A PROPERTY OF MANIFOLDS COMPACTLY EQUIVALENT TO COMPACT MANIFOLDS

R. J. TONDRA

In this paper it is shown that there is a countable collection $\mathcal{G} = \{G_k\}_{k=1}^{\infty}$ of connected *n*-manifolds such that any manifold M which is compactly equivalent to a compact manifold is an open monotone union of some $G_{\alpha(M)} \in \mathcal{G}$.

In [4] it is shown that if \mathscr{F} is the class consisting of all open 2-manifolds of finite genus, then there is a countable collection $\mathscr{D} = \{D_k\}_{k=1}^{\infty}$ of open 2-manifolds with the property that given $M \in \mathscr{F}$, there exists some $D_j \in \mathscr{D}$ such that M is an open monotone union of D_j . By appropriately extending the concept of genus to higher dimensions, one can obtain similar results for a larger class of manifolds.

1. Preliminaries. Unless otherwise specified, all manifolds will be assumed to be connected and bd M and int M will denote the boundary and interior respectively of a manifold M. Let M and Nbe *n*-manifolds. M and N are compactly equivalent, denoted by $M \sim_c N$, if given any proper compact set $K \subset M$ there is an embedding i of the pair $(K, K \cap \operatorname{bd} M)$ into $(N, \operatorname{bd} N)$ such that $i(K \cap \operatorname{bd} M) =$ $i(K) \cap \operatorname{bd} N$ and given any proper compact set $L \subset N$ there is an embedding j of $(L, L \cap \operatorname{bd} N)$ into $(M, \operatorname{bd} M)$ such that $j(L \cap \operatorname{bd} N) =$ $j(L) \cap \operatorname{bd} M$. Clearly compact equivalence is an equivalence relation on the class of all *n*-manifolds. Note that a 2-manifold M without boundary has finite genus if and only if $M \sim_c Q$ where Q is some closed 2-manifold.

Let \mathscr{L} be the class consisting of all non-compact *n*-manifolds $M, n \ge 2$ and $n \ne 4$, such that $M \in \mathscr{L}$ if and only if $M \sim_c N, N$ a compact manifold. The principal result of this paper is the following:

THEOREM 1.1. There is a countable collection $\mathcal{G} = \{G_k\}_{k=1}^{\infty}$ of manifolds such that given $M \in \mathcal{L}$ there is some positive integer $\alpha(M)$ such that M is an open monotone union of $G_{\alpha(M)}$.

As usual an *n*-manifold M is called an open monotone union of an *n*-manifold H if $M = \bigcup_{i=1}^{\infty} H_i$ where for all i, H_i is open in M, $H_i \subset H_{i+1}$ and $H_i \equiv H$ (\equiv denotes topological equivalence).

2. Proof of the theorem. If M is an *n*-manifold, let I(M) rel bd $M = \{f \mid f \text{ is a homeomorphism of } M \text{ onto itself such that } f \text{ is isotopic to the identity relative to bd } M\}.$

The following lemma gives the existence of a complicated domain which is the basic tool used in the construction of the collection \mathcal{G} mentioned in Theorem 1.1.

LEMMA 2.1. Let E be an n-cell, $n \ge 2$. There exists a proper domain (open connected set) G of E, bd $E \subset G$, such that if U is open in E and K is a proper continuum, bd $E \subset K \subset U$, then there exists a $g \in I(E)$ rel bd E such that $K \subset g(G) \subset U$.

Proof. This follows immediately from Lemma 3.8 of [5].

LEMMA 2.2. Let Q be a compact n-manifold, $n \ge 2$. There is a proper domain D of Q such that if U is open in Q and contains a residual set R of Q, and K is proper continuum in $Q, R \subset K \subset U$, then there exists $h \in I(Q)$ rel bd Q such that $K \subset h(D) \subset U$.

Proof. Let E be a bicollared n-cell, $E \subset \text{int } G$, and let G be a proper domain G of E which satisfies the conditions of Lemma 2.1. We will show that $D = (Q - E) \cup G$ is the required domain. Without loss of generality, we may assume that U is connected. Since Ucontains a residual set R (see [3] for appropriate definition) there is a bicollared *n*-cell E' and $\alpha \in I(Q)$ rel bd such that $R \subset Q$ - int $E' \subset U$ and $\alpha(E') = E$. Note that E and α can be obtained as follows: one easily constructs γ_1 , γ_2 , and $\gamma_3 \in I(Q)$ rel bd Q such that γ_1 only moves points inside $E \cup$ (collar of bd E) and shrinks E to a very small set, $\gamma_{\scriptscriptstyle 2}$ moves $\gamma_{\scriptscriptstyle 1}(E)$ into the open *n*-cell Q-R, and $\gamma_{\scriptscriptstyle 3}$ moves only points inside Q-R and expands $\gamma_2(\gamma_1(E))$ so that $Q-U \subset \gamma_3(\gamma_2(\gamma_1(\operatorname{int} E)) \subset$ Q-R. Thus we can set $\alpha^{-1} = \gamma_3 \gamma_2 \gamma_1$ and $E' = \alpha^{-1}(E)$. Let $R \subset K \subset U$, K a proper continuum. Without loss of generality, we may assume that $K \cap E'$ is a proper continuum in E' and $\operatorname{bd} E' \subset K \cap E'$. Then $K'' = \alpha(K \cap E') = \alpha(K) \cap E$ is a proper continuum in $E, U'' = \alpha(U) \cap E$ $E = \alpha(U \cap E')$ is open in E and bd $E \subset K'' \subset U''$. Therefore it follows from Lemma 2.1 that there is a homeomorphism $h \in I(E)$ rel bd E such that $K'' \subset h(G) \subset U''$. Now extend h to all of Q by defining h(x) = x, $x \in Q - E$. Then $\alpha(K) \subset h(D) \subset \alpha(U)$ and so $g = \alpha^{-1}h$ is the required homeomorphism.

Since there are only a countable number of topologically distinct compact manifolds [1], Theorem 1.1 follows immediately from the following theorem.

THEOREM 2.3. Let Q be a compact n-manifold, n > 1 and $n \neq 4$. There is a domain D of Q such that if M is a non-compact n-manifold and $M \sim Q$, then M is an open monotone union of D.

Proof. Let D be a domain of Q which satisfies Lemma 2.2. and let L = Q - int E, E a bicollared *n*-cell contained in int Q. Let M be a non-compact *n*-manifold such that $M \sim Q$. It is easily seen that bd M = bd Q and that there is an embedding f of (L, bd Q) into (M, d)bd M) such that f(bd E) (note that $bd E = L - int_{Q}L$ where $int_{Q}L$ denotes the point set interior of L relative to Q) is a bicollared (n-1)sphere in int M. Since M is an n-manifold, there exists a sequence $\{C_i\}_{i=1}^{\infty}$ of continua in M such that $M = \bigcup_{i=1}^{\infty} C_i$ and for all $i \ge 1, f(L) \subset \mathbb{C}$ $\operatorname{int}_{M}C_{i} \subset C_{i} \subset \operatorname{int}_{M}C_{i+1}$. Since M is not compact and $M \sim_{c} Q$, for each $i \ge 1$ there is an embedding h_{i+1} of $(C_{i+1}, \operatorname{bd} M)$ into $(Q, \operatorname{bd} Q)$ such that bd $Q \subset h_{i+1}(f(L)) \subset h_{i+1}(C_i) \subset h_{i+1}(\operatorname{int}_M C_{i+1})$, where $K_i = h_{i+1}(C_i)$ is a proper continuum in Q and $U_i = h_{i+1}(\operatorname{int}_M C_{i+1})$ is open in Q. Since $n \neq 4$, it follows from [2] that $Q - h_{i+1}(f(\operatorname{int}_Q L))$ is a bicollared *n*-cell and therefore there is a residual set R of Q such that $R \subset K_i \subset U_i$. It follows from Lemma 2.2 that there exists $\alpha_i \in I(Q)$ rel bd Q such that $K_i \subset lpha_i(D) \subset U_i$. Define $\beta_i \colon D \to M$ by $\beta_i(x) = h_{i+1}^{-1}(lpha_i(x))$. Then β_i is an embedding of $(D, \operatorname{bd} Q)$ into $(M, \operatorname{bd} M)$ and $C_i \subset \beta_i(D) \subset \operatorname{int}_M C_{i+1}$. Therefore $M = \bigcup_{i=1}^{\infty} \beta_i(D)$, where $\beta_i(D)$ is open and $\beta_i(D) \subset \beta_{i+1}(D)$ for all $i \ge 1$. Therefore M is an open monotone union of D.

The author would like to thank the referee for his helpful suggestions.

References

1. J. Cheeger and J. M. Kister, *Counting topological manifolds*, Topology, **9** (1970), 149-151.

2. C. O. Christenson and R. P. Osborne, *Pointlike subsets of a manifold*, Pacific J. Math., **24** (1968), 431-435.

3. P. H. Doyle and J. G. Hocking, A decomposition theorem for n-dimensional manifolds, Proc. Amer. Math. Soc., 13 (1962), 469-471.

4. R. J. Tondra, Characterization of connected 2-manifolds without boundary which have finite domain rank, Proc. Amer. Math. Soc., **22** (1969), 479-482.

5. _____, Engulfing continua in an n-cell, Trans. Amer. Math. Soc., 158 (1971). 465-479.

Received April 5, 1971 and in revised form June 18, 1971.

IOWA STATE UNIVERSITY