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INTERPOLATION SETS FOR ANALYTIC FUNCTIONS

A. M. DAVIE AND A. STRAY

Let U be a bounded open subset of the complex plane C.
Criteria are obtained for a subset E of U to be an interpola-
tion set for the algebra of all bounded analytic functions on
U extending continuously to E.

In the case where U is the open unit disc J, this problem was
treated by Detraz [3]» She showed that if E is a subset of the unit
circle T then every bounded continuous function on E is the restriction
of a bounded analytic function on A, extending continuously to E (J
(T/E), if and only if E has measure zero. We extend this result to
any U with connected complement, replacing linear measure on T by
harmonic measure (Theorem 1). For the general case the same method
yields a criterion in terms of representing measures for A(U) (Theorem
2). Finally in Theorem 3 we use a localization argument to sharpen
Theorem 1 and also treat the case where E contains points of U as
well as dUΌ

NOTATION. If S is a plane set then S denotes its closure and dS
its boundary. A(U) denotes the algebra of all continuous functions
on U, analytic on U; H°°(U) denotes the algebra of all bounded analytic
functions on U; HE{ U) denotes the algebra of all bounded continuous
functions on UljE which are analytic on U. If ye U, a representing
measure for y with respect to A(U) is a positive borel measure μ on
U such that f(y) = [fdμ for all feA(U). We denote by | | / | | the
supremum of the function / over its domain of definition. A{z, δ)
denotes the disc with center z and radius δ.

We say that a set S £5 U U E is an interpolation set for H£( U)
if for any bounded continuous / on S we can find g e HE( U) with
g\S = f. We say S is a peak interpolation set for HE{U) if for any
bounded continuous / on S, and open set F a S , and any ε > 0, we
can find g e H~(U) with g\S = f, \\g\\ ^ | | / | | , and \g\ <ε on U\V.

THEOREM 1. Suppose C\U is connected. Let F he a subset of dU
with zero harmonic measure for each point of U (with respect to U).

Then F is a peak interpolation set for H~{U).

The proof follows from the following lemma.

LEMMA.. With U and F as in the theorem, let X be a compact
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subset of U, W a neighborhood of X, and ε > 0. Then we can find

feHp with Il/H ^ 2 , | 1 - f\< ε on F n l , and \f\ < ε on U\W.

Proof. We can find a positive harmonic function σ on U such
that σ(ζ) —> co as ζ -> 2, ζ e Z7, for each zeF. Let τ be a harmonic
conjugate to σ on [7, and let θ = σ + ίr, an analytic function on U.
Put h = θ/(θ + ϊ). Since 0 has positive real part, heH^iU) with
|'|A|( ^ l Moreover h(ζ) —>1 as ζ—*zyζe Z7, for each ^Gί7; hence we
can regard h as an element of Hp(U), with /i — 1 on F.

Now let φ be a continuously differentiate function which is 1 on
a neighborhood of X and zero outside W, with \\φ\\ = 1. Then the
function

is in H~(U). (See [4], p. 210.) Moreover

7Γ z-ζ

The last term is bounded by a constant depending only on U, and
I|ΛΛ||L3—*0 as w—> oo since \h\ < 1 in £7. Choose w so that \\gn —
φhn\\ < ε and put / = gn. Then / satisfies the requirements of the
lemma.

Theorem 1 follows from the lemma in exactly the same way as
Theorem 1 follows from Lemma 2 in [2]. (For an alternative approach
see the proof of Theorem 4.3 of [3]).

We observe that if A(U) is pointwise boundedly dense in iϋΓ°°(U)
then using Theorem 2.1 of [5] we can modify the function / in the
lemma so that it is in Hpum\f}(U). Then we can prove that F is a
peak interpolation set for HpU(du\F}(U).

In the general situation (where C\U need not be connected) the
same method yields the following result. If y e U we denote by My

the set of all (positive) representing measures for y with respect to
A(U) on U. We assume U is connected.

THEOREM 2. Let yell and F S dU. Suppose there is a decreasing
sequence {Vn} of open sets containing F, such that μ(Vn) —* 0 uniformly
for μeMy.

Then F is a peak interpolation set for Hp(U).

Proof. We may suppose μ(Vn) < 2~~n for each μeMy. For each
w let {gnk} be an increasing sequence of nonnegative continuous functions

r

converging to the characteristic function of Vn. Then \ gnkdμ < 2rn
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for μeMy and so by Theorem II 2.1 of [4], we can find hnkeA(U)
with Re hnh ^ gnk on t/, Re hnk(y) < 2~n, and we can also suppose
Imhnk(y) = 0. Passing to a subsequence we have hnk—*hn as k —* °o,
pointwise in £7, where &„ is analytic in U with Re hn ^ 1 on Fw ίΊ ί/
and I /̂ (s/) I ̂  2~n, Re Λft ^ 0 on Z7, Im Λn = 0. By Harnack's inequalities
the series Σ?=i ^ converges pointwise on U to an analytic function h
such that Re h ^ 0 on i7 and Re h(ζ) —* °o as ζ —> z, ζ e U, for each

The rest of the proof follows Theorem 1.

Again we observe that if A(U) is pointwise boundedly dense
in H°°(U) then the interpolation can be achieved by functions in
H?Όiau\F)(U). Moreover under the same assumption the converse to
Theorem 2 holds, for if / is as in the definition of peak interpolation
set, with V chosen so that yίV, and g = 1, then we can choose a
neighborhood W of F so that |1 - f\ < ε on Z7Π W; by Theorem 5.1
of [1] we can approximate / to within ε on compact subsets of W by
a sequence {/„} in A(U) with | | / J | ̂  1, so that μ(W) is small for all
μeMy.

The question naturally arises: suppose μ{F) — 0 for all μ 6 My.
Must there exist open sets VnS F such that μ(Vn) -~>0 uniformly for
μ 6 Myl This is easily verified if F is σ-compact (in this case the
conclusion of Theorem 2 can be deduced from the fact that each
compact subset of F is a peak interpolation set for A(U)). We have
no information of the general case.

LEMMA 2. Let F be α subset of dU such that for each ze F there
exists δ > 0 such that Fz = F Π {w: | w — z | ^ <5/2} is α peak interpolation
set for H~nJ{βtδ)(UΓ\ Δ{z, δ)), then F is a peak interpolation set for
Hψ(U).

Proof. First we show that Fz is a peak interpolation set for
HF{U). Let g be a bounded continuous function on Fz, let ε > 0,
and let V be an open neighborhood of Fz. Choose / e HFΠJ{Zfδ)(UΓϊ
Δ{z, δ)) such that / = g on ί7,, | | / | | = ]|^| |, and | / | < ε outside FΠ

Choose a continuously differentiate function 9> such that φ — 1
in a neighborhood of {w: |w — z\ ^ 35/4} and supp φ ^ {w:\w — z\ <
δ}. Define

Λ(w) - f(w)φ(w) + 1
7Γ
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where f(w) is defined to be zero outside (F\J U)f)A(z, δ). Then / x e
H~(U) and given t > 0 we can choose ε > 0 so that \\f1 — f\\ < t..
Moreover | | / i | | ^ A | | / | | , where A is an absolute constant, (See [4],
p. 210.) Then we have \fx - f\ < ε on Fz and | / J < ε on U\V. It
now follows by a standard argument (see e.g. [2], Theorem 1), that
Fz is a peak interpolation set for Hp(U).

Now let V be an open set containing F. Shrinking V if necessary we
may suppose that F i s contained in the union of the discs A(z, δ), ze F,
constructed above. This implies that for any compact set K ϋ V, we
have K Π F £ JJ?=i FH f ° r some zu , zne F, which easily implies
that KΠ F is a peak interpolation set for HF{U). The lemma now
follows by the argument used to deduce Theorem 1 from Lemma 3
in [2].

We say that U is locally simple connected at a point zedU if
there exists δ > 0 such that C\(U' ΠA(z, δ)) is connected. For example,
if the diameters of the components of C\U are bounded away from
zero then U is locally simply connected at each point of dU. (Note
that Uf] A(z, δ) is not required to be connected; we only require that
each component be simply connected.)

THEOREM 3. Let S be a subset of V such that U is locally simply
connected at each point of S Π dU. Then S is an interpolation set
for H~ndu(U) if and only if:

(i) Uf)S is an interpolating sequence for H°°(U),
(ii) Sf]dU has zero harmonic measure for each point of U, with

respect to U.

Proof. Assume first that S is an interpolation set for H"Γ]du(U).
A simple normal family argument shows that (i) holds.

Now let ye U and choose / e H~ΠBU(U) such that | | / | | ^ 1, / = 0
on S Π dU, and f(y) Φ 0. Then — log | / | is a positive superharmonic
function on U, tending to co at each point of S Π dU, and finite at
y. Thus S ΠdU has zero harmonic measure for y with respect to U
which proves (ii).

Now assume (i) and (ii) hold, and let / be a bounded continuous
function on S with | | / | | ^ 1. By Lemma 2 and Theorem 1, dUΠS
is a peak interpolation set for HΓuns(U) so we can find h e HΓuns(U) with
\\h\\ ̂  1 and h = f on dUΠ S. Let g, = f - h on S, then gL = 0 on
dllf] S so that for any ε > 0 we can find Fe H?UV[S{U) so that F = 0
on dUΠ S, | 1 - F\ < ε on {zeS: \gL(z)\ > ε}, \\F\\ ^ 2. Then \Fg, -

g,\ ^ 3ε on S. Choose GeH~(U) so that | | G | | ^ M | | ^ | | ^ 2M and
G = gλ on S ΓΊ Z7, where M is the interpolation constant of S Π U; then

and satisfies |FG - gγ\ ^ 3ε on S. Let f = FG + he
then \f - f\ ^ 3ε on S and | | / | | ^ 43f + 1, so the theorem
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follows by choosing ε with 3ε < 1.
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