?) - 0 for ] x | ^ 2Λ, | Ff, | ^ 2/r1.
Now consider the function

= Σ (f*

Differentiate and use the fact that (df^ftdXj) = (3/i)/(3a\ )> so that

ί (fc)

Finally

(A.4)

V £ ^Γ (dξh f{k) -{k) dξh

2 ? * J J

3a; ,

i \ 3 a ? 3 ^ / < dx \dX dx

For each i

ξh vΓ f(k)β: < II f(fc) II ?̂fe d/* < m τ i ^ II f II
r — * / i ς^ ^ WJj \\r\-z z— ^ const II / | | r ,

σXt σXi \\r II dXi σXi lu

so that the first summation term on the right in (A.4) is bounded in
Lr uniformly in h. Furthermore we find that for each i the same
term is tending to zero in Lr

loe as h—>0. For if Ba is the set of x
with I a? I ^ a, Holder's inequality implies that

_£ί l-_L_* f(fc) £ •/'r < r»rm<;t \ I f( fe)fαΛ l r \
J j S> h IM*\J ^ U U l l O U I \ J j V * ^ / I l

•δα OXA OXή * *)

• ( y - x dy dx
]Xi dxi

^ const. I I fj(x) \r dx • 0 a s h > oo .

Furthermore Holder's inequality also shows that all the other terms
in the right side of (A.4) tend to zero in Lr as h —> co.

So (dv(

h

k))/(dx3) — f^] is bounded in Lr as h —• co and converges to
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zero in Lr
1Qc. For some sequence of h's then tending to infinity,

weakly in Lr. Also (A.3) holds for each v{k) so there is a further
subsequence of &'s with v{k) —> v{k) weakly in Lr\ Hence (dv{k))/(dxd) —
fjk) as distributions and (A.2) holds for v = vik) and f = f{k). Finally
for a subsequence of k's tending to °o, VM—+V weakly in Lr* and
{dv{k))j{dx3) — / , in Lr. So (dv)/(dxj) = /,• and (A.2) holds. This com-
pletes the proof.
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