ON PERMANENTS OF CIRCULANTS

Henryk Minc

Abstract

A recurrence formula is obtained for permanents of circulants of the form $\alpha I_{n}+\beta P+\gamma P^{2}$ and explicit formulas are deduced from it. It is shown that for doubly stochastic circulants $\alpha I_{n}+\beta P+\gamma P^{2}$ the minimum permanent lies in the interval ($\left.1 / 2^{n}, 1 / 2^{n-1}\right]$.

1. Introduction. The well-known unresolved conjecture of van der Waerden asserts that in Ω_{n}, the polyhedron of doubly stochastic $n \times n$ matrices, the permanent function takes its minimum value for the matrix J_{n}, all of whose entries are $1 / n$, i.e.,

$$
\begin{equation*}
\min _{A \in \Omega_{n}} \operatorname{per}(A)=\operatorname{per}\left(J_{n}\right) . \tag{1}
\end{equation*}
$$

By a theorem of Birkhoff, Ω_{n} is a convex polyhedron with the permutation matrices $P_{1}, \cdots, P_{n!}$ as vertices. Thus (1) can be written in the form

$$
\begin{equation*}
\min _{\theta} \operatorname{per}\left(\sum_{j=1}^{n!} \theta_{j} P_{j}\right)=\operatorname{per}\left(\sum_{j=1}^{n!} \frac{1}{n!} P_{j}\right), \tag{2}
\end{equation*}
$$

where the minimum is over all nonnegative ($n!$)-tuples $\theta=\left(\theta_{1}, \cdots, \theta_{n!}\right)$ satisfying $\sum_{j=1}^{n!} \theta_{j}=1$.

Since van der Waerden's conjecture is still unresolved, it is natural to ask whether

$$
\begin{equation*}
\min _{\omega} \operatorname{per}\left(\sum_{j=1}^{m} \omega_{j} P_{j}\right)=\operatorname{per}\left(\sum_{j=1}^{m} \frac{1}{m} P_{j}\right), \tag{3}
\end{equation*}
$$

for a fixed set of permutation matrices $\left\{P_{1}, \cdots, P_{m}\right\}$, where the minimum is over all nonnegative m-tuples $\omega=\left(\omega_{1}, \cdots, \omega_{m}\right)$ satisfying $\sum_{j=1}^{m} \omega_{j}=1$.

In this paper we study circulants of the form $\alpha I_{n}+\beta P+\gamma P^{2}$, where I_{n} is the $n \times n$ identity matrix and P is the full-cycle permutation matrix with 1's in the positions $(1,2),(2,3), \cdots,(n-1, n)$, $(n, 1)$. We obtain a recurrence formula and deduce explicit formulas for $\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)$. We then specialize to doubly stochastic circulants of the form $\alpha I_{n}+\beta P+\gamma P^{2}$, obtain bounds for the minimum value of the permanent of such circulants, and show that (3) does not hold for the set $\left\{I_{n}, P, P^{2}\right\}, n \geqq 5$.

The author is indebted to Dr. David London for drawing his attention to the fact that per $\left((1 / 2) I_{n}+(1 / 2) P\right)<\operatorname{per}\left((1 / 3) I_{n}+(1 / 3) P+\right.$ $(1 / 3) P^{2}$), for sufficiently large n.
2. Results. We begin with two formulas for the permanent of a tridiagonal matrix of the form
(4)

$$
\left[\begin{array}{ccccccccccc}
\beta & \gamma & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 \\
\alpha & \beta & \gamma & 0 & \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 \\
0 & \alpha & \beta & \gamma & \cdot & \cdot & \cdot & 0 & 0 & 0 & 0 \\
\cdot & \cdot & \ddots & \ddots & \ddots & & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \ddots & \ddots & \ddots & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \ddots & \ddots & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \ddots & \ddots & \cdot & \cdot & \cdot \\
0 & 0 & 0 & 0 & \cdot & . & \ddots & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & \alpha & \beta & \gamma & 0 \\
0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & \alpha & \beta & \gamma \\
0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 & \alpha & \beta
\end{array}\right] \cdot
$$

Let $F_{n}(\alpha, \beta, \gamma)$ denote the matrix (4) of order n and let the permanent of $F_{n}(\alpha, \beta, \gamma)$ be denoted by $f_{n}(\alpha, \beta, \gamma)$, or simply by f_{n}. Set $f_{0}=1$, $f_{1}=\beta$, and $f_{2}=\beta^{2}+\alpha \gamma$.

Lemma 1. If $n \geqq 2$, then

$$
\begin{equation*}
f_{n}=\beta f_{n-1}+\alpha \gamma f_{n-2} \tag{5}
\end{equation*}
$$

Corollary. If $n \geqq 1$ and $\mu=\sqrt{\beta^{2}+4 \alpha \gamma} \neq 0$, then

$$
\begin{equation*}
f_{n}=\frac{1}{\mu} r_{1}^{n+1}-\frac{1}{\mu} r_{2}^{n+1} \tag{6}
\end{equation*}
$$

where $r_{1}=(\beta+\mu) / 2$ and $r_{2}=(\beta-\mu) / 2$. If $\mu=0$, then

$$
f_{n}=(n+1)(\beta / 2)^{n}
$$

(In other words, if the right side of (6) is considered as a polynomial expression in α, β, γ, then (6) holds even in the case $\mu=0$.)

The lemma is proved easily by expanding the permanent of $F_{n}(\alpha, \beta, \gamma)$ by the first column. Formula (6) is obtained by solving the difference equation (5) subject to initial conditions.

In the next lemma, formula (5) is used to obtain a relation between the permanent of the circulant $\alpha I_{n}+\beta P+\gamma P^{2}$ and permanents of tridiagonal matrices of the form (4).

Lemma 2. If $n \geqq 3$, then

$$
\begin{equation*}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)=f_{n}+\alpha \gamma f_{n-2}+\alpha^{n}+\gamma^{n} . \tag{7}
\end{equation*}
$$

Proof. A direct computation shows that the theorem holds for $n=3$. Assume that $n \geqq 4$. Denote the matrix $\alpha I_{n}+\beta P+\gamma P^{2}$ by Q_{n}, and the submatrix of Q_{n} obtained by deleting rows i_{1}, i_{2} and columns j_{1}, j_{2} by $Q_{n}\left(i_{1}, i_{2} \mid j_{1}, j_{2}\right)$. Expand the permanent of Q_{n} by the first two columns:

$$
\begin{aligned}
\operatorname{per}\left(Q_{n}\right)= & \alpha^{2} \operatorname{per}\left(Q_{n}(1,2 \mid 1,2)\right)+\beta \gamma \operatorname{per}\left(Q_{n}(1, n-1 \mid 1,2)\right) \\
& +\left(\alpha \gamma+\beta^{2}\right) \operatorname{per}\left(Q_{n}(1, n \mid 1,2)\right)+\alpha \gamma \operatorname{per}\left(Q_{n}(2, n-1 \mid 1,2)\right) \\
& +\alpha \beta \operatorname{per}\left(Q_{n}(2, n \mid 1,2)\right)+\gamma^{2} \operatorname{per}\left(Q_{n}(n-1, n \mid 1,2)\right) \\
= & \alpha^{n}+\alpha \beta \gamma f_{n-3}+\left(\alpha \gamma+\beta^{2}\right) f_{n-2}+\alpha^{2} \gamma^{2} f_{n-4}+\alpha \beta \gamma f_{n-3}+\gamma^{n} \\
= & \beta f_{n-1}+\alpha \gamma f_{n-2}+\alpha \gamma\left(\beta f_{n-3}+\alpha \gamma f_{n-4}\right)+\alpha^{n}+\gamma^{n} \\
= & f_{n}+\alpha \gamma f_{n-2}+\alpha^{n}+\gamma^{n} .
\end{aligned}
$$

We now use the preceding result to obtain a recurrence formula for the permanent of $\alpha I_{n}+\beta P+\gamma P^{2}$, and then to deduce explicit formulas for these circulants.

Theorem 1. If $Q_{n}=\alpha I_{n}+\beta P+\gamma P^{2}$ and $n \geqq 5$, then

$$
\begin{align*}
\operatorname{per}\left(Q_{n}\right)= & \beta \operatorname{per}\left(Q_{n-1}\right)+\alpha \gamma \operatorname{per}\left(Q_{n-2}\right) \\
& +\alpha^{n-1}(\alpha-\beta-\gamma)+\gamma^{n-1}(\gamma-\alpha-\beta) . \tag{8}
\end{align*}
$$

Proof. We use (7) and (5) to transform the right-hand side of (8) as follows:

$$
\begin{aligned}
& \beta \text { per }\left(Q_{n-1}\right)+\alpha \gamma \operatorname{per}\left(Q_{n-2}\right)+\alpha^{n-1}(\alpha-\beta-\gamma)+\gamma^{n-1}(\gamma-\alpha-\beta) \\
&=\beta f_{n-1}+\beta \alpha \gamma f_{n-3}+\beta \alpha^{n-1}+\beta \gamma^{n-1}+\alpha \gamma f_{n-2}+\alpha^{2} \gamma^{2} f_{n-4}+\alpha^{n-1} \gamma \\
& \quad+\alpha \gamma^{n-1}+\alpha^{n}-\alpha^{n-1} \beta-\alpha^{n-1} \gamma+\gamma^{n}-\alpha \gamma^{n-1}-\beta \gamma^{n-1} \\
&=\left(\beta f_{n-1}+\alpha \gamma f_{n-2}\right)+\alpha \gamma\left(\beta f_{n-3}+\alpha \gamma f_{n-4}\right)+\alpha^{n}+\gamma^{n} \\
&= f_{n}+\alpha \gamma f_{n-2}+\alpha^{n}+\gamma^{n} \\
&=\operatorname{per}\left(Q_{n}\right) .
\end{aligned}
$$

The difference equation (8) can now be solved subject to the conditions

$$
\begin{aligned}
& \operatorname{per}\left(Q_{3}\right)=\alpha^{3}+\beta^{3}+\gamma^{3}+3 \alpha \beta \gamma \\
& \operatorname{per}\left(Q_{4}\right)=\alpha^{4}+\beta^{4}+\gamma^{4}+4 \alpha \beta^{2} \gamma+2 \alpha^{2} \gamma^{2} \\
& \operatorname{per}\left(Q_{5}\right)=\alpha^{5}+\beta^{5}+\gamma^{5}+5 \alpha \beta^{3} \gamma+5 \alpha^{2} \beta \gamma^{2}, \quad \text { etc., }
\end{aligned}
$$

which are computed directly using a Laplace expansion. We obtain the following explicit formula.

480
H. MINC

Theorem 2. If $n \geqq 3$, then

$$
\begin{equation*}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)=r_{1}^{n}+r_{2}^{n}+\alpha^{n}+\gamma^{n} \tag{9}
\end{equation*}
$$

where r_{1} and r_{2} are the roots of $x^{2}-\beta x-\alpha \gamma=0$.
Alternatively, formula (9) can be obtained from (7) and (6) if $\mu \neq 0$, or from (7) and (6') in case $\mu=0$. Thus if $\mu \neq 0$:

$$
\begin{aligned}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)= & f_{n}+\alpha \gamma f_{n-2}+\alpha^{n}+\gamma^{n} \\
= & \frac{1}{\mu} r_{1}^{n+1}-\frac{1}{\mu} r_{2}^{n+1}+\frac{\alpha \gamma}{\mu} r_{1}^{n-1}-\frac{\alpha \gamma}{\mu} r_{2}^{n-1} \\
& +\alpha^{n}+\gamma^{n} \\
= & \frac{1}{\mu}\left(r_{1}^{n+1}-r_{2}^{n+1}-r_{1} r_{2}\left(r_{1}^{n-1}-r_{2}^{n-1}\right)\right)+\alpha^{n}+\gamma^{n} \\
= & \frac{1}{\mu}\left(r_{1}^{n}+r_{2}^{n}\right)\left(r_{1}-r_{2}\right)+\alpha^{n}+\gamma^{n} \\
= & r_{1}^{n}+r_{2}^{n}+\alpha^{n}+\gamma^{n}
\end{aligned}
$$

since $\alpha \gamma=-r_{1} r_{2}$ and $\mu=r_{1}-r_{2}$. The case $\mu=0$ is proved similarly.
Formulas (8) and (9) have been obtained in [2] for the special case $\alpha=\beta=\gamma$.

Theorem 3. If $n \geqq 3$, then

$$
\begin{equation*}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)=\alpha^{n}+\beta^{n}+\gamma^{n}+\sum_{t=1}^{[n / 2]} c_{t}^{(n)} \alpha^{t} \beta^{n-2 t} \gamma^{t} \tag{10}
\end{equation*}
$$

where $c_{t}^{(n)}=2^{-(n-2 t-1)} \sum_{k=t}^{[n / 2]}\binom{n}{2 k}\binom{k}{t}$.
Proof. Let $r_{1}=(\beta+\mu) / 2$ and $r_{2}=(\beta-\mu) / 2$, where $\mu=\sqrt{\beta^{2}+4 \alpha \gamma}$. Then by formula (9),

$$
\begin{aligned}
\operatorname{per} & \left(\alpha I_{n}+\beta P+\gamma P^{2}\right) \\
& =\alpha^{n}+\gamma^{n}+\left(\frac{\beta+\mu}{2}\right)^{n}+\left(\frac{\beta-\mu}{2}\right)^{n} \\
& =\alpha^{n}+\gamma^{n}+2^{-(n-1)} \sum_{k=0}^{[n / 2]}\binom{n}{2 k} \beta^{n-2 l k}\left(\beta^{2}+4 \alpha \gamma\right)^{k} \\
& =\alpha^{n}+\gamma^{n}+2^{-(n-1)} \sum_{k=0}^{[n / 2]}\binom{n}{2 k} \sum_{t=0}^{k}\binom{k}{t} \beta^{n-2 t}(4 \alpha \gamma)^{t} \\
& =\alpha^{n}+\beta^{n}+\gamma^{n}+\sum_{t=1}^{[n / 2]}\left(\sum_{k=t}^{[n ; 2]} 2^{-(n-2 t-1)}\binom{n}{2 k}\binom{k}{t}\right) \alpha^{t} \beta^{n-2 t} \gamma^{t} .
\end{aligned}
$$

The following alternative form of formula (10) can be proved by induction:

$$
\left\{\begin{array}{l}
\quad \operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)=\alpha^{n}+\beta^{n}+\gamma^{n}+\sum_{t=1}^{[n / 2]} c_{t}^{(n)} \alpha^{t} \beta^{n-2 t} \gamma^{t} \tag{11}\\
\text { where } c_{1}^{(n)}=n, c_{n / 2}^{(n)}=2 \text { in case } n \text { is even } \\
\text { and } c_{t}^{(n)}=c_{t}^{(n-1)}+c_{t-1}^{(n-2)}, 1<t<n / 2
\end{array}\right.
$$

The cases $n=3$ and 4 can be easily verified. If $Q_{n}=\alpha I_{n}+\beta P+$ $\gamma P^{2}, n \geqq 5$, then by (8),

$$
\begin{aligned}
\operatorname{per}\left(Q_{n}\right)= & \beta \operatorname{per}\left(Q_{n-1}\right)+\alpha \gamma \operatorname{per}\left(Q_{n-2}\right)+\alpha^{n-1}(\alpha-\beta-\gamma) \\
& +\gamma^{n-1}(\gamma-\alpha-\beta) \\
= & \alpha^{n-1} \beta+\beta^{n}+\beta \gamma^{n-1}+\sum_{t=1}^{[(n-1 / 2]} c_{t}^{(n-1)} \alpha^{t} \beta^{n-2 t} \gamma^{t} \\
& +\alpha^{n-1} \gamma+\alpha \beta^{n-2} \gamma+\alpha \gamma^{n-1}+\sum_{s=1}^{[n / 2]-1} c_{s}^{(n-2)} \alpha^{s+1} \beta^{n-2 s+2} \gamma^{s+1} \\
& +\alpha^{n-1}(\alpha-\beta-\gamma)+\gamma^{n-1}(\gamma-\alpha-\beta) \\
= & \alpha^{n}+\beta^{n}+\gamma^{n}+\alpha \beta^{n-2} \gamma+c_{1}^{(n-1)} \alpha \beta^{n-2} \gamma+\sum_{t=2}^{[(n-1) / 2]} c_{t}^{(n-1)} \alpha^{t} \beta^{n-2 t} \gamma^{t} \\
& +\sum_{t=2}^{[n / 2]} c_{t-1}^{(n-2)} \alpha^{t} \beta^{n-2 t} \gamma^{t} \\
= & \left\{\begin{array}{r}
\alpha^{n}+\beta^{n}+\gamma^{n}+\left(1+c_{1}^{(n-1)}\right) \alpha \beta^{n-2} \gamma+\sum_{t=2}^{[n / 2]}\left(c_{t}^{(n-1)}+c_{t-1}^{(n-2)}\right) \alpha^{t} \beta^{n-2 t} \gamma^{t} \\
\text { if } n \text { is odd } \\
\alpha^{n}+\beta^{n}+\gamma^{n}+\left(1+c_{1}^{(n-1)}\right) \alpha \beta^{n-2} \gamma+\sum_{t=2}^{[n / 2]-1}\left(c_{t}^{(n-1)}+c_{t-1}^{(n-2)}\right) \alpha^{t} \beta^{n-2 t} \gamma^{t} \\
\\
\quad 2 \alpha^{n / 2} \gamma^{n / 2},
\end{array} \quad \text { if } n\right. \text { is even }
\end{aligned}
$$

and formula (11) follows easily.
Formula (11) allows us to construct a table of coefficients $c_{t}^{(n)}$ in the manner of Pascal's triangle.

n	$c_{1}^{(n)}$	$c_{2}^{(n)}$	$c_{3}^{(n)}$	$c_{4}^{(n)}$	$c_{5}^{(n)}$	$c_{6}^{(n)}$
3	3					
4	4	2				
5	5	5				
6	6	9	2			
7	7	14	7			
8	8	20	16	2		
9	9	27	30	9		
10	10	35	50	25	2	
11	11	44	77	55	11	
12	12	54	112	105	36	2

In the remainder of this paper we assume that $\alpha I_{n}+\beta P+\gamma P^{2}$ is doubly stochastic, i.e., that α, β, γ are nonnegative and $\alpha+\beta+\gamma=1$.

Theorem 4. If α, β, γ are nonnegative then

$$
\begin{equation*}
\frac{1}{2^{n}}<\min _{\alpha+\beta+\gamma=1}\left(\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)\right) \leqq \frac{1}{2^{n-1}} \tag{12}
\end{equation*}
$$

Proof. The right inequality in (12) follows immediately from the fact that

$$
\operatorname{per}\left(\frac{1}{2} I_{n}+\frac{1}{2} P\right)=\frac{1}{2^{n-1}} .
$$

We prove the left inequality by showing that

$$
\begin{equation*}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)>\frac{1}{2^{n}} \tag{13}
\end{equation*}
$$

for any nonnegative α, β, γ satisfying $\alpha+\beta+\gamma=1$. If any of α, β, γ exceeds $1 / 2$ then (13) clearly holds, since by (10)

$$
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right) \geqq \alpha^{n}+\beta^{n}+\gamma^{n}
$$

Suppose that

$$
\begin{equation*}
0 \leqq \alpha \leqq \frac{1}{2}, 0 \leqq \beta \leqq \frac{1}{2}, 0 \leqq \gamma \leqq \frac{1}{2}, \alpha+\beta+\gamma=1 \tag{14}
\end{equation*}
$$

We assume, without loss of generality, that $\alpha \geqq \gamma$, and assert that under these conditions

$$
\begin{equation*}
r_{1} \geqq \frac{1}{2} \quad \text { and } \quad\left|r_{2}\right| \leqq \alpha \tag{15}
\end{equation*}
$$

where $r_{1}=(1 / 2)\left(\beta+\sqrt{\beta^{2}+4 \alpha \gamma}\right)$ and $r_{2}=(1 / 2)\left(\beta-\sqrt{\beta^{2}+4 \alpha \gamma}\right)$. We use the method of Lagrange's multipliers to determine the stationary points of the function $r_{1}=r_{1}(\alpha, \beta, \gamma)$. Let

$$
F(\alpha, \beta, \gamma)=\frac{1}{2}\left(\beta+\sqrt{\beta^{2}+4 \alpha \gamma}\right)+\lambda(\alpha+\beta+\gamma-1) .
$$

The necessary conditions for a stationary point are

$$
\begin{aligned}
& \frac{\partial F}{\partial \alpha}=\frac{\gamma}{\mu}+\lambda=0 \\
& \frac{\partial F}{\partial \beta}=\frac{1}{2}\left(1+\frac{\beta}{\mu}\right)+\lambda=\frac{r_{1}}{\mu}+\lambda=0
\end{aligned}
$$

$$
\frac{\partial F}{\partial \gamma}=\frac{\alpha}{\mu}+\lambda=0
$$

Where $\mu=\sqrt{\beta^{2}+4 \alpha \gamma}$, i.e., we must have $\alpha=\gamma=r_{1}$. But then

$$
2 \alpha=\beta+\sqrt{\beta^{2}+4 \alpha^{2}}
$$

i.e.,

$$
4 \alpha^{2}-4 \alpha \beta+\beta^{2}=\beta^{2}+4 \alpha^{2}
$$

which implies that either $\beta=0$ and $\alpha=\gamma=1 / 2$, or $\alpha=\gamma=0$ and $\beta=1$. In any case the function $r_{1}(\alpha, \beta, \gamma)$ has no minimum in the interior of region (14). It is easy to verify that its minimum value on the boundary is $1 / 2$.

We proceed to the second inequality in (15). Suppose that $\left|r_{2}\right|>$ α, i.e., that

$$
\sqrt{\beta^{2}+4 \alpha \gamma}-\beta>2 \alpha,
$$

or

$$
\begin{equation*}
\beta^{2}+4 \alpha \gamma>\beta^{2}+4 \alpha \beta+4 \alpha^{2} \tag{16}
\end{equation*}
$$

Now α cannot be 0 , since $\alpha \geqq \gamma$ and $\beta \leqq 1 / 2$. Hence (16) implies that

$$
\gamma>\alpha+\beta
$$

i.e.,

$$
\gamma>\frac{1}{2},
$$

which contradicts (14). Therefore the inequalities (15) hold. Thus for any α, β, γ satisfying (14) we have

$$
\begin{aligned}
\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right) & =r_{1}^{n}+r_{2}^{n}+\alpha^{n}+\gamma^{n} \\
& \geqq r_{1}^{n}+\gamma^{n}+\left(\alpha^{n}-\left|r_{2}\right|^{n}\right) \\
& >r_{1}^{n} \\
& \geqq \frac{1}{2^{n}} .
\end{aligned}
$$

Theorem 5. If α, β, γ are nonnegative numbers, $n \geqq 5$, then

$$
\begin{equation*}
\min _{\alpha+\beta+\gamma=1}\left(\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)\right)<\operatorname{per}\left(\frac{1}{3} I_{n}+\frac{1}{3} P+\frac{1}{3} P^{2}\right) . \tag{17}
\end{equation*}
$$

In other words, the minimum of the permanent function on the convex hull of $I_{n}, P, P^{2}, n \geqq 5$, is not attained for $\alpha=\beta=\gamma=1 / 3$.

Proof. By Theorem 4,

$$
\min _{\alpha+\beta+\gamma=1}\left(\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right) \leqq \frac{1}{2^{n-1}}\right.
$$

From (9) we compute

$$
\begin{aligned}
\operatorname{per}\left(\frac{1}{3} I_{n}+\frac{1}{3} P+\frac{1}{3} P^{2}\right) & =\left(\frac{1+\sqrt{5}}{6}\right)^{n}+\left(\frac{1-\sqrt{5}}{6}\right)^{n}+\frac{1}{3^{n}}+\frac{1}{3^{n}} \\
& >\left(\frac{1+\sqrt{5}}{6}\right)^{n}+\frac{1}{3^{n}}
\end{aligned}
$$

which is greater than $1 / 2^{n-1}$ for $n \geqq 10$. It can be checked by computation, that (17) holds for $5 \leqq n \leqq 9$ as well.

An explicit formula for $\min _{\alpha+\beta+\gamma=1}\left(\operatorname{per}\left(\alpha I_{n}+\beta P+\gamma P^{2}\right)\right), \alpha, \beta, \gamma \geqq$ 0 , appears to be out of reach. The available numerical data for $n \leqq 18$ seem to indicate that the values of α, β, γ, at which the minimum is attained are the same for $n=2 k-1$ and $n=2 k$, for any k, but that otherwise they vary with n.

References

1. Bruce W. King and Francis D. Parker, A Fibonacci matrix and the permanent function, Fibonacci Quart., 7 (1969), 539-544.
2. Henryk Minc, Permanents of (0, 1)-Circulants, Canad. Math. Bull., 7 (1964), 253-263.
3. N. Metropolis, M. L. Stein and P. R. Stein, Permanents of cyclic (0,1) matrices, J. Combinatorial Theory, 7 (1969), 291-321.

Received February 11, 1971 and in revised form June 16, 1971. This research was supported by the U.S. Air Force Office of Scientific Research under Grant AFOSR 69867.

University of California, Santa Barbara
AND
Technion, Israel Institute of Technology, Haifa

