RINGS ON ANALYTIC FUNCTIONS ON ANY SUBSET OF THE COMPLEX PLANE

Li Pi Su

We prove that for any two subsets X,Y of C, the complex plane, X and Y are conformally homeomorphic if there is an isomorphism between $\mathfrak{A}(X)$ and $\mathfrak{A}(Y)$ which is the identity on constant functions.

It has been known for some time that the conformal structure of a domain in the complex plane or a Riemann surface is determined by the algebraic structure of certain rings of analytic functions on it. (See [3], [11], [12], [10], [9] and [8].) Iss'sa [5] shows this is also true for a Stein variety of positive dimension.

All functions considered here are complex single-valued.

DEFINITION 1. Let X be an arbitrary subset of C. A function f on X is said to be analytic at a point $p \in X$ if there is a power series $\sum_{n=0}^{\infty} \alpha_n (z-p)^n$ which converges for |z-p| < R, and $f(z) = \sum_{n=0}^{\infty} \alpha_n (z-p)^n$ for all $z \in X$ and |z-p| < R, where R > 0, and α_n is a complex number for each $n = 0, \dots$, and f is said to be analytic on X if it is analytic at each point of X.

DEFINITION 2. Let X and Y be two arbitrary subspaces of C. A mapping τ from X to Y is said to be analytic mapping if τ is an analytic function on X and has values in Y. τ is said to be a conformal mapping if τ is analytic, one-to-one, and onto. (See [2, Ch. II. §2].) For any two subsets X, Y of C, X, Y are said to be conformally homeomorphic if there is a one-to-one conformal mapping from X onto Y.

Let X be an arbitrary subset of C, and $\mathfrak{A}(X)=\{f\colon f \text{ is analytic on }X\}$. We can then easily show that $\mathfrak{A}(X)$ forms a ring with the constant function of value 1 as the identity u. By [1, p. 145], if $f\in\mathfrak{A}(X)$ and $Z(f)=\{x\in X\colon f(x)=0\}=\varnothing$, then $1/f\in\mathfrak{A}(X)$.

LEMMA 3. For $p \in X$, there is an $f \in M_p = \{f \in \mathfrak{A}(X): f(p) = 0\}$ such that $Z(f) = \{p\}$ and f belongs to no maximal ideal other than M_p .

Proof. Let f(z)=z-p. Then that $f\in M_p$ and f belongs to no other fixed maximal ideal [4, 4.4] is clear. Now, suppose that M is a free maximal ideal [4, 4.1] such that $f\in M$. Since M is free, there is $g\in M$ such that $g(p)\neq 0$. Thus, we have $g(z)=\alpha+\sum_{j=0}^{\infty}\alpha_{k+j}(z-p)^{k+j}$ for $z\in X$ and |z-p|< R, for some R>0, $\alpha_0\neq 0$, $\alpha_k\neq 0$ and $k\geq 1$.

536 LI PI SU

Hence $\underline{\alpha_0^*} = g(z) - (z-p)^{k-1} \cdot f(z) \cdot h(z)$ for some $h \in \mathfrak{A}(X)$. Now f, $g \in M$ which is an ideal, $\underline{\alpha_0} \in M$. This is impossible as $\alpha_0 \neq 0$. Hence, the assertion holds.

LEMMA 4. If Φ is an isomorphism from $\mathfrak{A}(X)$ onto $\mathfrak{A}(Y)$, then $\Phi(M_n)$ is a fixed maximal ideal.

Proof. That $\Phi(M_p)$ is a maximal ideal is clear. From Lemma 3, there is an $f_0 \in M_p$ such that $Z(f_0) = \{p\}$, and f_0 belongs to no other maximal ideal. Consider $Z(\Phi(f_0))$. If $Z(\Phi(f_0)) = \emptyset$, then $\Phi(f_0)$ is a unit so that $\Phi(M_p)$ is the whole ring, $\mathfrak{A}(X)$. This is impossible. Hence, $Z(\Phi(f_0)) \neq \emptyset$. But if $Z(\Phi(f_0))$ contains more than one point, say q_1 and q_2 , then $\Phi(f_0) \in M_{q_1}$ and M_{q_2} so that f_0 would belong to at least two maximal ideals which is again impossible. Hence $Z(\Phi(f_0)) = \{q\}$ for some $q \in Y$. Hence $\Phi(M_p) = M_q$ is fixed ideal.

THEOREM 5. Let X and Y be two subsets of C, and Φ be an isomorphism from $\mathfrak{A}(Y)$ onto $\mathfrak{A}(X)$ such that it is the identity on the constant functions. Then Φ induces a mapping $\tau\colon X\to Y$, defined by $\Phi(g)=g\circ \tau$, and τ is a conformal mapping of X onto Y.

Proof. Define τ to be a mapping from X to Y as follows: $\tau(p) = \bigcap Z[\Phi^{-1}(M_p)]$. By hypothesis Φ^{-1} is an isomorphism of $\mathfrak{A}(X)$ onto $\mathfrak{A}(Y)$. By Lemma 4, $\Phi^{-1}(M_p)$ is a fixed maximal ideal in $\mathfrak{A}(Y)$. Thus, τ is a single-valued mapping. Evidently, $M_{\tau(p)} = \Phi^{-1}(M_p)$, and τ is one-to-one and onto. Now, for each $g \in \mathfrak{A}(Y)$, and $p \in X$, let $\Phi(g)(p) = \alpha$. Then $\Phi(g) - \alpha \in M_p$, $g - \Phi^{-1}(\alpha) \in M_{\tau(p)}$, so that $g(\tau(p)) = \Phi^{-1}(\alpha)(\tau(p)) = \alpha = \Phi(g)(p)$. Hence $\Phi(g) = g \circ \tau$. Similarly, $\Phi^{-1}(f) = f \circ \tau^{-1}$, where τ^{-1} ; $Y \to X$ with $\tau^{-1}(q) = \bigcap Z[\Phi(M_q)]$. If we choose g(w) = w on Y, and f(z) = z on X, then $\tau(p) = g \circ \tau(p)$, and $\tau^{-1}(q) = f \circ \tau^{-1}(q)$ are analytic. Hence, τ is a conformal mapping.

COROLLARY 6. Let X and Y be two subsets of C, and Φ be an isomorphism of $\mathfrak{A}(X)$ onto $\mathfrak{A}(Y)$ which is the identity on real constant functions. Then X and Y can be decomposed respectively into $X_1 \cup X_2$ and $Y_1 \cup Y_2$ such that the sets X_1 , X_2 are open and disjoint in X and similarly for Y_1 and Y_2 , in such a way that X_1 is conformal with Y_1 , and Y_2 is anti-conformal with Y_2 , where some of Y_1 , Y_2 , Y_1 and Y_2 could be empty.

Note that a set is anti-conformal with another set if it is conformal with its complex conjugate.

^{*} α_0 stands for the constant function of value α_0 .

Proof. As in Theorem 5, the mapping τ defined by $\tau(p) = \cap Z[\Phi^{-1}(M_p)]$ is one-to-one and onto. We know that $(\Phi(\underline{i}))^2 = \Phi(-\underline{1}) = -\underline{1}$, hence $\Phi(\underline{i}) = \underline{i}, -\underline{i}$ or \underline{i} on one clopen subset of X, say X_1 , and -i on $X_2 = X - X_1$, (which is then a clopen subset). We will set $X_1 = X$ and $X_2 = X$, respectively, according as $\Phi(\underline{i}) = i$ and $\Phi(\underline{i}) = -i$. Therefore, $\Phi(\underline{\alpha}) = \underline{\alpha}$ on X_1 , and $\overline{\alpha}$ on X_2 for any constant α . Then, by an argument similar to that used in Theorem 5, we can show that $\Phi(g) = g \circ \tau$ on X_1 , and $g \circ \overline{\tau}$ on X_2 ; and $\Phi^{-1}(f) = f \circ \tau^{-1}$ on X_1 and $\overline{f} \circ \overline{\tau}^{-1}$ on X_2 , for any $g \in \mathfrak{A}(Y)$ and $f \in \mathfrak{A}(X)$. Hence the assertion holds.

REMARK. In Theorem 5, the condition that Φ is the identity on the constant functions can not be omitted. Consider $X = \{p\}$, $Y = \{q\}$. Then $\mathfrak{A}(X) = C = \mathfrak{A}(Y)$. We know that there is an isomorphism of C to C other than $z \to z$ and $z \to \overline{z}$ (see [7, Remark on p. 119]). Define $\Phi: \mathfrak{A}(X) \to \mathfrak{A}(Y)$ in the obvious way. Then $\Phi(\alpha) \neq \alpha$ for some $\alpha \in \mathfrak{A}(Y)$. On the other hand, $\alpha \circ \tau(p) = \alpha$. Hence, $\Phi(\alpha) \neq \alpha \circ \tau$.

However, L. Bers shows that if X and Y are domains with boundary points, then every isomorphism of $\mathfrak{A}(Y)$ onto $\mathfrak{A}(X)$ induces a mapping which is either conformal or anti-conformal. (See [3].) Nevertheless, Royden [10], and Ozawa and Mizumoto [9] assumed that the given isomorphism preserves the constant functions. Recently, Nakai [8]** shows that if X and Y are open Riemann surfaces and Φ is such that $\Phi(i) = i$ (or -i), then Φ induces a conformal (or conjugate-conformal, resp.) mapping. Iss'sa [5]** shows that if X and Y are Stein varieties of positive dimensions, then Φ induces a unique conformal or a unique conjugate-conformal mapping.

THEOREM 7. Let X and Y be two subsets of C, and τ be a conformal mapping of X onto Y. Then the induced mapping τ' , defined by $\tau'(g) = g \circ \tau$, is an isomorphism of $\mathfrak{A}(Y)$ onto $\mathfrak{A}(X)$ leaving the constant function unchanged.

Proof. Use the Weirstrass' double-series theorem in [6] to show the composition of $g \circ \tau \in \mathfrak{A}(X)$ for any $g \in \mathfrak{A}(Y)$. The others are obvious.

REFERENCES

- L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, Inc., New York, 1953.
 L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton University Press, New
- 3. L. Bers, On rings of analytic functions, Bull. Amer. Math. Soc., 54 (1948), 311-315.

Jersey, 1960.

4. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand Company,

^{**} The author wishes to express her thanks to the referee for bringing her attention to these two articles.

538 LI PI SU

Inc., New Jersey, 1960.

- 5. H. Iss'sa, On the meromorphic function field of a Stein variety, Ann. of Math., 83 (1966), 34-46.
- 6. K. Knopp, Theory of Functions, Dover Publications, Inc., New York, 1945.
- 7. J. P. Meyer, G. D. Mostor and J. H. Sampson, Fundamental Structures of Algebra, McGraw-Hill Book Company, Toronto, 1963.
- 8. M. Nakai, On rings of analytic functions on Riemann surfaces, Proc. Japan Acad., 39 (1963), 79-84.
- 9. M. Ozawa and H. Mizumoto, On rings of analytic functions, Japan J. Math., 29 (1959), 114-117.
- 10. H. L. Royden, Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc., 83 (1956), 269-276.
- 11. W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc., 78 (1955), 333-342.
- 12. ——, An algebraic characterization of conformal equivalence, Bull. Amer. Math. Soc., **61** (1955), 543.

Received April 14, 1971.

THE UNIVERSITY OF OKLAHOMA