AN ALGEBRA OF GENERALIZED FUNCTIONS ON AN OPEN INTERVAL: TWO-SIDED OPERATIONAL CALCULUS

Gregers Krabbe

Let (a, b) be any open sub-interval of the real line, such that $-\infty \leqq a<0<b \leqq \infty$. Let $L^{\text {loc }}(a, b)$ be the space of all the functions which are integrable on each interval (a^{\prime}, b^{\prime}) with $a<a^{\prime}<b^{\prime}<b$. There is a one-to-one linear transformation \mathfrak{I} which maps $L^{1 o c}(a, b)$ into a commutative algebra \mathscr{A} of (linear) operators. This transformation \mathcal{I} maps convolution into operator-multiplication; therefore, this transformation \mathfrak{I} is a useful substitute for the two-sided Laplace transformation; it can be used to solve problems that are not solvable by the distributional transformations (Fourier or bi-lateral Laplace).

In essence, the theme of this paper is a commutative algebra \mathscr{A} of generalized functions on the interval (a, b); besides containing the function space $L^{\text {ioc }}(\alpha, b)$, the algebra \mathscr{A} contains every element of the distribution space $\mathscr{D}^{\prime}(a, b)$ which is regular on the interval $(a, 0)$. The algebra \mathscr{A} is the direct sum $\mathscr{A} \oplus \mathscr{A}+$, where \mathscr{A} - (respectively, \mathscr{A}_{+}) $(a, 0)$ (respectively, to the interval $(0, b)$). There is a subspace \mathscr{Y} of \mathscr{A} such that, if $y \in \mathscr{Y}$, then y has an "initial value" $\langle y, 0 \rightarrow\rangle$ and a "derivative" $\partial_{t} y$ (which corresponds to the usual distributional derivative). If y is a function $f()$ which is locally absolutely continuous on (a, b), then y belongs to \mathscr{Y}, the initial value $\langle y, 0 \rightarrow\rangle$ equals $f(0)$, and $\partial_{t} y$ corresponds to the usual derivative $f^{\prime}()$. If y is a distribution (such as the Dirac distribution) whose support is a locally finite subset of the interval (a, b), then both y and $\partial_{t} y$ belong to the subspace \mathscr{Y}. In case $a=-\infty$ and $b=\infty$, the subspace \mathscr{Y} contains the distribution space \mathscr{D}_{+}^{\prime}.

The resulting operational calculus takes into account the behavior of functions to the left of the origin (in case $a=-\infty$ and $b=\infty$, the whole real line is accounted for-whereas Mikusinski's operational calculus only accounts for the positive axis). Since the functions are not subjected to growth restrictions, the transformation \mathfrak{I} is a useful substitute for the two-sided Laplace transformation (no strips of convergence need to be considered: see Examples 2.21 and the four problems 6.3-6.7). Problems such as

$$
\frac{d^{2}}{d t^{2}} y+y=\sec \frac{\pi t}{2 \alpha} \quad(-\alpha<t<\alpha)
$$

can be solved by calculations which duplicate the ones that would arise if the Laplace transformation could be applied to such problems.

The differential equation

$$
\begin{equation*}
\partial_{t}^{2} y+y=\sum_{k=-\infty}^{\infty} \delta(t-2 k \pi) \tag{1}
\end{equation*}
$$

is solved in 6.7 in order to illustrate our operational calculus; the right-hand side of this equation represents a series of unit impulses starting at $t=-\infty$. The differential equation (1) cannot be solved by the distributional Fourier transformation nor by the distributional two-sided Laplace transformation. When $-\infty=a<t<b=\infty$ the equation

$$
y(t)=c_{0} \cos t+c_{1} \sin t+\left(1+\left[\frac{t}{2 \pi}\right]\right) \sin t
$$

defines the general solution of the equation (1).
The paper is subdivided as follows. § 1: the space of generalized functions, §2: two-sided operational calculus, §3: translation properties, $\S 4$: the topological space $\mathscr{A}_{\varpi}, \S 5$: derivative of an operator, §6: four problems.

The concepts introduced in §5 (initial value, derivative, antiderivative of an operator) are more general and more appropriate than the corresponding ones in my textbook [5].
0. Preliminaries. Henceforth, ω is an open sub-interval (ω_{-}, ω_{+}) of the real line \boldsymbol{R}; we suppose that $\omega_{-}<0<\omega_{+}$. If $h()$ is a function on ω, we denote by h_{+}() the function defined by

$$
h_{+}(t)= \begin{cases}0 & \text { for } t<0 \tag{0.1}\\ h(t) & \text { for } t \geqq 0 ;\end{cases}
$$

we set

$$
\begin{equation*}
h_{\mathrm{L}}()=h()-h_{+}() \tag{0.2}
\end{equation*}
$$

As usual, the support of a function $f()$ (denoted $\operatorname{Supp} f$) is the complement of the largest open subset of \boldsymbol{R} on which $f()$ vanishes. Let $e_{t}()$ be the function defined by

$$
e_{t}(u)= \begin{cases}1 & \text { for } 0 \leqq u<t \tag{0.3}\\ -1 & \text { for } t<u<0\end{cases}
$$

and by $e_{t}(u)=0$ for all other values of u. It will be convenient to denote by e_{t} the support of the function $e_{t}()$; thus, e_{t} is the interval with end-points 0 and t :

$$
e_{t}=(t, 0) \cup[0, t]= \begin{cases}{[0, t)} & \text { for } t \geqq 0 \tag{0.4}\\ (t, 0) & \text { for } t<0\end{cases}
$$

Unless otherwise specified, suppose that $f()$ and $g()$ belong to $L^{10 c}(\omega)$ (this is the space of all the complex-valued functions which are Lebesgue integrable on each interval (a, b) with $\omega_{-}<a<0<b<$ ω_{+}). We denote by $f \Lambda g()$ the function defined by

$$
\begin{equation*}
\left.f \Lambda g(t)=\int_{0}^{t} f(t-u) g(u) d u \quad \quad \text { all } t \text { in } \omega\right) \tag{0.5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
f \Lambda g(t)=\int_{e_{t}} f(t-u) e_{t}(u) g(u) d u \tag{0.6}
\end{equation*}
$$

Remark 0.7. Suppose that $\omega_{-} \leqq a \leqq 0 \leqq b<\omega_{\top}$:

$$
\begin{equation*}
\text { if } a<t<b \text { and } u \in e_{t} \text { then }(t-u) \in e_{t} \subset(a, b) . \tag{0.8}
\end{equation*}
$$

This is easily verified.
Remarks 0.9. The following properties are direct consequences of (0.1)-(0.8) :

$$
\begin{equation*}
f \Lambda g(t)=f_{+} \mathbf{\Lambda} g(t)=f_{+} \mathbf{\Lambda} g_{+}(t) \quad(\text { for } t>0) \tag{0.10}
\end{equation*}
$$

and

$$
\begin{equation*}
f \boldsymbol{\Lambda} g(t)=f_{\mathrm{L}} \boldsymbol{\Lambda} g(t)=f_{\mathrm{L}} \boldsymbol{\Lambda} g_{\mathrm{L}}(t) \quad(\text { for } t<0) \tag{0.11}
\end{equation*}
$$

Final Remark 0.12. If $f_{1}()=f()$ and $g_{1}()=g()$ almost-everywhere on ω, then $f_{1} \wedge g_{1}()=f \wedge g()$ almost-everywhere on ω. This is another easy consequence of (0.5)-(0.8).

Lemma 0.13 . If $a \leqq 0 \leqq b$ and if $f()=0$ almost-everywhere on the interval (a, b), then $f \Lambda g()=0$ on (a, b).

Proof. If $t \in(a, b)$ it follows from (0.8) that

$$
u \in e_{t} \quad \text { implies } \quad(t-u) \in e_{t} \subset(a, b) \text {; }
$$

therefore, $(t-u) \in(a, b)$, whence our hypothesis $(f()=0$ almosteverywhere on (a, b)) gives $f(t-u)=0$ for u almost-everywhere on the interval e_{t} : the conclusion $f \Lambda g(t)=0$ now follows directly from (0.6).

Lemma 0.14 . Suppose that $a<0<b$. If $f()=0$ on the interval $\left(\omega_{-}, b\right)$, then

$$
\begin{equation*}
f \Lambda g(t)=\int_{0}^{t-b} f(t-\tau) g(\tau) d \tau \quad\left(\text { for } b<t<\omega_{+}\right) \tag{0.15}
\end{equation*}
$$

If $h() \in L^{100}(\omega)$ and if $h()=0$ on the interval $\left(a, \omega_{+}\right)$, then

$$
\begin{equation*}
h \Lambda g(t)=-\int_{t-a}^{0} h(t-\tau) g(\tau) d \tau \quad\left(\text { for } \quad \omega_{-}<t<a\right) \tag{0.16}
\end{equation*}
$$

Proof. First, the case $b<t<\omega_{+}$. From (0.5) we have

$$
\begin{equation*}
f \Lambda g(t)=\int_{0}^{t-b} f(t-\tau) g(\tau) d \tau+\int_{t-b}^{t} f(t-u) g(u) d u \tag{1}
\end{equation*}
$$

From (0.8) we see that

$$
u \in[0, t) \quad \text { implies } \quad(t-u) \in e_{t} \subset \omega,
$$

so that $(t-u) \in \omega$. If $u>t-b$, then $b>t-u$, whence $(t-u) \in$ $\left(\omega_{-}, b\right)$; consequently, our hypothesis $\left(f()=0\right.$ on ($\left.\omega_{-}, b\right)$) gives $f(t-$ $u)=0$ whenever $u>t-b$: Conclusion (0.15) is now immediate from (1).

Next, the case $\omega_{-}<t<\alpha$. From (0.5) we have

$$
\begin{equation*}
h \Lambda g(t)=-\int_{t}^{t-a} h(t-u) g(u) d u-\int_{t-a}^{0} h(t-\tau) g(\tau) d \tau \tag{2}
\end{equation*}
$$

From (0.8) we again see that

$$
u \in(t, 0) \quad \text { implies } \quad(t-u) \in e_{t} \subset \omega,
$$

so that $(t-u) \in \omega$. If $u<t-a$ then $t-u>a$, whence $(t-u) \in$ $\left(a, \omega_{+}\right)$; consequently, our hypothesis $\left(h()=0\right.$ on $\left.\left(a, \omega_{+}\right)\right)$gives $h(t-u)=0$ whenever $u<t-a$: Conclusion (0.16) is now immediate from (2).
0.17. Convolution. If $F()$ and $G()$ belong to $L^{1}(\boldsymbol{R})$, then $F * G()$ is the function defined by

$$
F * G(x)=\int_{\mathbf{R}} F(x-u) G(u) d u \quad \text { (all } x \text { in } \boldsymbol{R} \text {) ; }
$$

it is well-known that $F * G() \in L^{1}(\boldsymbol{R})$ (see [1], p. 634). Further,

$$
\begin{equation*}
\operatorname{Supp} F * G \subset(\operatorname{Supp} F)+(\operatorname{Supp} G): \tag{0.18}
\end{equation*}
$$

see p. 385 in [2].
Theorem 0.19. If $f()$ and $g()$ belong to $L^{\text {loc }}(\omega)$, then $f \Lambda g()$ belongs to $L^{10 \mathrm{c}}(\omega)$, and

$$
\begin{equation*}
f \Lambda g()=g \Lambda f() \quad \text { almost-everywhere on } \omega . \tag{0.20}
\end{equation*}
$$

Proof. Suppose that $\omega_{-}<a<0<b<\omega_{+}$. If $h() \in L^{10 c}(\omega)$, we can define the function $h_{b}()$ by

$$
h_{b}(t)= \begin{cases}h(t) & \text { for } 0<t<b \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Similarly, $h_{a}()$ is defined by

$$
h_{a}(t)= \begin{cases}h(t) & \text { for } a<t<0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Note that both $h_{b}()$ and $h_{a}()$ belong to $L^{1}(\boldsymbol{R})$. Set

$$
\begin{equation*}
F()=-f_{a} * g_{a}()+f_{b} * g_{b}() \tag{3}
\end{equation*}
$$

The four functions on the right-hand side of (3) are all integrable on \boldsymbol{R}; consequently, both $f_{a} * g_{a}()$ and $f_{b} * g_{b}()$ are integrable on \boldsymbol{R}; from (3) it now follows that $F()$ is integrable on \boldsymbol{R}. In consequence, if we can prove that

$$
\begin{equation*}
F(t)=f \Lambda g(t) \quad \text { for } a<t \neq 0<b \tag{4}
\end{equation*}
$$

then $f \Lambda g()$ is integrable on the arbitrary sub-interval (a, b) of the interval ω; our conclusion $f \Lambda g \in L^{10 \mathrm{c}}(\omega)$ is at hand; moreover, Conclusion (0.20) comes from (4)-(3) and the property $F_{1} * F_{2}()=$ $F_{2} * F_{1}($) (see [1], p. 635). Accordingly, the proof will be accomplished by proving (4).

The proof of (4) is divided into two cases. First case : $a<t<0$. Since $\operatorname{Supp} f_{b}$ and $\operatorname{Supp} g_{b}$ are subsets of the interval $[0, \infty)$, we see from (0.18) that

$$
\operatorname{Supp} f_{b} * g_{b} \subset[0, \infty) ;
$$

consequently, $f_{b} * g_{b}()$ vanishes for $t<0$; therefore, (3) gives

$$
\begin{equation*}
F(t)=-f_{a} * g_{a}(t)=-\int_{a}^{0} f_{a}(t-u) g(u) d u \tag{5}
\end{equation*}
$$

(for $a<t<0$); the second equation comes from (2) and the fact that $g_{a}(u)=0$ when $u<a$ and when $u>0$. From (5) it follows that

$$
F(t)=-\int_{a}^{t} f_{a}(t-u) g(u) d u-\int_{t}^{0} f_{a}(t-\tau) g(\tau) d \tau
$$

but $a<u<t$ implies $t-u>0$, so that $f_{a}(t-u)=0$; therefore,

$$
\begin{equation*}
F(t)=-\int_{t}^{0} f_{a}(t-\tau) g(\tau) d \tau \tag{6}
\end{equation*}
$$

but $0>\tau>t$ implies $t<t-\tau<0$; in consequence, since $a<t$, we
have $a<t-\tau<0$, so that (2) gives $f_{a}(t-\tau)=f(t-\tau)$: Equation (6) becomes

$$
F(t)=\int_{e_{t}} f(t-u) e_{t}(u) g(u) d u
$$

In view of (0.6), this concludes the proof of (4) in case $a<t<0$.
Second case. $0<t<b$. As in the first case, we observe that $f_{a} * g_{a}(t)=0$; it is a question of proving that $F(t)=f_{b} * g_{b}(t)$: the reasoning is entirely analogous to the one used in the first case.

Theorem 0.21. Suppose that the functions $f(), g()$, and $h()$ all belong to $L^{\text {loc }}(\omega)$. If the function $|f| \Lambda(|g| \Lambda|h|)()$ is continuous on ω then

$$
\begin{equation*}
f \boldsymbol{\Lambda}(g \boldsymbol{\Lambda})(x)=(f \boldsymbol{\Lambda} g) \boldsymbol{\Lambda}(x) \quad \text { for every } x \text { in } \omega . \tag{0.22}
\end{equation*}
$$

Proof. From (0.6) it follows that

$$
\begin{equation*}
F \Lambda(G \Lambda H)(x)=\int_{e_{x}} \int_{e_{t}} F(x-t) G(t-u) H(u) d u d t \tag{1}
\end{equation*}
$$

Since $|f| \boldsymbol{\Lambda}(|g| \Lambda|h|)()$ is continuous on ω (by hypothesis), we therefore have $|f| \Lambda(|g| \Lambda|h|)(x)<\infty$, so that (1) gives

$$
\int_{e_{x}} \int_{e_{t}}|f(x-t) g(t-u) h(u)| d u d t<\infty ;
$$

we may therefore apply Tonelli's Theorem [3, p. 131] to write

$$
\begin{equation*}
f \Lambda(g \Lambda h)(x)=\int_{e_{x}} \int_{x_{u}} f(x-t) g(t-u) h(u) d t d u \tag{2}
\end{equation*}
$$

where x_{u} is the appropriate interval. Let us prove that

$$
\begin{equation*}
f \Lambda(g \Lambda h)(x)=\int_{0}^{x} h(u) \int_{u}^{x} f(x-t) g(t-u) d t d u \tag{3}
\end{equation*}
$$

In case $x>0$ the double integral is taken over the interior of the triangle

$$
\{(u, t): 0<t<x \text { and } 0<u<t\} ;
$$

consequently, the range of t (in the integral (2)) is the interval $x_{u}=$ [u, x] : this establishes (3). In case $x<0$ the double integral is taken over the triangle

$$
\{(u, t): x<t<0 \text { and } t<u<0\} ;
$$

[^0]consequently, the range of t (in the integral (2)) is the interval $x_{u}=$ [x, u] ; the integral (2) becomes
$$
f \Lambda(g \Lambda h)(x)=\int_{x}^{0} \int_{x}^{u} f(x-t) g(t-u) h(u) d t d u
$$
which again establishes the equation (3). The change of variable $\tau=t-u$ brings (3) into the form
$$
f \Lambda(g \Lambda h)(x)=\int_{0}^{x} h(u) \int_{0}^{x-u} f(x-u-\tau) g(\tau) d \tau d u
$$
consequently, (0.5) gives
$$
f \Lambda(g \Lambda h)(x)=\int_{0}^{x} h(u)[f \Lambda g(x-u)] d u:
$$

Conclusion (0.22) is now immediate from (0.5).
Definition 0.23. For any integer $n \geqq 1$ we denote by $q_{n}()$ the function defined by the equation $q_{n}(0)=0$ and

$$
q_{n}(t)=\exp \left(\frac{-1}{|n t|}\right) \quad(\text { for } t \neq 0)
$$

Theorem 0.24. Suppose that $f()$ belongs to $L^{1 o c}(\omega)$. If $\omega_{-} \leqq$ $a \leqq 0 \leqq b \leqq \omega_{+}$and if
(4) $f \Lambda q_{n}(t)=0$ for $a<t<b$ and every integer $n \geqq 1$, then $f()$ vanishes almost-everywhere on the interval (a, b).

Proof. From (4) and (0.20) it follows that

$$
0=\lim _{n \rightarrow \infty} q_{n} \Lambda f(t)=\lim _{n \rightarrow \infty} \int_{e_{t}} q_{n}(t-u) e_{t}(u) f(u) d u
$$

since $\left|q_{n}()\right| \leqq 1$ we may apply the Lebesgue Dominated Convergence Theorem :

$$
\begin{equation*}
0=\int_{e_{t}} \lim _{n \rightarrow \infty}\left[\exp \frac{-1}{n(t-u)}\right] e_{t}(u) f(u) d u=\int_{e_{t}} e_{t}(u) f(u) d u \tag{5}
\end{equation*}
$$

From (5) and (0.3)-(0.4) we see that

$$
0=\int_{0}^{t} f \text { for } 0<t<b, \text { and } 0=-\int_{t}^{0} f \text { for } a<t<0
$$

which implies our conclusion: $f()$ vanishes almost-everywhere on the interval (a, b).

1. The space \mathscr{A}_{ω} of generalized functions. As before, ω is an arbitrary sub-interval of $\boldsymbol{R}=(-\infty, \infty)$ such that $\omega \ni 0$. If $f()$ and $g()$ are functions, the equation $f()=g()$ will mean that the functions are equal almost-everywhere on the interval ω.

Notation 1.0. Let $\mathscr{C}_{0}(\omega)$ be the space of all the functions which are continuous on ω and which vanish at the origin.

Notation 1.1. We denote by 1() the constant function defined by $1(t)=1$ for all t in \boldsymbol{R}.

Lemma 1.2. If $g() \in L^{\text {10c }}(\omega)$ then $1 \Lambda g() \in \mathscr{C}_{0}(\omega)$.
Proof. From (0.5) we see that

$$
\begin{equation*}
1 \Lambda g(t)=\int_{0}^{t} 1(t-u) g(u) d u=\int_{0}^{t} g(u) d u \tag{1.3}
\end{equation*}
$$

On the other hand, $g() \in L^{1}(a, b)$ whenever (a, b) is a compact subinterval of the open set ω : the conclusion is now at hand.

Lemma 1.4. If $\Psi()$ is continuous on ω, then $(1 \wedge \Psi)^{\prime}=\Psi()$.
Proof. The equations

$$
(1 \Lambda \Psi)^{\prime}(t)=\frac{d}{d t}(1 \Lambda \Psi)(t)=\Psi(t)
$$

are immediate from (1.3) and the Fundamental Theorem of Calculus.

Lemma 1.5. Suppose that $v() \in \mathscr{C}_{0}(\omega)$. If $v^{\prime}()$ has only countably many discontinuities and is integrable in each compact sub-interval of the open interval ω, then $v()=1 \Lambda v^{\prime}()$.

Proof. Take t in ω. If $t>0$ the equations

$$
v(t)=v(t)-v(0)=\int_{0}^{t} v^{\prime}(u) d u=1 \Lambda v(t)
$$

are from $v(0)=0,[4, \mathrm{p} .143]$, and (1.3). If $t<0$, the same reasoning yields

$$
v(t)=-[v(0)-v(t)]=-\int_{t}^{0} v^{\prime}(u) d u=1 \Lambda v(t)
$$

Theorem 1.6. Let $G()$ be a function whose derivative is continuous on the interval ω. If $f() \in L^{10 \mathrm{c}}(\omega)$, then $G \Lambda f() \in \mathscr{C}_{0}(\omega)$ and

$$
\begin{equation*}
G \wedge f()=G(0)(1 \wedge f)()+1 \wedge\left(G^{\prime} \wedge f\right)() \tag{1.7}
\end{equation*}
$$

Proof. Clearly, the function $v()=G()-G(0) 1()$ belongs to $\mathscr{C}_{0}(\omega)$; consequently, 1.5 gives

$$
G()-G(0) 1()=1 \wedge G^{\prime}(),
$$

so that 0.12 implies

$$
\begin{equation*}
G \wedge f()-G(0)(1 \wedge f)()=\left(1 \wedge G^{\prime}\right) \wedge f() . \tag{1}
\end{equation*}
$$

From 0.19 it follows that $\left(\left|G^{\prime}\right| \Lambda|f|\right)() \in L^{10 \mathrm{c}}(\omega)$; we can therefore conclude from 1.2 that the function $|1| \Lambda\left(\left|G^{\prime}\right| \Lambda|f|\right)()$ is continuous on ω, whence the equation

$$
\begin{equation*}
\left(1 \wedge G^{\prime}\right) \wedge f()=1 \wedge\left(G^{\prime} \wedge f\right)() \tag{2}
\end{equation*}
$$

now comes from 0.21 . Conclusion (1.7) is immediate from (1)-(2). It still remains to prove that $G \wedge f() \in \mathscr{C}_{0}(\omega)$.

Set $g_{1}()=G^{\prime} \wedge f()$; Equation (1.7) becomes

$$
\begin{equation*}
G \wedge f()=G(0)(1 \wedge f)()+1 \wedge g_{1}() . \tag{3}
\end{equation*}
$$

From 0.19 we see that $g_{1}() \in L^{100}(\omega)$; the conclusion $G \Lambda f() \in \mathscr{C}_{0}(\omega)$ is obtained from (3) by setting $g=f$ and then $g=g_{1}$ in 1.2.
1.8. The space of test-functions. Let W_{ω} be the linear space of all the complex-valued functions which are infinitely differentiable on ω and whose every derivative vanishes at the origin. Thus, $w() \in$ W_{ω} if $w() \in \mathscr{C}_{0}(\omega)$ and $w^{(k)} \in \mathscr{C}_{0}(\omega)$ for every integer $k \geqq 1$.

Example 1.9. Let $q_{n}()$ be the function defined in 0.23 ; it is easily verified that $q_{n}^{(k)}(0)=0$ for every integer $k \geqq 1$; therefore, $q_{n}() \in W_{\omega}$.

Lemma 1.10. If $f() \in L^{\text {loc }}(\omega)$ and $q() \in W_{\omega}$ then

$$
\begin{equation*}
q \wedge f() \in \mathscr{C}_{0}(\omega) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
(q \boldsymbol{\Lambda} f)^{\prime}()=q^{\prime} \boldsymbol{\Lambda} f() \tag{1.12}
\end{equation*}
$$

Proof. Since $q^{\prime}() \in \mathscr{C}_{0}(\omega)$, we can set $G=q$ in 1.6 to obtain (1.11) and the equations
(4) $\quad q \wedge f()=q(0)(1 \wedge f)()+1 \Lambda\left(q^{\prime} \Lambda f\right)()=1 \Lambda\left(q^{\prime} \Lambda f\right)()$
now come from (1.7) and $q(0)=0$ (since $\left.q() \in \mathscr{C}_{0}(\omega)\right)$. Next, set

$$
\begin{equation*}
\Psi()=q^{\prime} \wedge f(): \tag{5}
\end{equation*}
$$

Equation (4) becomes

$$
\begin{equation*}
q \Lambda f()=1 \Lambda \Psi() \tag{6}
\end{equation*}
$$

Setting $G=q^{\prime}$ in 1.6, we see from (5) that $\Psi() \in \mathscr{C}_{0}(\omega)$; the equations

$$
\begin{equation*}
(1 \Lambda \Psi)^{\prime}()=\Psi()=q^{\prime} \Lambda f() \tag{7}
\end{equation*}
$$

therefore follow from 1.4 and (5). Conclusion (1.12) is immediate from (6)-(7).

Lemma 1.13. If $f() \in L^{10 c}(\omega)$ and $w() \in W_{\omega}$, then $w \Lambda f() \in W_{\omega}$, and

$$
\begin{equation*}
(f \boldsymbol{\Lambda} w)^{\prime}()=w^{\prime} \boldsymbol{\Lambda} f()=f \boldsymbol{\Lambda} w^{\prime}() \tag{1.14}
\end{equation*}
$$

Proof. If the equation

$$
\begin{equation*}
(w \Lambda f)^{(k)}()=w^{(k)} \Lambda f() \tag{8}
\end{equation*}
$$

holds for $k=n$, then it holds for $k=n+1$: this is easily seen by observing that the equations

$$
\left[(w \boldsymbol{\Lambda} f)^{(n)}\right]^{\prime}()=\left(w^{(n)} \boldsymbol{\Lambda} f\right)^{\prime}()=w^{(n-1)} \boldsymbol{\Lambda} f()
$$

come from (8) and (1.12). Since (8) holds for $k=0$, it holds for any integer $k \geqq 0$. From (8) and (1.11) (with $q=w^{(k)}$) it follows that

$$
(w \wedge f)^{(k)}() \in \mathscr{C}_{0}(\omega) \quad \text { for any integer } k \geqq 0
$$

therefore, $w \wedge f() \in W_{\omega}$. Conclusion (1.14) comes from (1.12) and (0.20).

Definitions 1.15. An operator is a linear mapping of W_{ω} into W_{ω}. If A is an operator and $w() \in W_{\omega}$, we denote by.$A w()$ the function that the operator A assigns to $w()$.

As usual, the product $A_{1} A_{2}$ of two operators is defined by

$$
\begin{equation*}
. A_{1} A_{2} w()=. A_{1}\left(\cdot A_{2} w\right)() \quad\left(\text { every } w() \text { in } W_{\omega}\right) \tag{1.16}
\end{equation*}
$$

1.17. The space of generalized functions. Let \mathscr{A}_{0} be the set of all the operators A such that the equation

$$
\begin{equation*}
. A\left(w_{1} \boldsymbol{\Lambda} w_{2}\right)()=\left(. A w_{1}\right) \boldsymbol{\Lambda} w_{2}() \tag{1.18}
\end{equation*}
$$

holds whenever $w_{1}()$ and $w_{2}()$ belong to W_{ω}.

Definition 1.19. If $f() \in L^{10 c}(\omega)$ we denote by f^{*} the operator which assigns to each $w()$ in W_{ω} the function $f \boldsymbol{\Lambda} w()$:

$$
\begin{equation*}
f^{*} w()=f \Lambda w() \quad\left(\text { for each } w() \text { in } W_{\omega}\right) \tag{1.20}
\end{equation*}
$$

Theorem 1.21. If $f_{1}()$ and $f_{2}()$ belong to $L^{10 \mathrm{c}}(\omega)$, then

$$
\begin{equation*}
f_{1}^{*} f_{2}^{*}=\left(f_{1} \Lambda f_{2}\right)^{*} . \tag{1.22}
\end{equation*}
$$

Proof. Take any $w_{2}()$ in W_{ω}. From 1.13 and (0.20) we see that $\left|f_{2}\right| \Lambda\left|w_{2}\right|() \in W_{\omega} ;$ consequently, we can set $w=\left|f_{2}\right| \Lambda\left|w_{2}\right|$ and $f=\left|f_{1}\right|$ in 1.13 to obtain

$$
\left|f_{1}\right| \boldsymbol{\Lambda}\left(\left|f_{2}\right| \boldsymbol{\Lambda}\left|w_{2}\right|\right)() \in W_{\omega}:
$$

from 0.21 it therefore follows that

$$
\begin{equation*}
f_{1} \boldsymbol{\Lambda}\left(f_{2} \boldsymbol{\Lambda} w_{2}\right)()=\left(f_{1} \boldsymbol{\Lambda} f_{2}\right) \boldsymbol{\Lambda} w_{2}() \tag{1.23}
\end{equation*}
$$

which, in view of 1.19 , means that

$$
\cdot f_{1}^{*}\left(\cdot f_{2}^{*} w_{2}\right)()=\cdot\left(f_{1} \wedge f_{2}\right)^{*} w_{2}() .
$$

Since $w_{2}()$ is an arbitrary element of W_{ω}, Conclusion (1.22) is immediate from (1.16).

Remark 1.24. If $f() \in L^{\text {1oc }}(\omega)$ then $f^{*} \in \mathscr{A}_{\omega}$. Indeed, f^{*} is an operator (by (1.20), (0.20), and 1.13): it only remains to prove that the equation (1.18) holds for $A=f^{*}$. Setting $f_{1}=f$ and $f_{2}=w_{1}$ in (1.23), we obtain

$$
f \boldsymbol{\Lambda}\left(w_{1} \boldsymbol{\Lambda} w_{2}\right)()=\left(f \boldsymbol{\Lambda} w_{1}\right) \boldsymbol{\Lambda} w_{2}() ;
$$

in view of (1.20), this becomes

$$
\cdot f^{*}\left(w_{1} \boldsymbol{\Lambda} w_{2}\right)()=\left(. f^{*} w_{1}\right) \wedge w_{2}():
$$

therefore, (1.18) holds when $A=f^{*}$.
Definitions 1.25. We denote by D the differentiation operator:

$$
\begin{equation*}
. D w()=w^{\prime}() \quad\left(\text { all } w() \text { in } W_{\omega}\right) \tag{1.26}
\end{equation*}
$$

Let I be the identity-operator:
$. I w()=w()$
(all $w\left(\right.$) in $\left.W_{\omega}\right)$.

If $f() \in L^{1 o c}(\omega)$, we denote by $\{f(t)\}$ the operator defined by

$$
\begin{equation*}
\cdot\{f(t)\} w()=f \Lambda w^{\prime}() \quad\left(\text { all } w() \text { in } W_{\omega}\right) \tag{1.28}
\end{equation*}
$$

the operator $\{f(t)\}$ will be called the operator of the function $f()$.

Remark 1.29. $\{1(t)\}=I$. Indeed, the equations

$$
.\{1(t)\} w()=1 \Lambda w^{\prime}()=w()
$$

are from (1.28) and 1.5.

Remark 1.30. $D \in \mathscr{A}_{\omega}$. Indeed, D is clearly an operator, and the equations

$$
. D\left(w_{1} \boldsymbol{\Lambda} w_{2}\right)()=\left(w_{1} \boldsymbol{\Lambda} w_{2}\right)^{\prime}()=w_{1}^{\prime} \boldsymbol{\Lambda} w_{2}()=\left(. D w_{1}\right) \boldsymbol{\Lambda} w_{2}()
$$

are from (1.26), (1.14), and (1.26).

DEFINITION 1.31. Let (a, b) be a sub-interval of ω such that $a \leqq 0 \leqq b$; if $A \in \mathscr{A}_{\omega}$ and $B \in \mathscr{A}_{\omega}$, we say that A agrees with B on (a, b) if

$$
. A w(t)=. B w(t) \text { for } a<t<b \text { and for every } w() \text { in } W_{\omega} .
$$

Theorem 1.32. Suppose that $f_{k}() \in L^{\text {1oc }}(\omega)$ for $k=1$, 2. If $\left\{f_{1}(t)\right\}$ agrees with $\left\{f_{2}(t)\right\}$ on (a,b\}, then $f_{1}()=f_{2}()$ almost-everywhere on the interval (a, b). Conversely, if the functions are equal almost-everywhere on (a, b), then their operators agree on (a, b).

Proof. Set $h()=f_{1}()-f_{2}()$. By hypothesis, the relation

$$
\begin{equation*}
.\{h(t)\} w(t)=0 \quad(\text { for } a<t<b) \tag{1}
\end{equation*}
$$

holds for every $w()$ in W_{ω} : it will suffice to show that $h()=0$ almost-everywhere on (a, b). Take any integer $n \geqq 1$, and let $q_{n}()$ be the function that was defined in 0.23 ; since $q_{n}() \in W_{\omega}$ (see 1.9), it follows from 1.13 (with $f=1$) that $q_{n} \Lambda 1() \in W_{\omega}$; in view of (0.20) we may therefore set $w()=1 \Lambda q_{n}()$ in (1) to obtain

$$
\begin{equation*}
.\{h(t)\}\left(1 \wedge q_{n}\right)(t)=0 \quad(\text { for } a<t<b) \tag{2}
\end{equation*}
$$

The equations

$$
\begin{equation*}
.\{h(t)\}\left(1 \wedge q_{n}\right)()=h \mathbf{\Lambda}\left(1 \boldsymbol{\Lambda} q_{n}\right)^{\prime}()=h \Lambda q_{n}() \tag{3}
\end{equation*}
$$

are from (1.28) and 1.4. Combining (2) and (3), we see that $h \boldsymbol{\Lambda}$ $q_{n}(t)=0$ for $a<t<b$ and for every integer $n \geqq 1$; the conclusion $h()=0$ (almost-everywhere on (a, b)) now comes from 0.24.

Conversely, suppose that $f_{1}()=f_{2}()$ almost-everywhere; this means that $h()=0$ almost-everywhere on (a, b); we may therefore apply 0.13 to conclude that

$$
h \Lambda w^{\prime}()=0 \quad \text { for } a<t<b \text { and every } w() \text { in } W_{\omega} ;
$$

consequently, (1.28) gives . $\{h(t)\} w(t)=0$, so that

$$
\cdot\left\{f_{1}(t)\right\} w(t)=.\left\{f_{2}(t)\right\} w(t) \quad \text { for } a<t<b \text { and } w() \in W_{\omega}:
$$

this proves that $\left\{f_{1}(t)\right\}$ agrees with $\left\{f_{2}(t)\right\}$ on (a, b).
Corollary 1.33. Suppose that $f_{1}()$ and $f_{2}()$ belong to $L^{\text {1oc }}(\omega)$:

$$
f_{1}()=f_{2}() \text { if (and only if) }\left\{f_{1}(t)\right\}=\left\{f_{2}(t)\right\}
$$

Proof. Set $a=\omega_{-}$and $b=\omega_{+}$in 1.32: by definition, two operators are equal if they agree on (a, b); moreover, we agree that the equation $f_{1}()=f_{2}()$ means that these functions are equal almosteverywhere on (a, b). The conclusion is now immediate from 1.32.

THEOREM 1.34. The mapping $f() \mapsto\{f(t)\}$ is an injective linear transformation of $L^{10 c}(\omega)$ into \mathscr{A}_{ω} such that

$$
\begin{equation*}
\{f(t)\}=f^{*} D \tag{1.35}
\end{equation*}
$$

Proof. The equation (1.35) is immediate from (1.28), (1.16), and (1.26). On the other hand, it is easily verified that \mathscr{A}_{ω} is an algebra (if $A_{k} \in \mathscr{A}_{\omega}$ for $k=1,2$, then $A_{1} A_{2} \in \mathscr{A}_{\omega}$) : since $f^{*} \in \mathscr{A}_{\omega}$ (by 1.24), and since $D \in \mathscr{A}_{\omega}$ (by 1.30), the conclusion $\{f(t)\} \in \mathscr{A}_{\omega}$ comes from (1.35). From 1.33 we may now conclude that $f() \mapsto\{f(t)\}$ is an injective transformation of $L^{10 c}(\omega)$ into $\mathscr{A}_{\omega}:$ the linearity is clear from (1.28).

Lemma 1.36. If $B \in \mathscr{A}_{\omega}$ then the equation

$$
\begin{equation*}
\cdot B\left(p_{1} \wedge p_{2}\right)()=p_{1} \Lambda\left(. B p_{2}\right)() \tag{1.37}
\end{equation*}
$$

holds for every $p_{1}()$ and $p_{2}()$ in W_{ω}.

Proof. The equations

$$
\cdot B\left(p_{1} \wedge p_{2}\right)()=. B\left(p_{2} \wedge p_{1}\right)()=\left(. B p_{2}\right) \wedge p_{1}()
$$

are from (0.20), (0.12), and (1.18) ; conclusion (1.37) is now immediate from (0.20).

Theorem 1.38. \mathscr{A}_{ω} is a commutative algebra.
Proof. The multiplication of the algebra \mathscr{A}_{ω} is the usual oper-ator-multiplication (defined in (1.16)); it is easily verified that \mathscr{A}_{ω} is
an algebra. Take A_{1} and A_{2} in \mathscr{A}_{ω}; to prove the commutativity, it will suffice to demonstrate that $A_{1} A_{2}-A_{2} A_{1}=0$. Let $q_{1}()$ and $q_{2}()$ be any two elements of W_{ω}; we begin by observing that
(1) $\quad . A_{1} A_{2}\left(q_{1} \wedge q_{2}^{\prime}\right)()=. A_{1}\left[\left(\cdot A_{2} q_{1}\right) \wedge q_{2}^{\prime}\right]()=\left(. A_{2} q_{1}\right) \wedge\left(. A_{1} q_{2}^{\prime}\right)():$
these equations are from (1.16), (1.18), and (1.37) (with $p_{1}=. A_{2} q_{1}^{\prime}$ and $p_{2}=q_{2}^{\prime}$). On the other hand, the equations

$$
\begin{equation*}
. A_{2} A_{1}\left(q_{1} \Lambda q_{2}^{\prime}\right)()=. A_{2}\left(q_{1} \Lambda\left(. A_{1} q_{2}^{\prime}\right)\right)=\left(. A_{2} q_{1}\right) \wedge\left(. A_{1} q_{2}^{\prime}\right)() \tag{2}
\end{equation*}
$$

are from (1.16), (1.37), and (1.18). We now subtract (2) from (1) to obtain

$$
\begin{equation*}
. A\left(q_{1} \Lambda q_{2}^{\prime}\right)()=0, \text { where } A=A_{1} A_{2}-A_{2} A_{1} \tag{3}
\end{equation*}
$$

From (3) and (1.18) it results that

$$
0=\left(. A q_{1}\right) \wedge q_{2}^{\prime}()=\left\{\cdot A q_{1}(t)\right\} q_{2}() \quad\left(\text { all } q_{2}() \text { in } W_{\omega}\right) ;
$$

the last equation is from (1.28). Consequently, $0=\left\{\cdot A q_{1}(t)\right\}$; we may now infer from 1.33 that $0=. A q_{1}()$ for each $q_{1}()$ in W_{ω} : the desired conclusion $A=0$ is at hand.

Theorem 1.39. If $A \in \mathscr{A}_{\omega}$ and $w() \in W_{\omega}$, then $\{. A w(t)\}=A\{w(t)\}$.
Proof. Let $w_{2}()$ be an arbitrary element of W_{ω}; the equations

$$
\begin{equation*}
.\{\cdot A w(t)\} w_{2}()=(. A w) \wedge w_{2}^{\prime}()=. A\left(w \wedge w_{2}^{\prime}\right)() \tag{4}
\end{equation*}
$$

are from (1.28) and (1.18). On the other hand, the equations

$$
\begin{equation*}
. A\{w(t)\} w_{2}()=. A\left(\cdot\{w(t)\} w_{2}\right)()=. A\left(w \wedge w_{2}^{\prime}\right)() \tag{5}
\end{equation*}
$$

come from (1.16) and (1.28). Comparing (4) and (5) :

$$
\begin{equation*}
\cdot\{\cdot A w(t)\} w_{2}()=\cdot(A\{w(t)\}) w_{2}() . \tag{6}
\end{equation*}
$$

Since (6) holds for every $w_{2}()$ in W_{ω}, the proof is complete.
Theorem 1.40. If $f_{1}()$ and $f_{2}()$ both belong to $L^{10 c}(\omega)$, then

$$
\begin{equation*}
D\left\{f_{1} \boldsymbol{\Lambda} f_{2}(t)\right\}=\left\{f_{1}(t)\right\}\left\{f_{2}(t)\right\} . \tag{7}
\end{equation*}
$$

Proof. The equations

$$
\begin{equation*}
D\left\{f_{1} \wedge f_{2}(t)\right\}=D\left(f_{1} \wedge f_{2}\right)^{*} D=D f_{1}^{*} f_{2}^{*} D=\left(f_{1}^{*} D\right)\left(f_{2}^{*} D\right) \tag{8}
\end{equation*}
$$

are obtained by using (1.35) (with $f=f_{1} \Lambda f_{2}$), by using (1.22), and by utilizing the commutativity and the associativity of the multiplication in \mathscr{A}_{ω}. Conclusion (7) comes directly from (8) and two more
applications of 1.35 .
2. Two-sided operational calculus. If c is a scalar (that is, a complex number), the equation $\{c 1(t)\}=c I$ comes from 1.29 and the linearity of the transformation $f() \mapsto\{f(t)\}$; consequently, $c I \in \mathscr{A}_{\omega}$ (recall that I is the identity: (1.27)). Since the correspondence $c \mapsto c I$ is an algebraic isomorphism of the field of scalars into the algebra \mathscr{A}_{ω}, there is no reason to distinguish between the scalar c and the operator $c I$:

$$
\begin{equation*}
c=c I=\{c 1(t)\} \quad \text { for any scalar } c . \tag{2.0}
\end{equation*}
$$

Since $c t^{n} 1(t)=c t^{n}$ for all t in \boldsymbol{R}, it is natural to write $\left\{c t^{n}\right\}$ instead of $\left\{c t^{n} 1(t)\right\}$; in particular,

$$
\begin{equation*}
c=c I=\{c\} \text { and } 1=I=\{1\} \tag{2.1}
\end{equation*}
$$

Substituting $f_{1}=1$ into 1.40 :

$$
\begin{equation*}
D\left\{1 \wedge f_{2}(t)\right\}=\left\{f_{2}(t)\right\} \tag{2.2}
\end{equation*}
$$

We can also combine the linearity property with (2.1) to obtain

$$
\begin{equation*}
\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)+c_{3}\right\}=c_{1}\left\{f_{1}(t)\right\}+c_{2}\left\{f_{2}(t)\right\}+c_{3} \tag{2.3}
\end{equation*}
$$

of course, we suppose throughout that $c_{k}(k=1,2,3)$ are scalars, and $f_{k}()(k=1,2)$ belong to $L^{\text {1oc }}(\omega)$.

Theorem 2.4. Suppose that $f()$ is a function which is continuous on the interval ω. If $f^{\prime}()$ has at most countably-many discontinuities and is integrable in each compact sub-interval of ω, then

$$
\begin{equation*}
\left\{f^{\prime}(t)\right\}=D\{f(t)\}-f(0) D \tag{2.5}
\end{equation*}
$$

Proof. If $v()=f()-f(0) 1$, then $v^{\prime}()=f^{\prime}()$ and we may apply $1.5:$

$$
\begin{equation*}
f()-f(0) 1=v()=1 \Lambda f^{\prime}() \tag{1}
\end{equation*}
$$

From (1) and (2.3) it follows that

$$
\begin{equation*}
\{f(t)\}-f(0)=\left\{1 \wedge f^{\prime}(t)\right\} \tag{2}
\end{equation*}
$$

Multiplying by D both sides of (2), we obtain

$$
D\{f(t)\}-f(0) D=D\left\{1 \Lambda f^{\prime}(t)\right\}=\left\{f^{\prime}(t)\right\}:
$$

the last equation is from (2.2).
2.6. Invertibility. As usual, an operator A is called invertible
if $A \in \mathscr{A}_{\omega}$ and there exists an operator X in \mathscr{A}_{ω} such that $A X=1$. Suppose that A is an invertible operator ; since \mathscr{A}_{ω} is a commutative algebra, it is easily verified that there exists exactly one operator A^{-1} such that $A^{-1} \in \mathscr{A}_{\omega}$ and $A A^{-1}=1$. Setting $f(t)=t$ in 2.4, we obtain

$$
\begin{equation*}
\{1\}=D\{t\} ; \tag{2.7}
\end{equation*}
$$

consequently, D is an invertible operator, and $D^{-1}=\{t\}$.
Theorem 2.8. Suppose that $Y \in \mathscr{A}_{\omega}$ and $V \in \mathscr{A}_{\omega}$. If the equation $V Y=R$ holds for some invertible R in \mathscr{A}_{ω}, then V is invertible, and $Y=R / V$, where R / V denotes $R V^{-1}$.

Proof. Easy; see 1.76 in [5].
Remarks 2.9. From (2.5) we see that

$$
\begin{equation*}
D\{\sin t\}=\{\cos t\} \tag{2.10}
\end{equation*}
$$

whence $D^{2}\{\sin t\}=D\{\cos t\}=-\{\sin t\}+D$ (this last equation also comes from (2.5)) ; we may therefore use 2.8 to obtain

$$
\begin{equation*}
\{\sin t\}=\frac{D}{D^{2}+1} \tag{2.11}
\end{equation*}
$$

The equation

$$
\begin{equation*}
D^{-k}=\left\{\frac{t^{k}}{k!}\right\} \quad(\text { for any integer } k \geqq 0) \tag{2.12}
\end{equation*}
$$

is an easy consequence of (2.7) and (2.5).
2.13. Notation. We shall often write f instead of $\{f(t)\}$. Consequently, (2.3) can be re-written in the form

$$
\begin{equation*}
\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)+c_{3}\right\}=c_{1} f_{1}+c_{2} f_{2}+c_{3} \tag{2.14}
\end{equation*}
$$

and 1.33 becomes

$$
\begin{equation*}
f_{1}=f_{2} \text { if (and only if) } f_{1}()=f_{2}() \tag{2.15}
\end{equation*}
$$

Combining 1.40 with (0.5) :

$$
\begin{equation*}
f_{1} \Lambda f_{2}=f_{1} D^{-1} f_{2}=\left\{\int_{0}^{t} f_{1}(t-u) f_{2}(u) d u\right\} \tag{2.16}
\end{equation*}
$$

Also, note that (2.2) gives

$$
\begin{equation*}
f_{2}=D\left(1 \wedge f_{2}\right) ; \tag{2.17}
\end{equation*}
$$

that is,

$$
\begin{equation*}
D^{-1} f_{2}=1 \Lambda f_{2} \tag{2.18}
\end{equation*}
$$

combining with (1.3) :

$$
\begin{equation*}
\left\{\int_{0}^{t} f_{2}\right\}=D^{-1} f_{2} \tag{2.19}
\end{equation*}
$$

Finally, note that Theorem 1.39 becomes

$$
\begin{equation*}
. A w=A w \quad\left(\text { for } A \in \mathscr{A}_{\omega} \text { and } w() \in W_{\omega}\right) \tag{2.20}
\end{equation*}
$$

Application 2.21. Given a function $f()$ in $L^{\text {loc }}(-\alpha, \alpha)$, let us solve the differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+y(t)=f(t) \quad(-\alpha<t<\alpha) \tag{1}
\end{equation*}
$$

for example, we could have $f(t)=\sec (\pi t / 2 \alpha)$. To solve (1), set $\omega=$ $(-\alpha, \alpha), c_{0}=y(0), c_{1}=y^{\prime}(0)$, and inject both sides of (1) into \mathscr{A}_{ω}; this gives $D^{2} y+y=c_{1} D+c_{0} D^{2}+f$; solving for y :

$$
y=c_{1} \frac{D}{D^{2}+1}+c_{0} D \frac{D}{D^{2}+1}+\frac{D}{D^{2}+1} D^{-1} f:
$$

we can now use (2.11), (2.10), and (2.16) to write

$$
y=c_{1} \sin +c_{0} \cos +\left\{\int_{0}^{t}(\sin (t-u)) f(u) d u\right\}
$$

3. Translation properties. In this section we shall describe some two-sided analogues of the translation properties described in [5]. If $b \geqq 0$ we define the function $T_{b}()$ by

$$
\mathrm{T}_{b}(t)= \begin{cases}0 & \text { for } t<b \tag{3.0}\\ 1 & \text { for } t \geqq b\end{cases}
$$

If $a<0$ we set

$$
\mathrm{T}_{a}(t)= \begin{cases}-1 & \text { for } t<a \tag{3.1}\\ 0 & \text { for } t \geqq a\end{cases}
$$

Observe that

$$
\begin{equation*}
\left.T_{x}()=0 \quad \text { on } \quad(-|x|,|x|) \quad \text { (for any } x \text { in } \boldsymbol{R}\right) \tag{3.2}
\end{equation*}
$$

Until further notice, let $g()$ be a function in $L^{\text {loc }}(\omega)$, and let $g_{x}()$ be the function defined by

$$
\begin{equation*}
g_{x}(u)=\mathrm{T}_{x}(u) g(u-x) \quad(\text { for } u \in \omega) ; \tag{3.3}
\end{equation*}
$$

note that $g_{x}() \in L^{10 \mathrm{coc}}(\omega)$.
Lemma 3.4. If $b \geqq 0$ then $1 \wedge g_{b}()=\mathrm{T}_{b} \wedge g()$.
Proof. Observe that $g_{b}()=0=\mathrm{T}_{b}()$ on the interval $\left(\omega_{-}, b\right)$; from 0.13 it therefore follows that

$$
\begin{equation*}
g_{b} \Lambda 1(t)=0=\mathbf{T}_{b} \Lambda g(t) \quad\left(\text { for } t \in\left(\omega_{-}, b\right)\right) \tag{1}
\end{equation*}
$$

Next, suppose that $t>b$ and $t \in \omega$: the equation

$$
1 \Lambda g_{b}(t)=\int_{0}^{t} 1(t-u) \mathrm{T}_{b}(u) g(u-x) d u
$$

comes from (0.5) and (3.3); in view of (3.0), we see that

$$
\begin{equation*}
1 \wedge g_{b}(t)=\int_{b}^{t} g(u-x) d u=\int_{0}^{t-b} g(\tau) d \tau=\mathrm{T}_{b} \wedge g(t): \tag{2}
\end{equation*}
$$

the second equation is obtained by the change of variable $\tau=u-b$; the last equation comes from (0.15) by setting $f=\mathrm{T}_{b}$ in 0.14 . The conclusion is immediate from (1)-(2).

Theorem 3.5. If $x \in \boldsymbol{R}$ then $1 \wedge g_{x}()=\mathrm{T}_{x} \Lambda g()$ and

$$
\begin{equation*}
g_{x}=g \mathrm{~T}_{x} . \tag{3.6}
\end{equation*}
$$

Proof. In view of 3.4, it only remains to consider the case $x=$ $a<0$. Observe that $g_{a}()=0=\mathrm{T}_{a}()$ on the interval (α, ω_{+}); from 0.13 it therefore follows that

$$
\begin{equation*}
g_{a} \Lambda 1(t)=0=\mathrm{T}_{a} \Lambda g(t) \quad\left(\text { for } t \in\left(a, \omega_{+}\right)\right) \tag{3}
\end{equation*}
$$

Next, suppose that $t<a$ and $t \in \omega$: as in the proof of 3.4 , we see that

$$
\begin{equation*}
1 \Lambda g_{a}(t)=-\int_{t}^{a} g(u-x) d u=-\int_{t-a}^{0} g(\tau) d \tau: \tag{4}
\end{equation*}
$$

the second equation is obtained by the change of variable $\tau=u-a$. Note that $T_{a}()=0$ on the interval $\left(a, \omega_{+}\right)$: we can therefore set $h=\mathrm{T}_{a}$ in 0.14 and use (0.16) to obtain

$$
\begin{equation*}
\mathrm{T}_{a} \Lambda g(t)=-\int_{t-a}^{0} \mathrm{~T}_{a}(t-\tau) g(\tau) d \tau=-\int_{t-a}^{0} g(\tau) d \tau \tag{5}
\end{equation*}
$$

From (4)-(5) it results that $1 \wedge g_{a}(t)=T_{a} \Lambda g(t)$ for $\omega_{-}<t<\alpha$; the conclusion $1 \Lambda g_{a}()=\mathrm{T}_{a} \Lambda g()$ is now immediate from (3). The equations

$$
g_{x}=D\left(1 \wedge g_{x}\right)=D\left(\mathrm{~T}_{x} \wedge g\right)=\mathrm{T}_{x} g
$$

are from (2.17), from our conclusion ($1 \wedge g_{x}()=\mathrm{T}_{x} \Lambda g$), and from (2.17) : this proves (3.6).
3.7. Particular cases. In view of (3.3), we can write (3.6) in the form

$$
\begin{equation*}
\left\{\mathrm{T}_{x}(t) g(t-x)\right\}=\mathrm{T}_{x} g \quad\left(\text { for } x \in \boldsymbol{R} \text { and } g() \in L^{10 c}(\omega)\right) \tag{3.8}
\end{equation*}
$$

This equation is a useful substitute for the Laplace-transform identity

$$
\mathfrak{R}\left[\mathrm{T}_{x}(t) g(t-x)\right]=e^{-x s} \mathbb{Z}[g(t)]
$$

Let $Ц()$ be the function 1()$-1_{+}()$; that is,

$$
\begin{equation*}
Ц()=1()-T_{0}() . \tag{3.9}
\end{equation*}
$$

From (0.1) and (3.0) it follows that $g_{+}()=T_{0}() g()$; but (3.8) then gives $\left\{g_{+}(t)\right\}=\mathrm{T}_{0} g$, so that

$$
\begin{equation*}
\left\{g_{\mathrm{L}}(t)\right\}=g-\mathrm{T}_{0} g=Ц g \quad \text { (by (0.2) and (3.9)). } \tag{3.9.1}
\end{equation*}
$$

Setting $g()=T_{0}()$ in (3.8) we see that $\mathrm{T}_{0}=\left\{\mathrm{T}_{0}(t) \mathrm{T}_{0}(t)\right\}=\mathrm{T}_{0} \mathrm{~T}_{0}$, whence it results that

$$
\begin{equation*}
\mathrm{T}_{0} Ц=0, \quad \mathrm{~T}_{0}^{2}=\mathrm{T}_{0}, \text { and } Ц^{2}=Ц . \tag{3.10}
\end{equation*}
$$

If $A \in \mathscr{A}_{\omega}$ we set $A_{+}=\mathrm{T}_{0} A$ and $A_{\text {Ц }}=Ц A$; clearly, $A=A_{\text {Ц }}+A_{+}$ and $A_{\text {ц }} A_{+}=0$. If $B \in \mathscr{A}_{\omega}$ then

$$
\begin{equation*}
A_{\text {Ц }} B=A_{\text {Ц }} B_{\text {Ц }}=Ц(A B) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{+} B=A B_{+}=A_{+} B_{+}=(A B)_{+} \tag{3.12}
\end{equation*}
$$

Let $(B \mathscr{A})$ denote the set $\{B A: A \in \mathscr{A}\}$; it is easily seen that $(Ц \mathscr{A})$ and $\left(\mathrm{T}_{0} \mathscr{A}\right)$ are ideals in the algebra \mathscr{A}_{ω}, and \mathscr{A}_{ω} is the direct sum of these ideals:

$$
\begin{equation*}
\mathscr{A}=(Ц \mathscr{A}) \oplus\left(T_{0} \mathscr{A}\right) \tag{3.13}
\end{equation*}
$$

Note that $\operatorname{sgn} t=-Ц(t)+\mathrm{T}_{0}(t)$, so that $\operatorname{sgn}=-Ц+\mathrm{T}_{0}$. It is easily verified that $\{|t|\}=D^{-1} \mathrm{sgn}$, and

$$
\begin{equation*}
\left\{e^{a \mid t}\right\}=\frac{D^{2}+a D \operatorname{sgn}}{D^{2}-a^{2}} \tag{3.14}
\end{equation*}
$$

If $\alpha>0$ we set

$$
1^{\alpha}()=-\mathrm{T}_{--\alpha x}()+\mathrm{T}_{\alpha}() ;
$$

from (3.8) it follows readily that

$$
1^{\alpha} g=\left\{-\mathrm{T}_{-\alpha}(t) g(t+\alpha)+\mathrm{T}_{\alpha}(t) g(t-\alpha)\right\}
$$

If $h()$ is a periodic function of period α, then

$$
h=\frac{\left\{\left[1-1^{\alpha}(t)\right] h(t)\right\}}{1-1^{\alpha}} .
$$

Finally, if $\alpha \geqq 0$ and $\beta \geqq 0$ then $1^{\alpha} 1^{\beta}=1^{\alpha+\beta}$ and

$$
\begin{equation*}
\mathrm{T}_{\alpha} \mathrm{T}_{\beta}=\mathrm{T}_{\alpha+\beta}: \tag{3.15}
\end{equation*}
$$

we define 1^{α} to be 1 in case $\alpha=0$.
3.16. Other operational calculi. Mikusiński's injection (of $L^{10 c}(0, \infty)$ into the Mikusiński field) is an extension of the Laplace transformation; analogously, our injection $f() \mapsto\{f(t)\}$ is comparable to the
 Laplace transform of the function $f()$, then

$$
\mathfrak{Z \{ e ^ { - t } - e ^ { t } \} (s) = \frac { 2 } { 1 - s ^ { 2 } } = \Omega \{ e ^ { - | t | } \} (s) ; ~}
$$

the first equation holds for $s>1$, the second for $0<s<1$. This contrasts with

$$
\begin{equation*}
\left\{e^{-t}-e^{t}\right\}=\frac{2 D}{1-D^{2}} \neq\left\{e^{-\mid t}\right\} \tag{3.14}
\end{equation*}
$$

A problem which is not Laplace-transformable is discussed in 6.7.
Theorem 3.17. If $\alpha>0$ and $h() \in L^{1 o c}(\omega)$, then the equation

$$
\begin{equation*}
\left\{\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t) g(t-k \alpha)\right\}=g\left\{\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t)\right\} \tag{3.18}
\end{equation*}
$$

holds for any scalar-valued sequence $c_{k}(k=0, \pm 1, \pm 2, \pm 3, \cdots)$.
Proof. Set

$$
\begin{equation*}
g\left(\mathrm{~T}_{\alpha}\right)()=\sum_{k=-\infty}^{\infty} c_{k} g_{k \alpha}() \tag{1}
\end{equation*}
$$

Take any t in ω : there exists an integer $m>0$ such that $|t|<m \times r$ 。 Clearly,

$$
\begin{equation*}
g\left(\mathbf{T}_{\alpha}\right)(t)=\sum_{|k|<m} c_{k} g_{k \alpha}(t)+\sum_{|i| \sum m} c_{i} g_{i \alpha}(t) \tag{2}
\end{equation*}
$$

Since $t \in(-m \alpha, m \alpha) \subset(-|i| \alpha,|i| \alpha)$ and since $g_{i \alpha}()=0$ on the interval
($-|i| \alpha,|i| \alpha$) (by (3.2) and (3.3)), we have $g_{i \alpha}(t)=0$: consequently, the series (1) converges, and (3.3) gives

$$
\begin{equation*}
g\left(\mathbf{T}_{\alpha}\right)(t)=\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t) g(t-k \alpha) . \tag{3}
\end{equation*}
$$

The equations

$$
g\left(\mathrm{~T}_{\alpha}\right)=D\left\{1 \Lambda g\left(\mathrm{~T}_{\alpha}\right)\right\}=D\left\{\sum_{k=-\infty}^{\infty} c_{k}\left(1 \Lambda g_{k \alpha}\right)(t)\right\}
$$

are from (2.17) and (1) ; from 3.5 it therefore follows that

$$
\begin{equation*}
g\left(\mathrm{~T}_{\alpha}\right)=D\left\{\sum_{k=-\infty}^{\infty} c_{k}\left(\mathrm{~T}_{k \alpha} \boldsymbol{\Lambda} g\right)(t)\right\} \tag{4}
\end{equation*}
$$

Equation (4) gives

$$
\begin{equation*}
g\left(\mathrm{~T}_{\alpha}\right)=D\left\{g \mathbf{\Lambda}_{k=-\infty}^{\infty} c_{k} \mathrm{~T}_{k \alpha}(t)\right\}=g\left\{\sum_{k=-\infty}^{\infty} c_{k} \mathrm{~T}_{k \alpha}(t)\right\}: \tag{5}
\end{equation*}
$$

the second equation is from 1.40. Conclusion (3.18) now comes from (3) and (5).

REMARK 3.19. If c is a scalar and if $\lambda \geqq 0$, the equation

$$
\frac{1^{\lambda} h}{1-c 1^{\alpha}}=\left\{\sum_{k=0}^{\infty} c^{k}\left(h_{\mathrm{L}}(t+k \alpha+\lambda)+h_{+}(t-k \alpha-\lambda)\right)\right\}
$$

is not hard to verify; it is the two-sided analogue of Theorem 5.29 in [5].

Theorem 3.20. If $x \in \boldsymbol{R}$ and $w() \in W_{\omega}$ then

$$
\begin{equation*}
. \mathrm{T}_{x} w(t)=\mathrm{T}_{x}(t) w(t-x) \quad(\text { for } t \in \omega) \tag{3.21}
\end{equation*}
$$

Proof. The equations

$$
\left\{\mathrm{T}_{x}(t) w(t-x)\right\}=\mathrm{T}_{x} w=._{x} w
$$

come from (3.8) and (2.20) : Conclusion (3.21) now follows from (2.15).
Lemma 3.22. If $R \in \mathscr{A}_{\omega}$ and $w() \in W_{\omega}$ then

$$
\begin{equation*}
\cdot R_{\mathrm{L}} w()=[\cdot R w]_{\mathrm{L}}() \tag{3.23}
\end{equation*}
$$

Proof. Setting $g=. R w$ in (3.9.1), we obtain

$$
\begin{equation*}
\left\{[\cdot R w]_{Ц}(t)\right\}=Ц\{\cdot R w(t)\}=Ц R\{w(t)\}: \tag{1}
\end{equation*}
$$

the last equation is from 1.39. Since $B_{\amalg}=Ц B$ (by definition), Equa-
tion (1) becomes

$$
\begin{equation*}
\left\{[\cdot R w]_{\mathrm{L}}(t)\right\}=R_{\text {Ц }}\{w(t)\}=\left\{\cdot R_{\text {Ц }} w(t)\right\}: \tag{2}
\end{equation*}
$$

the second equation is from 1.39. Conclusion (3.23) is immediate from (2) and 1.33.

Theorem 3.24. If $A \in \mathscr{A}_{\omega}$ and $B \in \mathscr{A}_{\omega}$, then

$$
A_{\text {ц }}=B_{\text {ц }} \text { if }(\text { and only if }) \quad A \text { agrees with } B \text { on }\left(\omega_{-}, 0\right) .
$$

Proof. Recall that $\left(\omega_{-}, 0\right)=\omega \cap(-\infty, 0)$. Let $w()$ be any element of W_{ω}; the equations

$$
\begin{equation*}
[. A w]_{\mathrm{L}}()=. A_{\text {L }} w()=. B_{\text {L }} w()=[\cdot B w]_{\mathrm{L}}() \tag{3}
\end{equation*}
$$

are from (3.23), our hypothesis $A_{\text {L }}=B_{\text {L }}$, and (3.23). Since $h_{\mathrm{L}}(t)=h(t)$ for $t<0$ (see (0.1)-(0.2)), Equation (3) implies

$$
\begin{equation*}
. A w(t)=. B w(t) \quad\left(\text { for } \omega_{-}<t<0\right) \tag{4}
\end{equation*}
$$

From (4) and 1.31 we see that A agrees with B on ($\left.\omega_{-}, 0\right)$. Conversely, if A agrees with B on ($\omega_{-}, 0$), then (4) holds, whence the equation $[\cdot A w]_{\mathrm{L}}()=[\cdot B w]_{Ц}()$: combining this with (3.23), we obtain

$$
. A_{\llcorner } w()=. B_{\llcorner } w() \quad\left(\text { for every } w() \text { in } W_{\omega}\right)
$$

which gives $A_{\text {Ц }}=B_{\text {Ц }}$.
Theorem 3.25. The space ($\mathrm{T}_{0} \mathscr{A}$) consists of all the elements of \mathscr{A}_{ω} which agree with 0 on ($\omega_{-}, 0$). Moreover,

$$
\begin{equation*}
B \in\left(\mathrm{~T}_{0} \mathscr{A}\right) \Longleftrightarrow B_{\text {Ц }}=0 \Longleftrightarrow B=B_{+} . \tag{3.26}
\end{equation*}
$$

Proof. We begin with (3.26). If $B \in\left(\mathrm{~T}_{0} \mathscr{A}\right)$ then $B=\mathrm{T}_{0} A$ for some A in \mathscr{A}_{ω}; therefore, $Ц B=0$ (by (3.10)) ; this gives $B_{\text {L }}=0$; since $B=B_{\text {Ц }}+B_{+}$, the equation $B_{\text {Ц }}=0$ implies $B=B_{+}$; if $B=B_{+}$ then $B=\mathrm{T}_{0} B$, whence $B \in\left(\mathrm{~T}_{0} \mathscr{A}\right)$. This proves (3.26).

If $B \in\left(\mathrm{~T}_{0} \mathscr{A}\right)$ then $B_{\mathrm{L}}=0$ (by (3.26)), which implies that B agrees with 0 on the interval ($\omega_{-}, 0$) (by 3.24). Conversely, if B agrees with 0 on the interval ($\omega_{-}, 0$), then $B_{\mathrm{L}}=0$ (by (3.24)): the conclusion $B \in\left(\mathrm{~T}_{0} \mathscr{A}\right)$ now comes from (3.26).

Theorem 3.27. If $B \in \mathscr{A}_{\omega}$ is such that the equation $f=B_{\text {Ц }}$ holds for some $f()$ in $L^{10 c}(\omega)$, then f agrees with B on the interval $\left(\omega_{-}, 0\right)$.

Proof. The equations

$$
\begin{equation*}
f_{\mathrm{L}}=Ц f=Ц B_{\text {Ц }}=Ц^{2} B=Ц B=B_{\text {Ц }} \tag{3.28}
\end{equation*}
$$

are from the definition $\left(f_{Ц}=Ц f\right)$, from our hypothesis, from the definition ($B_{\text {Ц }}=Ц B$), from (3.10), and again from the definition ($B_{\amalg}=$ $Ц B)$. From (3.28) and 3.24 we see that f agrees with B on the interval ($\omega_{-}, 0$).
4. The topological space \mathscr{A}_{ω}. Let the function space W_{ω} be endowed with the topology of pointwise convergence on the interval ω : this enables us to topologize \mathscr{A}_{ω} by endowing it with the product topology (recall that \mathscr{A}_{ω} consists of mappings of W_{ω} into the topological space W_{ω}). Consequently, the equation

$$
B=\lim _{i \rightarrow t} A_{\lambda} \quad\left(\text { for } B \text { and } A_{i} \text { in } \mathscr{A}_{\omega}\right)
$$

means that

$$
\begin{equation*}
. B w(t)=\lim _{i \rightarrow \mu} . A_{i} w(t) \quad\left(\text { for } t \in \omega \text { and } w() \in \omega_{\omega}\right) . \tag{1}
\end{equation*}
$$

It is immediately clear that \mathscr{A}_{ω} is a locally convex Hausdorff vector space: in fact, H. Shultz has proved that it is sequentially complete and that the multiplication of the algebra. \mathscr{A}_{ω} is sequentially continuous.

We denote by $\lim A_{\text {, }}$ the mapping that assigns to each $w()$ in W_{ω} the function $\cdot B w()$ defined by (1):

$$
\begin{equation*}
\cdot\left(\lim _{\lambda \rightarrow \mu} A_{\lambda}\right) w()=\lim _{x \rightarrow!} \cdot A_{\lambda} w() \quad\left(\text { every } w() \text { in } W_{\omega}\right) \tag{4.1}
\end{equation*}
$$

If $x \mapsto F(x)$ is a mapping into \mathscr{A}_{ω}, we set

$$
\begin{equation*}
\frac{d}{d x} F(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}[F(x+\varepsilon)-F(x)] ; \tag{4.2}
\end{equation*}
$$

in view of (4.1), this means that $d F(x) / d x$ is the operator defined for any $w()$ in W_{ω} by

$$
\begin{equation*}
\cdot\left(\frac{d}{d x} F(x)\right) w()=\frac{\partial}{\partial x}(\cdot F(x) w()) . \tag{4.3}
\end{equation*}
$$

Theorem 4.4. If $x \in \boldsymbol{R}$, then $\left(\frac{d}{d x}\right) \mathrm{T}_{x}=-\mathrm{T}_{x} D$.

Proof. Take any $w()$ in W_{ω}, take any $t \neq x$ in ω; from (4.3) we see that

$$
\begin{equation*}
\cdot\left(\frac{d}{d x} \mathrm{~T}_{x}\right) w(t)=\frac{\partial}{\partial x}\left(\cdot \mathrm{~T}_{x} w(t)\right)=\frac{\partial}{\partial x} \mathrm{~T}_{x}(t) w(t-x): \tag{2}
\end{equation*}
$$

the second equation is from (3.21). Set $E_{1}=\{x: x>t\}$ and $E_{2}=$ $\{x: x<t\}$: note that the function $x \mapsto \mathrm{~T}_{x}(t)$ is constant on E_{k} when $k=1,2$; consequently, since $x \neq t$ then $x \in E_{k}$ for some k, whence $\partial \mathrm{T}_{x}(t) / \partial x=0$; we can use this to infer from (2) that

$$
\cdot\left(\frac{d}{d x} \mathbf{T}_{x}\right) w(t)=\mathbf{T}_{x}(t) \frac{\partial}{\partial x} w(t-x)=-\mathbf{T}_{x}(t) w^{\prime}(t-x) \quad(\text { all } t \neq x)
$$

Consequently, we may use (3.21) to write

$$
\cdot\left(\frac{d}{d x} \mathbf{T}_{x}\right) w()=-. \mathbf{T}_{x} w^{\prime}() \quad\left(\text { all } w() \text { in } W_{\omega}\right)
$$

Calling $B=d T_{x} / d x$, this gives $. B w()=-. \mathrm{T}_{x} D w()$, whence the conclusion $B=-\mathrm{T}_{x} D$.

Corollary 4.5. if $x \in \boldsymbol{R}$ then $D \mathrm{~T}_{x}=\lim _{\varepsilon \rightarrow 0+}(1 / \varepsilon)\left(\mathrm{T}_{x}-\mathrm{T}_{x+\varepsilon}\right)$.
Proof. From 4.4 and (4.2) it follows that

$$
-\mathrm{T}_{x} D=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\mathrm{~T}_{x+\varepsilon}-\mathrm{T}_{x}\right),
$$

which implies directly our conclusion.
Remark 4.6. Corollary 4.5 indicates that $D T_{x}$ corresponds to the Dirac delta distribution δ_{x} concentrated at the point \because.

ThEOREM 4.7. If $F_{k}()(k=0, \pm 1, \pm 2, \pm 3, \cdots)$ is a sequence in $L^{10 c}(\omega)$, then

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \mathrm{T}_{k \alpha} F_{k}=\left\{\sum_{k=-\infty}^{\infty} \mathrm{T}_{k \alpha}(t) F_{k}(t-k \alpha)\right\} . \tag{4.8}
\end{equation*}
$$

Proof. Let $\mathrm{T}_{k \alpha} F_{k}()$ be the function defined by

$$
\begin{equation*}
\mathrm{T}_{k \alpha} F_{k}(t)=\mathrm{T}_{k \alpha}(t) F_{k}(t-k \alpha) . \tag{1}
\end{equation*}
$$

Set

$$
f_{s}()=\sum_{k=-s}^{s} \mathrm{~T}_{k \alpha} F_{k}()
$$

For any integer $n \geqq 1$, observe that

$$
\begin{equation*}
f_{\infty}()=f_{n}()+\sum_{|i|>n} \mathrm{~T}_{i \alpha} F_{i}() ; \tag{3}
\end{equation*}
$$

since $(-n \alpha, n \alpha) \subset(-|i| \alpha,|i| \alpha)$ and since $\mathrm{T}_{i \alpha} F_{i}()=0$ on the interval $(-|i| \alpha,|i| \alpha)$ (because of (3.2) and (1)), we may conclude that $\mathrm{T}_{i \alpha} F_{i}()=$

0 on the interval ($-n \alpha, n \alpha$): consequently, (3) becomes

$$
\begin{equation*}
f_{\infty}()=f_{n}() \text { on }(-n \alpha, n \alpha) \text { for any integer } n \geqq 1 \tag{4}
\end{equation*}
$$

If $t \in \omega$ there exists an integer $m \geqq 1$ such that $t \in(-m \alpha, m \alpha)$: from (4), (2), and (1) we see that

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \mathrm{T}_{k \alpha}(t) F_{k}(t-k \alpha)=f_{\infty}(t)=\sum_{k=-m}^{\infty} \mathrm{T}_{k \alpha} F_{k}(t) \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
f_{n}=\left\{\sum_{k=-n}^{n} \mathrm{~T}_{k \alpha} F_{k}(t)\right\}=\sum_{k=-k}^{n} \mathrm{~T}_{k \alpha} F_{k} ; \tag{6}
\end{equation*}
$$

the second equation is from (3.8) and (1).
In view of (5)-(6), the proof of (4.8) will be accomplished by showing that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}=f_{\infty} \tag{7}
\end{equation*}
$$

To that effect, take any $w()$ in W_{ω}, and any t in the interval ω; we must prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} . f_{n} w(t)=. f_{\infty} w(t) . \tag{8}
\end{equation*}
$$

Observe that there exists an integer $m \geqq 1$ such that $|t|<m \alpha$; suppose that $n \geqq m$; from (4) and 1.32 it follows that the operators f_{n} and f_{∞} agree on $(-n \alpha, n \alpha)$: therefore, 1.31 gives

$$
\begin{equation*}
. f_{n} w(t)=. f_{\infty} w(t) \quad(\text { for all } n \geqq m) ; \tag{9}
\end{equation*}
$$

this is because $w() \in W_{\omega}$ and $-m \alpha<t<m \alpha$. Conclusion (8) is immediate from (9).

Remark 4.9. Let $c_{k}(k=0, \pm 1, \pm 2, \pm 3, \cdots)$ be a scalar-valued sequence. Setting $F_{k}()=c_{k}$ in (4.8), we obtain

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}=\left\{\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t)\right\} ; \tag{4.10}
\end{equation*}
$$

combining with (3.18) :

$$
\begin{equation*}
\left\{\sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t) g(t-k \alpha)\right\}=g \sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha} . \tag{4.11}
\end{equation*}
$$

Obviously, if $g()$ is a periodic function of period $\alpha>0$, then (4.11) becomes

$$
\begin{equation*}
g \sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}=\left\{g(t) \sum_{k=-\infty}^{\infty} c_{k} \mathbf{T}_{k \alpha}(t)\right\} \tag{4.12}
\end{equation*}
$$

5. Derivative of an operator. Given $A \in \mathscr{A}_{\omega}$ and $B \in \mathscr{A} \mathscr{A}_{\omega}$, let us indicate by $A \subset B$ the existence of a number $a<0$ such that A agrees with B on the interval ($a, 0$). The notion of "agreeing with" has been defined in 1.31. Recall that $F=\{F(t)\}$ (see 2.13); as usual, $F(0-)$ denotes the limit of $F(t)$ as t approaches zero through negative values.

Theorem 5.0. Suppose that $B \in \mathscr{A}_{\omega}$. There is at most one scalar c_{1} such that the equation $c_{1}=f_{1}(0-)$ holds for some function $f_{1}()$ in $L^{\text {loc }}(\omega)$ with $f_{1} \subset B$.

Proof. Suppose that the equation $c_{2}=f_{2}(0-)$ holds for some function $f_{2}()$ in $L^{10 c}(\omega)$ with $f_{2} \subset B$: we must prove that $c_{1}=c_{2}$. By definition, there exists an interval ($a_{k}, 0$) such that f_{k} agrees with B on the interval $\left(a_{k}, 0\right)$ (for $\left.k=1,2\right)$; from 1.31 we now see that f_{1} agrees with f_{2} on ($a, 0$), where a is the largest of the two negative numbers a_{1} and a_{2}; from 1.32 it follows that $f_{1}()=f_{2}()$ on $(a, 0)$, whence $f_{1}(0-)=f_{2}(0-)$: this proves that $c_{1}=c_{2}$.
5.1. Derivable operators. An operator B is said to be derivable if $B \in \mathscr{A}_{\omega}$ and if there exists a function $f_{1}()$ in $L^{10 c}(\omega)$ such that $\left|f_{1}(0-)\right|<\infty$ and $f_{1} \subset B$.
5.2. Initial value of an operator. If B is derivable, we denote by $\langle B, 0-\rangle$ the unique scalar c_{1} such that the equation $c_{1}=f_{1}(0-)$ holds for some function $f_{1}()$ in $L^{10 c}(\omega)$ such that $f \subset B$; we also set

$$
\begin{equation*}
\partial_{t} B=D B-\langle B, 0-\rangle D \tag{5.3}
\end{equation*}
$$

The uniqueness of c_{1} comes from 5.0, while the existence of c_{1} can be verified by setting $c_{1}=f_{1}(0-)$ in 5.1.

Remarks 5.4. If $f()$ is a function in $L^{\text {loc }}(\omega)$ such that $|f(0-)|<$ ∞, then the operator f is derivable, and $\langle f, 0-\rangle=f(0-)$ (this is immediate from 5.1) ; from (5.3) we see that

$$
\partial_{t} f=D f-f(0-) D
$$

5.5. Suppose that $f()$ is continuous on ω; if $f^{\prime}()$ has at most countably-many discontinuities and is integrable an each compact subinterval of the open interval ω, then

$$
\partial_{t} f=\left\{f^{\prime}(t)\right\} \quad \text { and } \quad\langle f, 0-\rangle=f(0):
$$

this follows immediately from 2.4, 2.13, and 5.4.
5.6. Suppose that $B \in \mathscr{A}_{\omega}$. If $f() \in L^{\text {1oc }}(\omega)$ is such that $|f(0-)|<$ ∞ and $f \subset B$, then B is derivable and $\langle B, 0-\rangle=f(0-)$: this follows directly from 5.0-5.2.
5.7. If $B \in . \mathscr{S}_{\omega}$ is such that the equation $B_{\text {Ц }}=f$ holds for some function $f()$ in $L^{10 c}(\omega)$ such that $|f(0-)|<\infty$, then B is derivable and $\langle B, 0-\rangle=f(0-)$. This is immediate from 3.27 and 5.6.

Theorem 5.8. Suppose that $\alpha>0$. If $A_{k}(k=0, \pm 1, \pm 2, \pm 3, \cdots)$ is a sequence in \mathscr{A}_{ω} such that the equation

$$
\begin{equation*}
B=\sum_{k=-\infty}^{\infty} \mathrm{T}_{k x} A_{k} \tag{1}
\end{equation*}
$$

defines an element B of. \mathcal{Y}_{ι}, then B is derivable, $\langle B, 0-\rangle=0$, and $\partial_{t} B=D B$.

Proof. Take any $w\left(\right.$) in W_{ω}. From (1) and (3.21) it follows that

$$
\begin{equation*}
\cdot B w(t)=\mathrm{T}_{0}(t) \cdot A_{0} w(t)+\sum_{k \neq 0} \mathrm{~T}_{k \alpha}(t) \cdot A_{k} w(t-k \alpha) \quad(\text { for } t \in \omega) \tag{2}
\end{equation*}
$$

If $k \neq 0$ we see from (3.2) that $\mathrm{T}_{k \alpha}()=0$ on $(-\alpha, \alpha)$: consequently, the equation (2) implies that

$$
\begin{equation*}
\cdot B w(t)=\mathrm{T}_{0}(t) \cdot A_{0} w(t) \quad(\text { for }|t|<\alpha) \tag{3}
\end{equation*}
$$

Since $\mathrm{T}_{0}()=0$ on $(-\alpha, 0)$, it now follows from (3) that $. B w(t)=0$ for $-\alpha<t<0$ and for any $w()$ in W_{ω} : therefore, the operator 0 agrees with B on $(-\alpha, 0)$, whence $0 \subset B$; the conclusion $\langle B, 0-\rangle=0$ now follows from 5.6 ; in view of (5.3), the proof is concluded.

Theorem 5.9. Suppose that $x \in \boldsymbol{R}$. Each element of ($\left.\mathrm{T}_{x} . \vee /\right)$ is infinitely derivable ; in fact,

$$
\begin{equation*}
\langle B, 0-\rangle=0 \quad \text { and } \quad \partial_{t}^{k} B=D^{k} B \quad(\text { for each integer } k \geqq 1) \tag{5.10}
\end{equation*}
$$

whenever $B \in\left(\mathrm{~T}_{x} . \mathscr{A}\right)$.
Proof. Note that $\left(\mathrm{T}_{x} . \mathcal{Y}\right)$ is the set $\left\{\mathrm{T}_{x} A: A \in, \mathcal{V}_{(1)}\right\}$. If B is an element of ($\mathrm{T}_{x} . \mathscr{Y}$), then $B=\mathrm{T}_{x} A$ for some A in \mathscr{O} : clearly, B can be written in the form (1) (set $\alpha=|x|$ and $A_{k}=A$ for $k=\operatorname{sgn} x$ and $A_{k}=0$ for other values of $\left.k\right)$: the conclusion $\langle B, 0-\rangle=0$ now comes from 5.8. Since $\partial_{t}^{k} B=B$ (by definition) for $k=0$, we proceed by induction on $k \geqq 1$. To that effect, we assume that $\partial_{t}^{n} B=D^{n} B$: clearly,
(4)

$$
\partial_{t}^{n+1} B=\partial_{t}\left(D^{n} B\right)=D^{n+1} B+\left\langle D^{n} B, 0-\right\rangle D
$$

On the other hand, $D^{n} B=D^{n} \mathrm{~T}_{x} A=\mathrm{T}_{x} D^{n} A$; consequently, $D^{n} B$ belongs to ($\mathrm{T}_{x} \mathscr{A}$), whence $\left\langle D^{n} B, 0-\right\rangle=0$ (by what we established at the beginning of this proof); therefore (4) gives $\partial_{t}^{n+1} B=D^{n+1} B$. The induction proof is completed.

Note 5.11. Both T_{x} and the Dirac delta distribution $D \mathrm{~T}_{x}$ belong to the space $\left(\tau_{x} \mathscr{A}\right)$. If $B=B_{+}$or if $B_{Ц}=0$ then B belongs to ($\mathrm{T}_{0} \mathscr{A}$) : see 3.25.

ThEOREM 5.12. Set $a=\omega_{-}$and suppose that $B \in \mathscr{A}_{\omega}$. If the equation $B_{\mathrm{L}}=f$ holds for some function $f()$ in $L^{1}(a, 0)$, there exists a unique scalar c_{1} such that the equation

$$
\begin{equation*}
c_{1}=\int_{a}^{0} f_{1}(u) d u \tag{5}
\end{equation*}
$$

holds for some $f_{1}()$ in $L^{1}(a, 0)$ with $f_{1}=B_{\text {Ц }}$.
Proof. Clearly, such a scalar exists. If

$$
\begin{equation*}
c_{2}=\int_{a}^{0} f_{2}(u) d u \tag{6}
\end{equation*}
$$

for $f_{2}()$ in $L^{1}(a, 0)$ and $f_{2}=B_{\text {Ц }}$, then both f_{1} and f_{2} agree with B on ($a, 0$) (by 3.27) : therefore, $f_{1}()$ equals $f_{2}()$ almost-everywhere on ($a, 0$) (by 1.32) ; the conclusion $c_{1}=c_{2}$ now comes from (5)-(6).
5.13. The anti-derivative. Let B be as in 5.12 . We set

$$
\begin{equation*}
\int_{a}^{t} B=D^{-1} B+c_{1} \tag{7}
\end{equation*}
$$

In a subsequent paper we shall prove that

$$
\left\langle\int_{a}^{t} B, 0-\right\rangle=c_{1} \quad \text { and } \quad \partial_{t} \int_{a}^{t} B=B
$$

In case $B=f$ with $f() \in L^{1}(a, 0)$ and $f() \in L^{10 c}(\omega)$, it follows immediately from (2.19) and (3) (7) that

$$
\int_{a}^{t} f=\left\{\int_{a}^{t} f(u) d u\right\}
$$

6. Four problems. Recall that $D \mathrm{~T}_{x}$ corresponds to the Dirac delta distribution concentrated at the point x (see 4.6), it is infinitely derivable (see 5.11). If an operator A is twice derivable, it follows directly from (5.3) that

$$
\begin{equation*}
\partial_{t}^{2} A=D^{2} A-\langle A, 0-\rangle D^{2}-\left\langle\partial_{t} A, 0-\right\rangle D \tag{6.0}
\end{equation*}
$$

We shall need two more facts. Each operator A in \mathscr{A}_{ω} can be written as a sum

$$
\begin{equation*}
A=A_{\text {ц }}+A_{+}, \text {where } A_{+}=A \mathrm{~T}_{0} \tag{6.1}
\end{equation*}
$$

(see 3.7); moreover, if $g() \in L^{10 c}(\omega)$ then

$$
\begin{equation*}
g \mathbf{T}_{0}=\left\{\mathbf{T}_{0}(t) g(t)\right\} \tag{6.2}
\end{equation*}
$$

6.3. First problem. Given two scalars m and a, to find an operator y such that

$$
\begin{equation*}
m \partial_{t} y=D \mathrm{~T}_{0} \quad \text { and } \quad\langle y, 0-\rangle=a: \tag{6.4}
\end{equation*}
$$

Definition (5.3) gives $m D y-m a D=D \mathrm{~T}_{0}$, whence $y()=a+m^{-1} \mathrm{~T}_{0}()$. This same problem has been discussed in [5, p. 38].

6.5. Second problem. The equations

$$
\begin{equation*}
i=\partial_{t} q \quad \text { and } \quad q=C E \tag{1}
\end{equation*}
$$

relate the current i to the change q in a simple electric circuit having capacitance C, impressed electromotive force E, no inductance, and no resistance (see 7.19 in [5]). From (1) and (5.3) it follows that

$$
\begin{equation*}
i=C D E-\langle q, 0-\rangle D \tag{2}
\end{equation*}
$$

Multiplying by T_{0} both sides of (2), we can use (6.1) to write

$$
\begin{equation*}
i_{+}=C D E_{+}-\langle q, 0-\rangle D \mathrm{~T}_{0} \tag{3}
\end{equation*}
$$

If there is a short-circuit at the time $t=0$, then $E_{+}=0$, so that (3) gives the answer $i_{+}=-\langle q, 0-\rangle D \mathrm{~T}_{0}$: this is an impluse whose magnitude is the negative of the initial charge $\langle q, 0-\rangle$.
6.6. Third problem. Given a scalar c, to find an operator y such that

$$
\partial_{t}^{2} y+y=\partial_{t}\left(D \mathrm{~T}_{0}\right) \quad \text { and }\left\langle\partial_{t} y, 0-\right\rangle=\langle y, 0-\rangle=c
$$

Since $\partial_{t}\left(D \mathrm{~T}_{0}\right)=D^{2} \mathrm{~T}_{0}$ (by 5.9), we can use (6.0) to write

$$
\left(D^{2}+1\right) y=D^{2} T_{0}+\langle y, 0-\rangle D^{2}+\left\langle\partial_{t} y, 0-\right\rangle D ;
$$

we now use the initial conditions and solve for y :

$$
\begin{equation*}
y=\frac{D^{2}}{D^{2}+1} \mathrm{~T}_{0}+c\left(\frac{D^{2}}{D^{2}+1}+\frac{D}{D^{2}+1}\right) . \tag{4}
\end{equation*}
$$

From (4) and (2.10)-(2.11) it results that

$$
y=\{\cos t\} \mathrm{T}_{0}+c(\sin +\cos),
$$

whence our conclusion $y()=\mathrm{T}_{0}() \cos +c(\sin +\cos)$ now comes directly from (6.2) and 1.33.

Last problem 6.7. To find an element y of \mathscr{A}_{ω} such that

$$
\begin{equation*}
\partial_{i}^{2} y+y=\sum_{k=-\infty}^{\infty} D \mathrm{~T}_{2 k \pi} . \tag{5}
\end{equation*}
$$

Setting $c_{0}=\langle y, 0-\rangle$ and $c_{1}=\left\langle\partial_{t} y, 0-\right\rangle$, we see from (6.0) that

$$
\begin{equation*}
\left(D^{2}+1\right) y=c_{0} D^{2}+c_{1} D+D \sum_{k=-\infty}^{\infty} \mathrm{T}_{2 k \pi} . \tag{6}
\end{equation*}
$$

Solving (6) for y, we obtain $y=c_{0} \cos +c_{1} \sin +y_{p}$, where

$$
\begin{equation*}
y_{p}=\frac{D}{D^{2}+1} \sum_{k=-\infty}^{\infty} \mathrm{T}_{2 k \pi}=\{\sin t\} \sum_{k=-\infty}^{\infty} \mathrm{T}_{2 k \pi}: \tag{7}
\end{equation*}
$$

the second equation is from (2.11). From (7) and (4.12) it now follows that

$$
\begin{equation*}
y_{p}=\left\{\sin t \sum_{k:=-\infty}^{\infty} \mathrm{T}_{2 k \pi}(t)\right\} . \tag{8}
\end{equation*}
$$

From (8) and (2.15) we can now write

$$
\begin{equation*}
y_{p}(t)=\sin t \sum_{k=-\infty}^{\infty} \mathbf{T}_{2 k \pi}(t)=\left(1+\left[\frac{t}{2 \pi}\right]\right) \sin t ; \tag{9}
\end{equation*}
$$

as usual, $[t / 2 \pi]$ is the greatest integer $<t / 2 \pi$ (the last equation follows directly from the definition of $\left.\mathrm{T}_{x}()\right)$. In case $\omega=\boldsymbol{R}$, the answer (9) to the problem (5) cannot be obtained by the Fourier transformation nor by the distributional two-sided Laplace transformation.

Added in proof. There still remains to connect the theory presented in this paper with the theory of distributions; this has been done in the Research Announcement "An algebra of generalized functions on an open interval; two-sided operational calculus" (by Gregers Krabbe), Bull. Amer. Math. Soc. 77 (1971), 78-84.

References

1. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory. Interscience, New York, 1958.
2. J. Horváth, Topological Vector Spaces and Distributions, vol. I, Addison-Wesley. Reading, Mass., 1966.
3. H. G. Garnir, Fonctions de Variables Réelles, Tome II, Gauthier-Villars, Paris, 1965.
4. R. L. Jeffery, The Theory of Functions of a Real Variable, University of Toronto Press, Toronto, 1953.
5. G. Krabbe, Operational Calculus, Springer-Verlag, 1970.

Received August 19, 1971.
Purdue University

[^0]: ${ }^{1}$ The principle of this proof is due to R. B. Darst.

