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A NOTE ON //-EQUIVALENCES

DONALD W. KAHN

If X is a space, with base point, the set of homotopy
classes of based self-equivalent maps, from X to itself, forms
a group, which has been studied by many authors. In this
note, we study a related group, in the case where X is an
fZ-space. The main result is that all such groups are finitely-
presented. The methods combine results from algebraic to-
pology with combinatorial group theory.

If X is an iJ-spaee with multiplication μ: X x X —* X, a self-map
/: X —> X is called an iJ-map if

X x X-^X

X x X-^X

is homotopy commutative. Such maps were first studied in [6], and
later in [1]. Arkowitz and Curjel [1] showed that if X is a connected
complex, which is an iJ-spaee, X has finite-dimensional, commutative,
rational Pontrjagin algebra, and the total homotopy groups of X are
finitely-generated, then the group of homotopy classes of self-maps,
which are iί-maps, is finitely-generated. We denote this group by
A(X), and remark that it is known to be frequently a complicated,
non-Abelian group. Observe that this theorem of [1] suffices to handle
the case when X is a finite, connected complex, which is an fZ-space.
The purpose of this note is to show how this result can be strength-
ened. We shall prove

THEOREM. // X satisfies the assumptions of the theorem of
Arkowitz and Curjel, then A(X) is finitely-presented (see [3] for a
definition).

The class of finitely-presented groups is countable, while it is
known that there are uncountably many groups with 2 generators.
(This result about uncountability, due to B. H. Neumann, may be
found in [3]). Hence, our theorem narrows down the possibilities for
A{X) appreciably.

To prove this Theorem, we need several propositions.

PROPOSITION 1. Let Na G be a normal subgroup of the group G.
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Set K = G/N. If K and N are finitely presented, so is G.

Proof. See p. 130 in [2]. I believe that this is the first place
where this proposition, which is not difficult, has appeared in the
literature.

REMARK. On the contrary, if G and K are finitely-presented, N
need not even be finitely-generated.

PROPOSITION 2. Let Ha G be a subgroup of finite index. If G
is finitely-presented, so is H.

Proof. See p. 93 of [4].

As a converse of Proposition 2, we have the following proposition
which we shall deduce briefly from Proposition 1.

PROPOSITION 3. If Ha G is a finitely-presented subgroup of finite
index, then G is finitely-presented.

Proof. Let Ho be the intersection of all conjugates of H in G.
Ho is a normal subgroup of finite-index, as there are only finitely-
many conjugates. By Proposition 2, HQ is finitely-presented. G/Ho is
finite, and hence, finitely-presented. The result follows immediately
from Proposition 1.

PROPOSITION 4. If Gl9 9Gh are finitely-presented, so is the

group Π<=i Gi.

Proof. For lack of a reference, we indicate the proof. As genera-
tors, we select the elements

(xl9 1, , 1), (xt9 1, , 1), , (xk, 1, , 1)
( 1 , y l 9 1 , •••, 1 ) , ••• , (1, yl9 1, « 1)

where the x{ generate Gλ, the y3- generate G2, etc. A defining set of
relations is then given by the relations among the xi9 the relations
among the yd9 etc. plus the commutativity relations

(xi9 1, , 1) (1, yh 1, , 1) = (1, yj9 1, , l)-(xi9 1, , 1) etc.

We now prove our Theorem.

(a) Let k be the maximal dimension for which Ht(X, Q) Φ 0.
Let F c πi(X) = Σ» =i θ ^ i W be the (graded) free subgroup. We
shall denote, by Aut^G), the group of graded automorphism of the
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graded group G, reserving the symbol Aut for the usual group of
automorphisms. According to [5.], if Fo is a finitely-generated, free,
Abelian group, Aut (Fo) is finitely-presented. It is clear that Autx (F)
is a direct product of such groups, and hence by Proposition 4, it is
finitely-presented. Because Auti (F) c Autj. (π*(X)) is clearly a sub-
group of finite index, we conclude from Proposition 3 that the group

π*(X)) is finitely-presented,
(b) It is shown in [1] that the natural map

has finite kernel, and that the image of p (see p. 146 of [1]) is a sub-
group of finite index. It is here that the assumptions on X are used.

By (a) above, and Proposition 2, we see that Im (p) is finitely-
presented, ker (p) being trivially finitely-presented, our theorem
follows immediately from Proposition 1.

In conclusion, we would like to make some remarks about the full
group of homotopy equivalences, G(x), for such a space X. Clearly,
we have a similar homomorphism pγ and Im (pλ) is of finite-index.
However, ker pλ is no longer finite. For consider the space

X = K(Z, 2ri) x K(Z, An) n>0

with the usual iϊ-space structure. A self-map is determined up to
homotopy by 2-cohomology classes, the classes f*(i2n) and f*(ί4n),
these being the images of the fundamental classes. We set, for any
integer k,

Jk \^2n) — %%

fk(i*n) = ΐ*» + Hhn U ia»)

It is easy to check that such a map fh induces the identity automor-
phism on homotopy groups, but that all the different fh represent
distinct homotopy classes. Hence, the kernel of pί is infinite. An
easy cohomology calculation shows that when k Φ 0, fk is not an H-
map. One also see quickly that A(X) does not have finite index in
G(X) in this case.

Nevertheless, one can prove that G(X) is finitely-presented, by
considering the kernel of px. This will be studied in the forthcoming
thesis of Mr. Daniel Sunday.
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