ON ELEMENTARY IDEALS OF POLYHEDRA IN THE 3-SPHERE

Shin'ichi Kinoshita

Let K be a polygonal simple closed curve (a knot) in a 3 -sphere S^{3}. For each nonnegative integer d the d th elementary ideal E_{d} of K in the integral group-ring over an infinite cyclic group is defined by R. H. Fox. The ideal E_{d} of K is a topological invariant of the position of K in S^{3}. This method has been applied to various more general settings, for instance, links in S^{3}, S^{n-2} in $S^{n}(n>2)$ and etc. In this paper the d th elementary ideals $E_{d}(l)$ are associated to each ($n-2$)-dimensional integral cycle l on a polyhedron L in an n-sphere $S^{n}(n>2)$ that does not separate S^{n}. The collection of $E_{d}(l)$ for all possible l on L forms a toplogical invariant of the position of L in S^{n}.

In $\S 2$ we prove theorems of the d th elementary ideal $E_{d}(l)$ associated with an ($n-2$)-dimensional integral l on a polyhedron L in S^{n} that does not separate $S^{n}(n>2)$. In $\S 3$ we will consider to the case of polyhedra in S^{3}. After studying an example of a θ-curve in S^{3} in $\S 4$, we reconsider knots and links from this point of view in $\S 5$. In $\S 6$ we will give a remark on a Torres' formula for a link in S^{3} ([7]) from this point of view.

Our discussion will be based on Fox's free differential calculus ([1], [2], [3]), though other methods, especially the covering space technique, would also be helpful. We need some minor adjustment of free differential calculus that will be given in $\S 1$.

The method of the paper is essentially different from that of [4], though a close relation between them will be observed.

1. From free differential calculus. Let G be a group with a presentation $\left(x_{1}, \cdots, x_{m} ; r_{1}, \cdots, r_{n}\right)(n \leqq \infty)$. Let H be a multiplicative abelian group and ψ a homomorphism of G into H. Let ϕ be the canonical homomorphism of the free group $F\left(x_{1}, \cdots, x_{m}\right)$ onto G. These homomorphism ϕ and ψ are naturally extended to ring homomorphisms of the integral group-ring $J F$ onto $J G$ and of $J G$ into $J H$, respectively. Using Fox's free differential calculus ([1], [2], [3]), we have an $n \times$ m matrix $A(G, \psi)=\left(r_{i j}\right)$, where

$$
r_{i j}=\left(\frac{\partial r_{i}}{\partial x_{j}}\right)^{\psi \psi \phi} \in J H .
$$

Generally, let ($r_{i j}$) be an $n \times m$ matrix ($n \leqq \infty$) over a commutative
ring R with unity. Then for each nonnegative integer d the d th elementary ideal E_{d} of the matrix $\left(r_{i_{j}}\right)$ is the ideal of R generated by all minors of order $m-d$, if $m-d>0$ and $n-(m-d) \geqq 0$. If $m-d>0$, but $n-(m-d)<0$, let $E_{d}=(0)$. If $m-d \leqq 0$, let $E_{d}=(1)$.

It was proved in [3] that the d th elementary ideal E_{d} of the matrix $A(G, \alpha)$ is an invariant of the group G, where α is the abelianizer of G. Since there is a unique homomorphism σ of the abelianization of G into H with $\psi=\sigma \alpha$, the d th elementary ideal $E_{d}(G, \psi)$ of the matrix $A(G, \psi)$ is an invariant of G with respect to ψ.

Now let us consider the following diagram:

$$
G_{1} \xrightarrow{\psi} G_{2} \xrightarrow{\sigma} H,
$$

where G_{1} and G_{2} are groups, H a multiplicative abelian group, and ψ is a homomorphism of G_{1} onto G_{2} and σ of G_{2} into H. Then we have the following theorem.

Theorem 1. $\quad E_{d}\left(G_{1}, \sigma \psi\right) \subset E_{d}\left(G_{2}, \sigma\right)$.
Proof. Let $\left(x_{1}, \cdots, x_{m}: r_{1}, \cdots, r_{n}\right)(n \leqq \infty)$ be a presentation of G_{1}. Then $x_{1}^{\psi}, \cdots, x_{m}^{\psi}$ are generators of G_{2}, since ψ is a homomorphism of G_{1} onto G_{2}, and $r_{1}^{\psi}, \cdots, r_{n}^{\psi}$ are some of the relators of G_{2}. From this it follows that one of $A\left(G_{1}, \sigma \psi\right)$ is a submatrix of one of $A\left(G_{2}, \sigma\right)$, where the both matrices have the same number of columns. The theorem is now clear.

A trivializer of a group G is a homomorphism of G onto the trivial group that consists of only one element. Any trivializer will be denoted by the same notation o in this paper. Further, the groupring $J o(G)$ will be identified with J.

For the convenience of the readers we refer to the following two theorems from free differential calculus ([2]).

Theorem A (Fox). Let G be a group and o a trivializer of G. Then a matrix $A(G, o)$ is elementarily equivalent (see [1], [3]) to the following matrix:

where $\tau_{1}, \cdots, \tau_{n}$ are torsion numbers and μ the Betti number of the
abelianization of G. (We assume that the abelianization of G is finitely generated.)

Theorem B (Fox). Let H be a multiplicative free abelian group of rank $\mu(\mu \geqq 1)$ with generators t_{1}, \cdots, t_{μ} and let i be the identity of H. Then we have

$$
\left\{\begin{array}{l}
E_{0}(H, i)=(0), \\
E_{d}(H, i)=\left(t_{1}-1, \cdots, t_{\mu}-1\right)^{\mu-d}, \text { if } 1 \leqq d<\mu \\
E_{d}(H, i)=(1), \text { if } d \geqq \mu
\end{array}\right.
$$

2. On polyhedra in S^{n}. Let L be a polyhedron in an n-sphere $S^{n}(n \geqq 3)$ that does not separate S^{n}, and let G_{L} be the fundamental group of $S^{n}-L$. Let l be an $(n-2)$-dimensional cycle with integral coefficients on L. There is a homomorphism ψ of the group G_{L} into the multiplicative infinite cyclic group H generated by t such that for each $g \in G_{L}$,

$$
g^{\psi}=t^{1 \mathrm{ink}(g, l)},
$$

where link (g, l) is the linking number between g and l in S^{n}. Since the d th elementary ideal $E_{d}\left(G_{L}, \psi\right)$ is an invariant of the group G_{L} with respect ψ, it is a topological invariant of $S^{n}-L$ with respect to l on L, and from this it follows that $E_{d}\left(G_{L}, \psi\right)$ is a topological invariant of the position of l on L in S^{n}. We will denote it by $E_{d}(l)$. If two ($n-2$)-cycles l and l^{\prime} are homologous on L, then the corresponding d th elementary ideals $E_{d}(l)$ and $E_{d}\left(l^{\prime}\right)$ are the same. The collection of $E_{d}(l)$ for all possible ($n-2$)-cycles l on L forms a topological invariant of the position of L in S^{n}.

Theorem 2. Let L be a polyhedron in an n-sphere $S^{n}(n \geqq 3)$ that does not separate S^{n}. Let $p_{n-2}(L)$ be the $(n-2)$-dimensional Betti number of L and $\tau_{1}, \tau_{2}, \cdots, \tau_{r}$ are $(n-3)$-dimensional torsion numbers with $\tau_{i} \mid \tau_{i+1}(i=1,2, \cdots, r-1)$. Then for each $(n-2)$-dimensional cycle l on L the dth elementary ideal $E_{d}(l)$ of l on L in S^{n} satisfies the following conditions:

$$
\left\{\begin{aligned}
\left(E_{d}(l)\right)^{\circ}= & (0), \text { if } d<p_{n-2}(L), \\
\left(E_{d}(l)\right)^{\circ}= & \tau_{1} \tau_{2} \cdots \tau_{m}, \text { where } m=r-\left(d-p_{n-2}(L)\right), \\
& \text { if } p_{n-2}(L) \leqq d<p_{n-2}(L)+r, \\
\left(E_{d}(l)\right)^{\circ}= & (1), \text { if } d \geqq p_{n-2}(L)+r .
\end{aligned}\right.
$$

Proof. By the Alexander duality theorem we have

$$
p_{1}\left(S^{n}-L\right)=p_{n-2}(L)
$$

and

$$
T_{1}\left(S^{n}-L\right) \approx T_{n-3}(L)
$$

where $T_{i}(K)$ is the i-dimensional torsion group of a complex K. Since the abelianizations of $\pi\left(S^{n}-L\right)$ is the 1-dimensional homology group of $S^{n}-L$, the theorem is clear by Theorem A.

Especially if l_{0} is the $(n-2)$-cycle on L such that the coefficients of l_{0} on every $(n-2)$-simplexes of L are 0 , then for every $g \in G_{L}$ we have link $\left(g, l_{0}\right)=0$. Hence the homomorphism ψ of G_{L} into H with respect to l_{0} is a trivializer. Therefore, we have the following theorem.

Theorem 3. Let L be a polyhedron in $S^{n}(n \geqq 3)$ that does not separate S^{n} and l_{0} the ($n-2$)-cycle on L with coefficients 0 on every ($n-2$)-simplexes on L. Then we have

$$
E_{d}\left(l_{0}\right)=\left(E_{d}(l)\right)^{\circ},
$$

where l is an $(n-2)$-cycle on L.
Now let μ be the number of components of L (i.e. $\mu=p_{0}(L)$) and $L_{i}(i=1,2, \cdots, \mu)$ the i th component of L. Then an ($n-2$)-cycle l on L can be expressed as $\sum_{i=1}^{h} l_{i}$, where $l_{i}(i=1,2, \cdots, \mu)$ is an $(n-$ 2)-cycle on L defined by

$$
\left\{\begin{array}{l}
l_{i}\left|L_{i}=l\right| L_{i}, \\
l_{i} \mid L_{j}=0 \quad(i \neq j) .
\end{array}\right.
$$

Let H_{0} be a multiplicative free abelian group of rank μ, i.e. $H_{0}=$ $\Pi_{i=1}^{\mu} H_{i}$, where $H_{i}=\left(t_{i}:\right)(i=1,2, \cdots, \mu)$. Define a homomorphism ψ_{0} of G_{L} into H_{0} by

$$
g^{\psi_{v}}=\prod_{i=1}^{\mu} t_{i}^{1{\operatorname{link}\left(g, l_{i}\right)}} .
$$

Then, as before, we have the d th elementary ideal $E_{d}\left(G_{L}, \psi_{0}\right)$ in $J H_{0}$, that is a topological invariant of the position of l on L in $S^{n} . E_{d}\left(G_{L}, \psi_{0}\right)$ will be denoted by $E_{d}[l]$.

Let σ be a homomorphism of H_{0} onto $H=(t: \quad)$ defined by $t_{\imath}^{\sigma}=$ t. Since $g^{\psi /}=t^{1 \mathrm{ink}(g, l)}$, we have $\sigma \psi_{0}=\psi$. Since σ is an homomorphism of H_{0} onto H, we have the following theorem.

Theorem 4. We have

$$
\left\{\begin{array}{l}
\left(E_{d}[l]\right)^{\circ}=E_{d}(l) \text { and } \\
\left(E_{d}[l]\right)^{\circ}=\left(E_{d}(l)\right)^{\circ} .
\end{array}\right.
$$

Now assume that $p_{n-2}(L) \geqq 1$. We have a sequence of homomorphism

$$
G_{L} \xrightarrow{\stackrel{\alpha}{\rightarrow} H_{L} \xrightarrow{\stackrel{\sigma_{0}}{\alpha^{\prime}} H^{\prime} \xrightarrow{\sigma^{\prime}}} H_{0}, ~}
$$

where α is the abelianizer of $G_{L}, H_{L} \cong H^{\prime}$ (a free abelian group of rank $\left.p_{n-2}(L)\right) \times\left(\right.$ the torsion subgroup of H_{L}) and α^{\prime} is the projection of H_{L} onto $H^{\prime}, \psi_{0}=\sigma_{0} \alpha$, and $\sigma_{0}=\sigma^{\prime} \alpha^{\prime}$. Then, by Theorems 1 and B , we have

$$
\begin{gathered}
E_{d}\left(G_{L}, \alpha^{\prime} \alpha\right) \subset E_{d}\left(H^{\prime}, i\right) \\
=\left\{\begin{array}{l}
(0), \text { if } d=0, \text { and } \\
\left(1-s_{1}, \cdots, 1-s_{p_{n-2}(L)}\right)^{p_{n-2}(L)-d}, \text { if } 1 \leqq d<p_{n-2}(L),
\end{array}\right.
\end{gathered}
$$

in $J H^{\prime}$, where we assume that H^{\prime} is generated by $s_{1}, \cdots, s_{p_{n-2}(L)}$. In [2] it is proved that

$$
\left(1-s_{1}^{\sigma}, \cdots, 1-s_{p_{n-2}(L)}^{\sigma}\right) \subset\left(1-t_{1}, \cdots, 1-t_{\mu}\right) .
$$

Hence we have the following theorem.
Theorem 5. Assume that $p_{n-2}(L) \geqq$. Then we have

$$
\left\{\begin{array}{l}
E_{0}[l]=(0), \text { and } \\
E_{d}[l] \subset\left(1-t_{1}, \cdots, 1-t_{\mu}\right)^{p_{n-2}(L)-d}, \text { if } 1 \leqq d<p_{n-2}(L) .
\end{array}\right.
$$

Theorem 6. Assume that $p_{n-2}(L) \geqq$. Then we have

$$
\left\{\begin{array}{l}
E_{0}(l)=(0), \text { and } \\
E_{d}(l) \subset(1-t)^{p_{n-2}(L)-d}, \text { if } 1 \leqq d<p_{n-2}(L)
\end{array}\right.
$$

Remark. The first formula in Theorem 2 follows from Theorem 6.
3. On polyhedra in S^{3}.

Theorem 7^{1}. Let M^{3} be a 3-dimensional manifold and L a polyhedron in M^{3} that does not separate M^{3}. Then $\pi\left(M^{3}-L\right)$ has a presentation with deficiency $p_{1}\left(M^{3}-L\right)-p_{2}\left(M^{3}-L\right)$.

Proof. Let K be a connected 2-dimensional polyhedron. Then $\pi(K)$ has a presentation with $\alpha_{1}-\left(\alpha_{0}-1\right)$ generators and α_{2} relators, where $\alpha_{i}(i=0,1,2)$ is the number of i-dimensional simplexes. Since $M^{3}-L$ has a connected 2 -dimensional polyhedron as its deformation retract, say K, there is a presentation of $\pi\left(M^{3}-L\right)$ with deficiency

[^0]\[

$$
\begin{aligned}
\alpha_{1} & -\left(\alpha_{0}-1\right)-\alpha_{2}=1-p_{0}(K)+p_{1}(K)-p_{2}(K) \\
& =p_{1}\left(M^{3}-L\right)-p_{2}\left(M^{3}-L\right) .
\end{aligned}
$$
\]

Corollary. Let L be a polyhedron in S^{3} that does not separate S^{3}. Then $\pi\left(S^{3}-L\right)$ has a presentation with deficiency 1 $p_{0}(L)+p_{1}(L)$.

Proof. By the Alexander duality theorem we have

$$
\begin{aligned}
p_{1}\left(S^{3}-L\right) & -p_{2}\left(S^{3}-L\right)=p_{1}(L)-\left(p_{0}(L)-1\right) \\
& =1-p_{0}(L)+p_{1}(L)
\end{aligned}
$$

Theorem 8. Let L be a polyhedron in S^{3} that does not separate S^{3}. Then for each 1-cycle l on L we have

$$
E_{d}(l)=(0), \text { if } d<1-p_{0}(L)+p_{1}(L) .
$$

Remark. A greater number than $1-p_{0}(L)+p_{1}(L)$ can be obtained, if one (or more) component of L is contractible in itself.

The following Theorem 9 and Theorem 10 are corollaries of Theorem 2 and Theorems 5 and 6, respectively.

Theorem 9. Let L be a polyhedron in 3-sphere S^{3} that does not separate S^{3}. Then for each 1-cycle l on L we have

$$
\left\{\begin{array}{l}
\left(E_{d}(l)\right)^{\circ}=(0), \text { if } d<p_{1}(L), \text { and } \\
\left(E_{d}(l)\right)^{\circ}=(1), \text { if } d \geqq p_{1}(L) .
\end{array}\right.
$$

Theorem 10. Let L be a polyhedron in 3-sphere S^{3} that does not separate S^{3}. Assume that $p_{1}(L)>0$ and let $\mu=p_{0}(L)$. Then we have

$$
\left\{\begin{array}{l}
E_{0}[l]=0, \text { and } \\
E_{d}[l] \subset\left(1-t_{1}, \cdots, t-t_{\mu}\right)^{p_{1}(L)-d}, \text { if } 1 \leqq d<p_{1}(L)
\end{array}\right.
$$

Especially we have

$$
\left\{\begin{array}{l}
E_{0}(l)=0, \text { and } \\
E_{d}(l) \subset(1-t)^{p_{1}(L)-d}, \text { if } 1 \leqq d<p_{1}(L)
\end{array}\right.
$$

4. Examples. Let L_{1} be a θ-curve, which is trivially imbedded in S^{3}. Then the fundamental group $G_{L_{1}}$ of $S^{3}-L_{1}$ is a free group of rank 2. From this it follows that for each 1-cycle l on L_{1} we have

$$
\left\{\begin{array}{l}
E_{d}(l)=(0), \text { if } d<2, \\
E_{d}(l)=(1), \text { if } d \geqq 2 .
\end{array}\right.
$$

Now let L_{2} be a θ-curve in S^{3}, which is shown in Fig. 1.

Figure 1
Then a presentation of the fundamental group $G_{L_{2}}$ of $S^{3}-L_{2}$ is as follows:

$$
\left(x_{1}, y_{1}, y_{2}: y_{2} x_{1} y_{1} y_{2}^{-1} x_{1} y_{2} y_{1}^{-1} y_{2}^{-1} x_{1}^{-1} y_{2} y_{1}^{-1} x_{1}^{-1} y_{2}^{-1} x_{1} y_{2} x_{1}^{-1}=1\right) .
$$

Now let l be a 1 -cycle on L_{2} and suppose that link $\left(x_{1}, l\right)=c_{1}$ and link $\left(y_{1}, l\right)=\operatorname{link}\left(y_{2}, l\right)=c_{2}$. Then we have

$$
A\left(G_{L_{2}}, \psi\right) \approx\left(t^{c_{1}+c_{2}}+t^{c_{2}}+1,2,0\right)
$$

Hence, we have

$$
\left\{\begin{array}{l}
E_{d}(l)=(0), \text { if } d<2 \\
E_{2}(l)=\left(t^{c_{1}+c_{2}}+t^{c_{2}}+1,2\right), \\
E_{d}(l)=(1), \text { if } d>2
\end{array}\right.
$$

This means that the position of L_{1} and that of L_{2} in S^{3} are topologically inequivalent. Note that any one of three simple closed curves on L_{2} is a trivial knot in S^{3}. (The example L_{2} was also discussed in [4], but there was a mistake in calculation, that was pointed out by R. H. Fox to the author of the paper. Of course the underlying theory in that paper is also different to that of this paper as noted in the introduction.) We may also note that generally $E_{2}(l)$ of l on L_{2} in S^{3} is not a principal ideal, that generally $E_{2}(l)$ does not satisfy the symmetricity property, that appears for knots and links in S^{3}. There are several of this kind of example in [6], too.

In another paper the author of the paper will prove that for any integral polynomial $f(t)$ with $f(t)= \pm 1$ there exists a θ-curve L in S^{3} and a 1-cycle l on L such that $E_{2}(l)=(f(t))$.
5. On knots and links. Let K be an oriented polyhedral ($n-$
2)-sphere in $S^{n}(n \geqq 3)$ and k an ($n-2$)-cycle on K such that $k=c k^{\prime}$, where k^{\prime} is the fundamental cycle of K. Consider the fundamental group G_{K} of $S^{n}-K$ and its abelianization

$$
\alpha: G_{K} \rightarrow H_{K}=\left(t^{\prime}: \quad\right)
$$

We choose the generator t^{\prime} in such a way that for each $g \in G_{K}$

$$
g^{\alpha}=\left(t^{\prime}\right)^{\operatorname{link}\left(g, k^{\prime}\right)} .
$$

On the other hand, we have

$$
g^{\psi \gamma}=t^{1 \operatorname{ink}(g, k)}=t^{c\left(1 \operatorname{ink}\left(g, k^{\prime}\right)\right)} .
$$

Now define a homomorphism σ of H_{K} into H by $\left(t^{\prime}\right)^{\sigma}=t^{c}$. Then we have $\psi=\sigma \alpha$. From this it follows that

$$
E_{d}(k)(t)=E_{d}\left(k^{\prime}\right)\left(t^{c}\right)
$$

for each $d \geqq 0$. Further, since H_{K} is infinite cyclic, we have $E_{0}(k)=$ (0) and $\left(E_{d}(k)\right)^{\circ}=(1)$ for $d \geqq 1$. If $n=3$, we have

$$
E_{1}(k)(t)=\left(\Delta_{K}\left(t^{c}\right)\right),
$$

where $\Delta_{K}(t)$ is the Alexander polynomial of the oriented simple closed curve K in S^{3}.

Let L be an oriented polyhedral ($n-2$)-link with μ components in $S^{n}(n \geqq 3)$, i.e. an ordered collection of μ number of mutually disjoint oriented polyhedral ($n-2$)-spheres in S^{n}. We assume that $\mu \geqq 2$. Let L_{i} be the i th component of L for each $i(i=1, \cdots, \mu)$. Let l be an $(n-2)$-cycle on L and let l_{i}^{\prime} be as follows:

$$
\left\{\begin{array}{l}
l_{i}^{\prime} \mid L_{i}=\text { the fundamental cycle on } L_{i}, \text { and } \\
l_{i}^{\prime} \mid L_{j}=0, \text { if } i \neq j
\end{array}\right.
$$

Hence, we have $l=\sum_{i=1}^{\mu} c_{i} l_{i}^{\prime}$. Let $l_{i}=c_{i} l_{i}^{\prime}$ and $l^{\prime}=\sum_{i=1}^{\mu} l_{i}^{\prime}$. Consider the fundamental group G_{L} of $S^{n}-L$ and its abelianization

$$
\alpha: G_{L} \rightarrow H_{L}
$$

which is a free abelian group of rank μ. We choose the generator $t_{i}^{\prime}(i=1, \cdots, \mu)$ in such a way that for each $g \in G_{L}$

$$
g^{\alpha}=\prod_{i=1}^{\prime \prime}\left(t_{i}^{\prime}\right)^{1 \operatorname{1ink}\left(g, l^{\prime}\right)} .
$$

On the other hand, we have

$$
g^{\psi_{0}}=\prod_{i=1}^{\mu} t_{i}^{\operatorname{ink}\left(g, l_{i}\right)}=\prod_{i=1}^{\mu}\left(t_{i}\right)^{c_{i}^{\left.1 \operatorname{ink}(g, l)_{i}^{\prime}\right)}}
$$

Define a homomorphism σ of H_{L} into H_{0} by $\left(t_{i}^{\prime}\right)^{\sigma}=t_{i}^{c_{i}}$ for each $i(i=1$, $\cdots, \mu)$. Then we have $\psi_{0}=\sigma \alpha$. From this it follows that

$$
E_{\alpha}[l]\left[\left(t_{1}, \cdots, t_{\mu}\right)=E_{d}\left[l^{\prime}\right]\left[t_{1}^{t_{1}^{1}}, \cdots, t_{\mu^{\prime}}^{\phi^{u}}\right) .\right.
$$

Further we have $E_{0}(l)=0,\left(E_{d}(l)\right)^{\circ}=(0)$ for $d<\mu$, and $\left(E_{d}(l)\right)^{\circ}=(1)$ for $d \geqq \mu$. If $n=3$, we have

$$
E_{1}[l]\left(t_{1}, \cdots, t_{\mu}\right)=\left(1-t_{1}^{t_{1}}, \cdots, 1-t_{\mu^{\mu}}^{\phi_{\mu}}\right) \Delta_{L}\left(t_{1}^{p_{1}}, \cdots, t_{\mu^{\mu}}^{\phi_{k}}\right),
$$

where $\Delta_{L}\left(t_{1}, \cdots, t_{\mu}\right)$ is the Alexander polynomial of the link L in S^{3} and, hence

$$
E_{1}(l)(t)=\left(1-t^{c}\right) \Delta_{L}\left(t^{c_{1}}, \cdots, t^{c_{u}}\right),
$$

where $c=$ g.c.d. $\left(c_{1}, \cdots, c_{\mu}\right)$.
Remark. Further, it is proved by Shinohara and Sumners [5] that if $n \geqq 4, E_{d}(l)=(0)$ for $d<\mu$.
6. On a Torres' formula for a link. The following consideration may be interesting: Suppose that L is an oriented link with multiplicity $\mu(>1)$ in S^{3} and L_{i} the i th component of $L .(i=1,2$, $\cdots, \mu)$. Let l be a 1 -cycle on L and express l as $\sum_{i=1}^{\mu} l_{i}$ as before. Denote $\sum_{i=1}^{\mu-1} l_{i}$ by l^{*}. Now let $L^{*}=L-L_{\mu}$ and let l^{*} be the 1 -cycle on L^{*} such that $l^{*}=l \mid L^{*}$. Hence we have $l^{*}=l^{*} \mid L^{*}$. Let H_{0} be a multiplicative free abelian group of rank μ, i.e. $H_{0}=\prod_{i=0}^{\mu} H_{i}$, where $H_{i}=\left(t_{i}:\right)(i=1,2, \cdots, \mu)$. Let $H_{0}^{*}=\prod_{i=1}^{t_{i=1}^{1}} H_{i}$.

Now let ψ_{0} be the homomorphism of G_{L} into H_{0} such that for each $g \in G_{L}$

$$
g^{k_{0}}=\prod_{i=1}^{\mu} t_{i}^{\operatorname{innk}\left(g g_{i}\right)},
$$

ψ_{0}^{*} the homomorphism of G_{L} into H_{0} such that for each $g \in G_{L}$

$$
g^{r_{0}^{*}}=\prod_{i=1}^{u_{1}^{\prime-1}} t_{i}^{\ln k\left(g, l_{i}\right)}
$$

and ψ_{0}^{*} the homomorphism of G_{L}^{*} into H_{0}^{*} such that for each $g \in G_{\bar{L}}^{*}$

$$
g^{v_{0}^{*}}=\prod_{i=1}^{\mu-1} t^{\operatorname{innk}\left(g, l_{i}\right)} .
$$

Let c_{i} be the coefficient of l on $L_{i}(i=1, \cdots, \mu)$. Then we have the following theorem.

Theorem 11. We have

$$
E_{1}\left[l^{*}, \psi_{0}^{*}\right]=\left(t_{1}^{\left.q_{1}^{c_{1}} l_{\mu} \cdots t_{l l-1}^{t_{\mu-1}-1 l_{\mu-1 \mu}}-1\right) E_{1}\left[l, \psi_{1}^{*}\right], ~}\right.
$$

where $l_{i j}=\operatorname{link}\left(L_{i}, L_{j}\right)(i, j=1,2, \cdots, \mu)$.
Proof. Let

$$
E_{1}\left[l, \psi_{0}\right]=\left(t_{1}^{t_{1}^{1}}-1, \cdots, t_{\mu^{\mu}}^{\rho_{\mu}}-1\right) \Delta_{L}\left(t_{1}^{t_{1}^{1}}, \cdots, t_{\mu_{\mu}^{\mu}}^{\rho_{\mu}}\right) .
$$

Then we have

$$
E_{1}\left[l^{*}, \psi_{0}^{*}\right]=\left(t_{1}^{t_{1}}-1, \cdots, t_{\mu-1}^{c_{\mu-1}-1}-1\right) \Delta_{L}\left(t_{1}^{t_{1}}, \cdots, t_{\mu-1}^{\rho_{\mu-1}-1}, 1\right) .
$$

On the other hand, we have

$$
E_{1}\left[l^{*}, \psi^{*}\right]=\left(t_{1}^{\phi_{1}}-1, \cdots, t_{\mu-1}^{\varepsilon_{\mu}-1}-1\right) \Delta_{L^{*}}\left(t_{1}^{t_{1}} \cdots, t_{\mu-1}^{t_{\mu}-1}\right) .
$$

A Torres' formula of the Alexander polynomial of links ([7]) is as follows:

If $\mu=2$, then

$$
\Delta_{L}\left(t_{1}, 1\right)=\Delta_{L^{*}}\left(t_{1}\right)\left(t_{1}^{12}-1\right) /\left(t_{1}-1\right) .
$$

If $\mu>2$, then

$$
\left.\Delta_{L}\left(t_{1}, \cdots, t_{\mu-1}, 1\right)=\left(t_{1}^{l_{1}} \cdots t_{\mu-1}^{l_{\mu-1}, 1_{\mu}}-1\right) \Lambda_{L^{\hbar}\left(t_{1}\right.}, \cdots, t_{\mu-1}\right) .
$$

Hence if $\mu>2$, the statement of the theorem follows immediately. If $\mu=2$ and $c_{1} \neq 0$, we have

$$
\begin{aligned}
& E_{1}\left[l^{*}, \psi_{0}^{*}\right]=\left(t_{1}^{q_{1}}-1\right) \Delta_{L}\left(t_{1}^{1_{1}}, 1\right) \\
= & \left(t_{1}^{c_{1} l_{2}}-1\right) \Lambda_{L^{*}}\left(t_{1}^{t_{1}}\right)=\left(t_{1}^{l_{1} l_{2}}-1\right) E_{1}\left[l^{*}, \psi_{i}^{*}\right] .
\end{aligned}
$$

The statement of the theorem is trivial, if $c_{1}=0$ and $\mu=2$. Thus the proof of the theorem is complete.

Remark. Theorem 11 can be proved directly and the Torres' theorem can be obtained as a corollary to this theorem.

References

1. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn and Company, 1963.
2. R. H. Fox, Free differential calculus, I, Ann. of Math., 57 (1953), 547-560.
3. -, Free differential calculus, II, Ann. of Math., 59 (1954), 145-518.
4. S. Kinoshita, Alexander polynomials as isotopy invariants, I, Osaka Math. J., 10 (1958), 263-271.
5. Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links (to appear in the Trans. Amer. Math. Soc.).
6. S. Suzuki, On linear graphs in 3-sphere, Osaka J. Math., 7 (1970), 375-396.
7. G. Torres, On the Alexander polynomial, Ann. of Math., 57 (1954), 145-158.

Received May 4, 1970 and in revised form January 13, 1972. The author of this paper was partially supported by NSF Grants GP-11943 and GP-19964.

Florida State University

[^0]: 1 This theorem is due to the referee.

