AN ALGEBRA OF GENERALIZED FUNCTIONS ON AN OPEN INTERVAL: TWO-SIDED OPERATIONAL CALCULUS

GREGERS KRABBE

Let (a,b) be any open sub-interval of the real line, such that $-\infty \le a < 0 < b \le \infty$. Let $L^{\mathrm{loc}}(a,b)$ be the space of all the functions which are integrable on each interval (a',b') with a < a' < b' < b. There is a one-to-one linear transformation $\mathfrak T$ which maps $L^{\mathrm{loc}}(a,b)$ into a commutative algebra $\mathscr M$ of (linear) operators. This transformation $\mathfrak T$ maps convolution into operator-multiplication; therefore, this transformation $\mathfrak T$ is a useful substitute for the two-sided Laplace transformation; it can be used to solve problems that are not solvable by the distributional transformations (Fourier or bi-lateral Laplace).

In essence, the theme of this paper is a commutative algebra \mathcal{A} of generalized functions on the interval (a, b); besides containing the function space $L^{loc}(a, b)$, the algebra \mathscr{A} contains every element of the distribution space $\mathscr{D}'(a,b)$ which is regular on the interval (a, 0). The algebra $\mathscr M$ is the direct sum $\mathcal{N}_{-} \oplus \mathcal{N}_{+}$, where \mathcal{N}_{-} (respectively, \mathcal{N}_{+}) (a, 0)(respectively, to the interval (0, b)). There is a subspace \mathscr{Y} of $\mathscr M$ such that, if $y\in\mathscr Y$, then y has an "initial value" $\langle y, 0- \rangle$ and a "derivative" $\partial_t y$ (which corresponds to the usual distributional derivative). If y is a function f() which is locally absolutely continuous on (a, b), then y belongs to \mathcal{Y} , the initial value $\langle y, 0-\rangle$ equals f(0), and $\partial_t y$ corresponds to the usual derivative $f'(\cdot)$. If y is a distribution (such as the Dirac distribution) whose support is a locally finite subset of the interval (a, b), then both y and $\partial_t y$ belong to the subspace \mathscr{Y} . In case $a=-\infty$ and $b=\infty$, the subspace \mathscr{Y} contains the distribution space \mathscr{D}'_+ .

The resulting operational calculus takes into account the behavior of functions to the left of the origin (in case $a=-\infty$ and $b=\infty$, the whole real line is accounted for—whereas Mikusiński's operational calculus only accounts for the positive axis). Since the functions are not subjected to growth restrictions, the transformation $\mathfrak T$ is a useful substitute for the two-sided Laplace transformation (no strips of convergence need to be considered: see Examples 2.21 and the four problems 6.3-6.7). Problems such as

$$\frac{d^2}{dt^2}y + y = \sec\frac{\pi t}{2\alpha} \qquad (-\alpha < t < \alpha)$$

can be solved by calculations which duplicate the ones that would arise if the Laplace transformation could be applied to such problems.

The differential equation

(1)
$$\hat{\sigma}_t^2 y + y = \sum_{k=-\infty}^{\infty} \delta(t - 2k\pi)$$

is solved in 6.7 in order to illustrate our operational calculus; the right-hand side of this equation represents a series of unit impulses starting at $t=-\infty$. The differential equation (1) cannot be solved by the distributional Fourier transformation nor by the distributional two-sided Laplace transformation. When $-\infty=a < t < b=\infty$ the equation

$$y(t) = c_{\scriptscriptstyle 0} \cos t + c_{\scriptscriptstyle 1} \sin t + \left(1 + \left[rac{t}{2\pi}
ight]
ight) \sin t$$

defines the general solution of the equation (1).

The paper is subdivided as follows. §1: the space of generalized functions, §2: two-sided operational calculus, §3: translation properties, §4: the topological space \mathscr{N}_{ϖ} , §5: derivative of an operator, §6: four problems.

The concepts introduced in §5 (initial value, derivative, antiderivative of an operator) are more general and more appropriate than the corresponding ones in my textbook [5].

O. Preliminaries. Henceforth, ω is an open sub-interval (ω_{-}, ω_{+}) of the real line **R**; we suppose that $\omega_{-} < 0 < \omega_{+}$. If h() is a function on ω , we denote by $h_{+}()$ the function defined by

(0.1)
$$h_{+}(t) = \begin{cases} 0 & \text{for } t < 0 \\ h(t) & \text{for } t \geq 0 \end{cases}$$

we set

$$(0.2) h_{11}() = h() - h_{+}().$$

As usual, the support of a function f() (denoted Supp f) is the complement of the largest open subset of \mathbf{R} on which f() vanishes. Let $e_t()$ be the function defined by

(0.3)
$$e_t(u) = \begin{cases} 1 & \text{for } 0 \le u < t \\ -1 & \text{for } t < u < 0 \end{cases}$$

and by $e_t(u) = 0$ for all other values of u. It will be convenient to denote by e_t the support of the function $e_t()$; thus, e_t is the interval with end-points 0 and t:

$$(0.4) \hspace{1cm} e_t = (t,\,0) \, \cup \, [0,\,t] = egin{cases} [0,\,t) & ext{ for } t \geq 0 \ (t,\,0) & ext{ for } t < 0 \ . \end{cases}$$

Unless otherwise specified, suppose that f() and g() belong to $L^{\text{loc}}(\omega)$ (this is the space of all the complex-valued functions which are Lebesgue integrable on each interval (a,b) with $\omega_- < \alpha < 0 < b < \omega_+)$. We denote by $f \wedge g()$ the function defined by

(0.5)
$$f \wedge g(t) = \int_0^t f(t-u)g(u)du \qquad \text{(all } t \text{ in } \omega);$$

that is,

$$(0.6) f \bigwedge g(t) = \int_{e_1} f(t-u)e_t(u)g(u)du.$$

Remark 0.7. Suppose that $\omega_{-} \leq a \leq 0 \leq b < \omega_{-}$:

(0.8) if
$$a < t < b$$
 and $u \in e_t$ then $(t - u) \in e_t \subset (a, b)$.

This is easily verified.

REMARKS 0.9. The following properties are direct consequences of (0.1)-(0.8):

(0.10)
$$f \wedge g(t) = f_+ \wedge g(t) = f_+ \wedge g_+(t)$$
 (for $t > 0$),

and

$$(0.11) f \wedge g(t) = f_{\mathsf{L}\mathsf{L}} \wedge g(t) = f_{\mathsf{L}\mathsf{L}} \wedge g_{\mathsf{L}\mathsf{L}}(t) (for \ t < 0).$$

Final Remark 0.12. If $f_1(\)=f(\)$ and $g_1(\)=g(\)$ almost-everywhere on $\omega,$ then $f_1\wedge g_1(\)=f\wedge g(\)$ almost-everywhere on $\omega.$ This is another easy consequence of (0.5)-(0.8).

LEMMA 0.13. If $a \le 0 \le b$ and if f() = 0 almost-everywhere on the interval (a, b), then $f \land g() = 0$ on (a, b).

Proof. If $t \in (a, b)$ it follows from (0.8) that

$$u \in e_t$$
 implies $(t - u) \in e_t \subset (a, b)$;

therefore, $(t-u) \in (a, b)$, whence our hypothesis (f()) = 0 almost-everywhere on (a, b) gives f(t-u) = 0 for u almost-everywhere on the interval e_t : the conclusion $f \land g(t) = 0$ now follows directly from (0.6).

LEMMA 0.14. Suppose that a < 0 < b. If $f(\) = 0$ on the interval $(\omega_-,b),\ then$

(0.15)
$$f \bigwedge g(t) = \int_0^{t-b} f(t-\tau)g(\tau)d\tau \qquad (for \ b < t < \omega_+).$$

If $h(\cdot) \in L^{\text{loc}}(\omega)$ and if $h(\cdot) = 0$ on the interval (a, ω_+) , then

$$(0.16) h \bigwedge g(t) = -\int_{t-a}^{0} h(t-\tau)g(\tau)d\tau (for \ \omega_{-} < t < a).$$

Proof. First, the case $b < t < \omega_+$. From (0.5) we have

$$(1) f \bigwedge g(t) = \int_0^{t-b} f(t-\tau)g(\tau)d\tau + \int_{t-b}^t f(t-u)g(u)du.$$

From (0.8) we see that

$$u \in [0, t)$$
 implies $(t - u) \in e_t \subset \omega$,

so that $(t-u) \in \omega$. If u > t-b, then b > t-u, whence $(t-u) \in (\omega_-, b)$; consequently, our hypothesis $(f() = 0 \text{ on } (\omega_-, b))$ gives f(t-u) = 0 whenever u > t-b: Conclusion (0.15) is now immediate from (1).

Next, the case $\omega_{-} < t < a$. From (0.5) we have

From (0.8) we again see that

$$u \in (t, 0)$$
 implies $(t - u) \in e_t \subset \omega$,

so that $(t-u) \in \omega$. If u < t-a then t-u > a, whence $(t-u) \in (a, \omega_+)$; consequently, our hypothesis $(h(\cdot) = 0)$ on (a, ω_+) gives h(t-u) = 0 whenever u < t-a: Conclusion (0.16) is now immediate from (2).

0.17. Convolution. If $F(\)$ and $G(\)$ belong to $L^{_1}(\mathbf{R}),$ then $F*G(\)$ is the function defined by

$$F*G(x) = \int_{\mathbf{R}} F(x-u)G(u)du$$
 (all x in \mathbf{R});

it is well-known that $F * G() \in L^1(\mathbf{R})$ (see [1], p. 634). Further,

(0.18) Supp
$$F * G \subset (\operatorname{Supp} F) + (\operatorname{Supp} G)$$
:

see p. 385 in [2].

Theorem 0.19. If $f(\)$ and $g(\)$ belong to $L^{\rm loc}(\omega)$, then $f \bigwedge g(\)$ belongs to $L^{\rm loc}(\omega)$, and

(0.20)
$$f \wedge g() = g \wedge f()$$
 almost-everywhere on ω .

Proof. Suppose that $\omega_- < \alpha < 0 < b < \omega_+$. If $h(\) \in L^{\text{loc}}(\omega)$, we can define the function $h_b(\)$ by

$$h_b(t) = egin{cases} h(t) & ext{ for } 0 < t < b \ 0 & ext{ otherwise.} \end{cases}$$

Similarly, $h_a()$ is defined by

$$h_a(t) = egin{cases} h(t) & ext{ for } a < t < 0 \ 0 & ext{ otherwise.} \end{cases}$$

Note that both $h_b()$ and $h_a()$ belong to $L^1(\mathbf{R})$. Set

(3)
$$F(\) = -f_a * g_a(\) + f_b * g_b(\) .$$

The four functions on the right-hand side of (3) are all integrable on \mathbf{R} ; consequently, both $f_a * g_a(\)$ and $f_b * g_b(\)$ are integrable on \mathbf{R} ; from (3) it now follows that $F(\)$ is integrable on \mathbf{R} . In consequence, if we can prove that

(4)
$$F(t) = f \wedge g(t) \quad \text{for } a < t \neq 0 < b.$$

then $f \wedge g()$ is integrable on the arbitrary sub-interval (a, b) of the interval ω ; our conclusion $f \wedge g \in L^{10\circ}(\omega)$ is at hand; moreover, Conclusion (0.20) comes from (4)–(3) and the property $F_1 * F_2() = F_2 * F_1()$ (see [1], p. 635). Accordingly, the proof will be accomplished by proving (4).

The proof of (4) is divided into two cases. First case: a < t < 0. Since Supp f_b and Supp g_b are subsets of the interval $[0, \infty)$, we see from (0.18) that

Supp
$$f_b * g_b \subset [0, \infty)$$
;

consequently, $f_b * g_b()$ vanishes for t < 0; therefore, (3) gives

(5)
$$F(t) = -f_a * g_a(t) = -\int_a^0 f_a(t-u)g(u)du$$

(for a < t < 0); the second equation comes from (2) and the fact that $g_a(u) = 0$ when u < a and when u > 0. From (5) it follows that

$$F(t) = -\int_a^t f_a(t-u)g(u)du - \int_t^0 f_a(t- au)g(au)d au$$
 ;

but a < u < t implies t - u > 0, so that $f_a(t - u) = 0$; therefore,

(6)
$$F(t) = -\int_{t}^{0} f_{a}(t-\tau)g(\tau)d\tau;$$

but $0 > \tau > t$ implies $t < t - \tau < 0$; in consequence, since a < t, we

have $a < t - \tau < 0$, so that (2) gives $f_a(t - \tau) = f(t - \tau)$: Equation (6) becomes

$$F(t) = \int_{e_t} f(t-u)e_t(u)g(u)du.$$

In view of (0.6), this concludes the proof of (4) in case a < t < 0.

Second case. 0 < t < b. As in the first case, we observe that $f_a * g_a(t) = 0$; it is a question of proving that $F(t) = f_b * g_b(t)$: the reasoning is entirely analogous to the one used in the first case.

THEOREM 0.21¹. Suppose that the functions $f(\cdot)$, $g(\cdot)$, and $h(\cdot)$ all belong to $L^{\text{loc}}(\omega)$. If the function $|f| \bigwedge (|g| \bigwedge |h|)(\cdot)$ is continuous on ω then

(0.22)
$$f \wedge (g \wedge h)(x) = (f \wedge g) \wedge h(x) \quad \text{for every } x \text{ in } \omega.$$

Proof. From (0.6) it follows that

$$(1) F \wedge (G \wedge H)(x) = \int_{\mathcal{E}_x} \int_{\mathcal{E}_x} F(x-t)G(t-u)H(u)dudt.$$

Since $|f| \wedge (|g| \wedge |h|)$ () is continuous on ω (by hypothesis), we therefore have $|f| \wedge (|g| \wedge |h|)(x) < \infty$, so that (1) gives

$$\int_{e_x}\int_{e_t}|f(x-t)g(t-u)h(u)|dudt<\infty;$$

we may therefore apply Tonelli's Theorem [3, p. 131] to write

$$(2) f \bigwedge (g \bigwedge h)(x) = \int_{e_x} \int_{x_y} f(x-t)g(t-u)h(u)dtdu,$$

where x_u is the appropriate interval. Let us prove that

$$(3) f \wedge (g \wedge h)(x) = \int_0^x h(u) \int_u^x f(x-t)g(t-u)dtdu.$$

In case x>0 the double integral is taken over the interior of the triangle

$$\{(u, t): 0 < t < x \text{ and } 0 < u < t\}:$$

consequently, the range of t (in the integral (2)) is the interval $x_u = [u, x]$: this establishes (3). In case x < 0 the double integral is taken over the triangle

$$\{(u, t): x < t < 0 \text{ and } t < u < 0\};$$

¹ The principle of this proof is due to R. B. Darst.

consequently, the range of t (in the integral (2)) is the interval $x_u = [x, u]$; the integral (2) becomes

$$f \bigwedge (g \bigwedge h)(x) = \int_x^0 \int_x^u f(x-t)g(t-u)h(u)dtdu$$
,

which again establishes the equation (3). The change of variable $\tau=t-u$ brings (3) into the form

$$f \wedge (g \wedge h)(x) = \int_0^x h(u) \int_0^{x-u} f(x-u-\tau)g(\tau)d\tau du;$$

consequently, (0.5) gives

$$f \wedge (g \wedge h)(x) = \int_0^x h(u)[f \wedge g(x-u)]du$$
:

Conclusion (0.22) is now immediate from (0.5).

DEFINITION 0.23. For any integer $n \ge 1$ we denote by $q_n()$ the function defined by the equation $q_n(0) = 0$ and

$$q_{\scriptscriptstyle n}(t) = \exp\left(rac{-1}{\mid nt\mid}
ight) \qquad \qquad ext{(for } t
eq 0).$$

Theorem 0.24. Suppose that $f(\)$ belongs to $L^{ ext{loc}}(\omega)$. If $\omega_- \le a \le 0 \le b \le \omega_+$ and if

(4)
$$f \bigwedge q_n(t) = 0$$
 for $a < t < b$ and every integer $n \ge 1$,

then f() vanishes almost-everywhere on the interval (a, b).

Proof. From (4) and (0.20) it follows that

$$0 = \lim_{n \to \infty} q_n \bigwedge f(t) = \lim_{n \to \infty} \int_{e_t} q_n(t - u) e_t(u) f(u) du ;$$

since $|q_n(\cdot)| \le 1$ we may apply the Lebesgue Dominated Convergence Theorem:

$$(5) \qquad 0 = \int_{e_t} \lim_{n \to \infty} \left[\exp \frac{-1}{n(t-u)} \right] e_t(u) f(u) du = \int_{e_t} e_t(u) f(u) du .$$

From (5) and (0.3)-(0.4) we see that

$$0 = \int_0^t f$$
 for $0 < t < b$, and $0 = -\int_t^0 f$ for $a < t < 0$,

which implies our conclusion: f() vanishes almost-everywhere on the interval (a, b).

1. The space \mathscr{N}_{ω} of generalized functions. As before, ω is an arbitrary sub-interval of $\mathbf{R} = (-\infty, \infty)$ such that $\omega \ni 0$. If f() and g() are functions, the equation f() = g() will mean that the functions are equal almost-everywhere on the interval ω .

NOTATION 1.0. Let $\mathcal{C}_0(\omega)$ be the space of all the functions which are continuous on ω and which vanish at the origin.

NOTATION 1.1. We denote by 1() the constant function defined by $\mathbf{1}(t)=1$ for all t in \mathbf{R} .

LEMMA 1.2. If $g(\)\in L^{\text{loc}}(\omega)$ then $1 \bigwedge g(\)\in \mathscr{C}_{0}(\omega)$.

Proof. From (0.5) we see that

(1.3)
$$1 \bigwedge g(t) = \int_0^t 1(t-u)g(u)du = \int_0^t g(u)du.$$

On the other hand, $g() \in L^1(a, b)$ whenever (a, b) is a compact sub-interval of the open set ω : the conclusion is now at hand.

LEMMA 1.4. If $\Psi(\)$ is continuous on $\omega,$ then $(1 \land \Psi)' = \Psi(\)$.

Proof. The equations

$$(1 \bigwedge \Psi)'(t) = \frac{d}{dt} (1 \bigwedge \Psi)(t) = \Psi(t)$$

are immediate from (1.3) and the Fundamental Theorem of Calculus.

LEMMA 1.5. Suppose that $v(\) \in \mathscr{C}_0(\omega)$. If $v'(\)$ has only countably many discontinuities and is integrable in each compact sub-interval of the open interval ω , then $v(\)=1$ $\bigwedge v'(\)$.

Proof. Take t in ω . If t > 0 the equations

$$v(t) = v(t) - v(0) = \int_{0}^{t} v'(u)du = 1 \wedge v(t)$$

are from v(0)=0, [4, p. 143], and (1.3). If t<0, the same reasoning yields

$$v(t) = -[v(0) - v(t)] = -\int_t^0 v'(u)du = 1 \wedge v(t)$$
.

THEOREM 1.6. Let $G(\)$ be a function whose derivative is continuous on the interval ω . If $f(\) \in L^{\text{loc}}(\omega)$, then $G \bigwedge f(\) \in \mathscr{C}_0(\omega)$ and

$$(1.7) G \wedge f() = G(0)(1 \wedge f)() + 1 \wedge (G' \wedge f)().$$

Proof. Clearly, the function $v(\)=G(\)-G(0)1(\)$ belongs to $\mathscr{C}_0(\omega)$; consequently, 1.5 gives

$$G(\)-G(0)1(\)=1 \land G'(\)$$

so that 0.12 implies

$$(1) G \wedge f() - G(0)(1 \wedge f)() = (1 \wedge G') \wedge f().$$

From 0.19 it follows that $(|G'| \bigwedge |f|)() \in L^{\text{loc}}(\omega)$; we can therefore conclude from 1.2 that the function $|1| \bigwedge (|G'| \bigwedge |f|)()$ is continuous on ω , whence the equation

$$(2) \qquad (1 \wedge G') \wedge f() = 1 \wedge (G' \wedge f)()$$

now comes from 0.21. Conclusion (1.7) is immediate from (1)-(2). It still remains to prove that $G \wedge f(\cdot) \in \mathcal{C}_0(\omega)$.

Set $g_1() = G' \wedge f()$; Equation (1.7) becomes

(3)
$$G \wedge f() = G(0)(1 \wedge f)() + 1 \wedge g_1()$$
.

From 0.19 we see that $g_1(\cdot) \in L^{\text{loc}}(\omega)$; the conclusion $G \bigwedge f(\cdot) \in \mathscr{C}_0(\omega)$ is obtained from (3) by setting g = f and then $g = g_1$ in 1.2.

1.8. The space of test-functions. Let W_{ω} be the linear space of all the complex-valued functions which are infinitely differentiable on ω and whose every derivative vanishes at the origin. Thus, $w(\cdot) \in W_{\omega}$ if $w(\cdot) \in \mathscr{C}_0(\omega)$ and $w^{(k)} \in \mathscr{C}_0(\omega)$ for every integer $k \geq 1$.

Example 1.9. Let $q_n(\)$ be the function defined in 0.23; it is easily verified that $q_n^{(k)}(0)=0$ for every integer $k\geq 1$; therefore, $q_n(\)\in W_\omega.$

LEMMA 1.10. If $f(\) \in L^{\text{loc}}(\omega)$ and $q(\) \in W_{\omega}$ then

$$(1.11) q \bigwedge f(\) \in \mathscr{C}_0(\omega)$$

and

$$(1.12) (q \wedge f)'() = q' \wedge f().$$

Proof. Since $q'(\)\in \mathscr{C}_0(\omega)$, we can set G=q in 1.6 to obtain (1.11) and the equations

$$(4) \quad q \wedge f(\) = q(0)(1 \wedge f)(\) + 1 \wedge (q' \wedge f)(\) = 1 \wedge (q' \wedge f)(\)$$

now come from (1.7) and q(0) = 0 (since $q(\cdot) \in \mathscr{C}_0(\omega)$). Next, set

$$\Psi(\)=q' \bigwedge f(\):$$

Equation (4) becomes

$$(6) q \wedge f() = 1 \wedge \Psi().$$

Setting G = q' in 1.6, we see from (5) that $\Psi(\cdot) \in \mathscr{C}_0(\omega)$; the equations

$$(7) (1 \wedge \Psi)'() = \Psi() = q' \wedge f()$$

therefore follow from 1.4 and (5). Conclusion (1.12) is immediate from (6)-(7).

Lemma 1.13. If $f(\)\in L^{\text{loc}}(\omega)$ and $w(\)\in W_{\omega},$ then $w\bigwedge f(\)\in W_{\omega},$ and

$$(1.14) (f \wedge w)'() = w' \wedge f() = f \wedge w'().$$

Proof. If the equation

$$(8) (w \wedge f)^{(k)}() = w^{(k)} \wedge f()$$

holds for k = n, then it holds for k = n + 1: this is easily seen by observing that the equations

$$[(w \land f)^{(n)}]'() = (w^{(n)} \land f)'() = w^{(n+1)} \land f()$$

come from (8) and (1.12). Since (8) holds for k=0, it holds for any integer $k \ge 0$. From (8) and (1.11) (with $q=w^{(k)}$) it follows that

$$(w \wedge f)^{(k)}() \in \mathscr{C}_0(\omega)$$
 for any integer $k \ge 0$;

therefore, $w \wedge f() \in W_{\omega}$. Conclusion (1.14) comes from (1.12) and (0.20).

DEFINITIONS 1.15. An operator is a linear mapping of W_{ω} into W_{ω} . If A is an operator and $w() \in W_{\omega}$, we denote by Aw() the function that the operator A assigns to w().

As usual, the product A_1A_2 of two operators is defined by

(1.16)
$$A_1 A_2 w(\) = A_1 (A_2 w)(\) \quad \text{(every } w(\) \text{ in } W_{\omega}).$$

1.17. The space of generalized functions. Let \mathscr{L}_{ω} be the set of all the operators A such that the equation

(1.18)
$$A(w_1 \wedge w_2)() = (Aw_1) \wedge w_2()$$

holds whenever $w_1()$ and $w_2()$ belong to W_{ω} .

DEFINITION 1.19. If $f() \in L^{\text{loc}}(\omega)$ we denote by f^* the operator which assigns to each w() in W_{ω} the function $f \wedge w()$:

(1.20)
$$f^*w() = f \wedge w()$$
 (for each $w()$ in W_{ω}).

THEOREM 1.21. If $f_1()$ and $f_2()$ belong to $L^{loc}(\omega)$, then

$$(1.22) f_1^* f_2^* = (f_1 \wedge f_2)^* .$$

Proof. Take any $w_2(\)$ in W_{ω} . From 1.13 and (0.20) we see that $|f_2| \bigwedge |w_2|(\) \in W_{\omega}$; consequently, we can set $w = |f_2| \bigwedge |w_2|$ and $f = |f_1|$ in 1.13 to obtain

$$|f_1| \bigwedge (|f_2| \bigwedge |w_2|)() \in W_{\omega}$$
:

from 0.21 it therefore follows that

$$(1.23) f_1 \wedge (f_2 \wedge w_2)() = (f_1 \wedge f_2) \wedge w_2(),$$

which, in view of 1.19, means that

$$f_1^*(.f_2^*w_2)() = .(f_1 \wedge f_2)^*w_2()$$
.

Since $w_2()$ is an arbitrary element of W_{ω} , Conclusion (1.22) is immediate from (1.16).

REMARK 1.24. If $f(\) \in L^{\text{loc}}(\omega)$ then $f^* \in \mathscr{N}_{\omega}$. Indeed, f^* is an operator (by (1.20), (0.20), and 1.13): it only remains to prove that the equation (1.18) holds for $A = f^*$. Setting $f_1 = f$ and $f_2 = w_1$ in (1.23), we obtain

$$f \wedge (w_1 \wedge w_2)() = (f \wedge w_1) \wedge w_2();$$

in view of (1.20), this becomes

$$f^*(w_1 \wedge w_2)() = (f^*w_1) \wedge w_2()$$
:

therefore, (1.18) holds when $A = f^*$.

DEFINITIONS 1.25. We denote by D the differentiation operator:

$$(1.26) .Dw() = w'() (all w() in W_{\omega}).$$

Let I be the identity-operator:

$$(1.27) .Iw() = w() (all w() in W_{\omega}).$$

If $f(\cdot) \in L^{\text{loc}}(\omega)$, we denote by $\{f(t)\}$ the operator defined by

(1.28)
$$(f(t))w() = f \wedge w'()$$
 (all $w()$ in W_{ω});

the operator $\{f(t)\}$ will be called the operator of the function $f(\cdot)$.

REMARK 1.29. $\{1(t)\} = I$. Indeed, the equations

$$\{1(t)\}w(\)=1 \land w'(\)=w(\)$$

are from (1.28) and 1.5.

Remark 1.30. $D \in \mathscr{S}_{\omega}$. Indeed, D is clearly an operator, and the equations

$$D(w_1 \wedge w_2)() = (w_1 \wedge w_2)'() = w'_1 \wedge w_2() = (Dw_1) \wedge w_2()$$

are from (1.26), (1.14), and (1.26).

DEFINITION 1.31. Let (a, b) be a sub-interval of ω such that $a \leq 0 \leq b$; if $A \in \mathscr{N}_{\omega}$ and $B \in \mathscr{N}_{\omega}$, we say that A agrees with B on (a, b) if

$$Aw(t) = Bw(t)$$
 for $a < t < b$ and for every $w(\cdot)$ in W_{a} .

THEOREM 1.32. Suppose that $f_k(\cdot) \in L^{\text{loc}}(\omega)$ for k = 1, 2. If $\{f_1(t)\}$ agrees with $\{f_2(t)\}$ on (a, b), then $f_1(\cdot) = f_2(\cdot)$ almost-everywhere on the interval (a, b). Conversely, if the functions are equal almost-everywhere on (a, b), then their operators agree on (a, b).

Proof. Set $h() = f_1() - f_2()$. By hypothesis, the relation

(1)
$$\{h(t)\}w(t) = 0$$
 (for $a < t < b$)

holds for every w() in W_{ω} : it will suffice to show that h()=0 almost-everywhere on (a,b). Take any integer $n\geq 1$, and let $q_n()$ be the function that was defined in 0.23; since $q_n()\in W_{\omega}$ (see 1.9), it follows from 1.13 (with f=1) that $q_n \wedge 1()\in W_{\omega}$; in view of (0.20) we may therefore set $w()=1 \wedge q_n()$ in (1) to obtain

The equations

(3)
$$\{h(t)\}(1 \wedge q_n)() = h \wedge (1 \wedge q_n)'() = h \wedge q_n()$$

are from (1.28) and 1.4. Combining (2) and (3), we see that $h \land q_n(t) = 0$ for a < t < b and for every integer $n \ge 1$; the conclusion $h(\cdot) = 0$ (almost-everywhere on (a, b)) now comes from 0.24.

Conversely, suppose that $f_1(\)=f_2(\)$ almost-everywhere; this means that $h(\)=0$ almost-everywhere on $(a,\ b)$; we may therefore apply 0.13 to conclude that

 $h \wedge w'() = 0$ for a < t < b and every w() in W_{ω} ;

consequently, (1.28) gives $\{h(t)\}w(t) = 0$, so that

$$\{f_1(t)\}w(t) = \{f_2(t)\}w(t)$$
 for $a < t < b$ and $w(\cdot) \in W_a$:

this proves that $\{f_1(t)\}\$ agrees with $\{f_2(t)\}\$ on (a, b).

COROLLARY 1.33. Suppose that $f_1()$ and $f_2()$ belong to $L^{loc}(\omega)$:

$$f_1() = f_2()$$
 if (and only if) $\{f_1(t)\} = \{f_2(t)\}$.

Proof. Set $a = \omega_{-}$ and $b = \omega_{+}$ in 1.32: by definition, two operators are equal if they agree on (a, b); moreover, we agree that the equation $f_1() = f_2()$ means that these functions are equal almost-everywhere on (a, b). The conclusion is now immediate from 1.32.

THEOREM 1.34. The mapping $f(\)\mapsto \{f(t)\}$ is an injective linear transformation of $L^{\text{loc}}(\omega)$ into \mathscr{S}_{ω} such that

$$\{f(t)\} = f^*D.$$

Proof. The equation (1.35) is immediate from (1.28), (1.16), and (1.26). On the other hand, it is easily verified that \mathscr{A}_{ω} is an algebra (if $A_k \in \mathscr{A}_{\omega}$ for k=1,2, then $A_1A_2 \in \mathscr{A}_{\omega}$): since $f^* \in \mathscr{A}_{\omega}$ (by 1.24), and since $D \in \mathscr{A}_{\omega}$ (by 1.30), the conclusion $\{f(t)\} \in \mathscr{A}_{\omega}$ comes from (1.35). From 1.33 we may now conclude that $f(\cdot) \mapsto \{f(t)\}$ is an injective transformation of $L^{\text{loc}}(\omega)$ into \mathscr{A}_{ω} : the linearity is clear from (1.28).

LEMMA 1.36. If $B \in \mathcal{A}_{m}$ then the equation

(1.37)
$$B(p_1 \wedge p_2)() = p_1 \wedge (Bp_2)()$$

holds for every $p_1()$ and $p_2()$ in W_{ω} .

Proof. The equations

$$B(p_1 \land p_2)() = B(p_2 \land p_1)() = (Bp_2) \land p_1()$$

are from (0.20), (0.12), and (1.18); conclusion (1.37) is now immediate from (0.20).

Theorem 1.38. \mathcal{N}_{ω} is a commutative algebra.

Proof. The multiplication of the algebra \mathcal{N}_{ω} is the usual operator-multiplication (defined in (1.16)); it is easily verified that \mathcal{N}_{ω} is

an algebra. Take A_1 and A_2 in \mathscr{S}_{ω} ; to prove the commutativity, it will suffice to demonstrate that $A_1A_2-A_2A_1=0$. Let $q_1()$ and $q_2()$ be any two elements of W_{ω} ; we begin by observing that

(1)
$$A_1A_2(q_1 \wedge q_2')() = A_1[(A_2q_1) \wedge q_2']() = (A_2q_1) \wedge (A_1q_2')()$$
:

these equations are from (1.16), (1.18), and (1.37) (with $p_1 = .A_2 q_1'$ and $p_2 = q_2'$). On the other hand, the equations

$$(2) \qquad A_2A_1(q_1 \land q_2')() = A_2(q_1 \land (A_1q_2')) = (A_2q_1) \land (A_1q_2')()$$

are from (1.16), (1.37), and (1.18). We now subtract (2) from (1) to obtain

(3)
$$A(q_1 \wedge q_2)(1) = 0$$
, where $A = A_1A_2 - A_2A_1$.

From (3) and (1.18) it results that

$$0 = (.Aq_1) \bigwedge q_2'() = \{.Aq_1(t)\}q_2()$$
 (all $q_2()$ in W_{ω});

the last equation is from (1.28). Consequently, $0 = \{.Aq_1(t)\}\$; we may now infer from 1.33 that $0 = .Aq_1($) for each $q_1($) in W_{ω} : the desired conclusion A=0 is at hand.

Theorem 1.39. If $A \in \mathscr{N}_{\omega}$ and $w(\cdot) \in W_{\omega}$, then $\{Aw(t)\} = A\{w(t)\}$.

Proof. Let $w_2()$ be an arbitrary element of W_{ω} ; the equations

(4)
$$\{Aw(t)\}w_2() = (Aw) \wedge w_2'() = A(w \wedge w_2')()$$

are from (1.28) and (1.18). On the other hand, the equations

(5)
$$.A\{w(t)\}w_2() = .A(.\{w(t)\}w_2)() = .A(w \wedge w_2')()$$

come from (1.16) and (1.28). Comparing (4) and (5):

(6)
$$.(Aw(t))w_2() = .(A\{w(t)\})w_2() .$$

Since (6) holds for every $w_2()$ in W_{ω} , the proof is complete.

Theorem 1.40. If $f_1()$ and $f_2()$ both belong to $L^{loc}(\omega)$, then

$$D\{f_1 \bigwedge f_2(t)\} = \{f_1(t)\}\{f_2(t)\}.$$

Proof. The equations

(8)
$$D\{f_1 \land f_2(t)\} = D(f_1 \land f_2)^*D = Df_1^*f_2^*D = (f_1^*D)(f_2^*D)$$

are obtained by using (1.35) (with $f = f_1 \wedge f_2$), by using (1.22), and by utilizing the commutativity and the associativity of the multiplication in \mathcal{L}_{ω} . Conclusion (7) comes directly from (8) and two more

applications of 1.35.

2. Two-sided operational calculus. If c is a scalar (that is, a complex number), the equation $\{c1(t)\} = cI$ comes from 1.29 and the linearity of the transformation $f() \mapsto \{f(t)\}$; consequently, $cI \in \mathscr{S}_{\omega}$ (recall that I is the identity: (1.27)). Since the correspondence $c \mapsto cI$ is an algebraic isomorphism of the field of scalars into the algebra \mathscr{S}_{ω} , there is no reason to distinguish between the scalar c and the operator cI:

$$(2.0) c = cI = \{c1(t)\} for any scalar c.$$

Since $ct^n 1(t) = ct^n$ for all t in **R**, it is natural to write $\{ct^n\}$ instead of $\{ct^n 1(t)\}$; in particular,

$$(2.1) c = cI = \{c\} \text{ and } 1 = I = \{1\}.$$

Substituting $f_1 = 1$ into 1.40:

$$(2.2) D\{1 \land f_2(t)\} = \{f_2(t)\}.$$

We can also combine the linearity property with (2.1) to obtain

$$\{c_1f_1(t)+c_2f_2(t)+c_3\}=c_1\{f_1(t)\}+c_2\{f_2(t)\}+c_3;$$

of course, we suppose throughout that c_k (k=1,2,3) are scalars, and $f_k()$ (k=1,2) belong to $L^{\text{loc}}(\omega)$.

Theorem 2.4. Suppose that f() is a function which is continuous on the interval ω . If f'() has at most countably-many discontinuities and is integrable in each compact sub-interval of ω , then

$$\{f'(t)\} = D\{f(t)\} - f(0)D.$$

Proof. If $v(\) = f(\) - f(0)1$, then $v'(\) = f'(\)$ and we may apply 1.5:

(1)
$$f() - f(0)1 = v() = 1 \land f'()$$
.

From (1) and (2.3) it follows that

$$\{f(t)\} - f(0) = \{1 \land f'(t)\}.$$

Multiplying by D both sides of (2), we obtain

$$D\{f(t)\} - f(0)D = D\{1 \land f'(t)\} = \{f'(t)\}:$$

the last equation is from (2.2).

2.6. Invertibility. As usual, an operator A is called invertible

if $A \in \mathscr{N}_{\omega}$ and there exists an operator X in \mathscr{N}_{ω} such that AX = 1. Suppose that A is an invertible operator; since \mathscr{N}_{ω} is a commutative algebra, it is easily verified that there exists exactly one operator A^{-1} such that $A^{-1} \in \mathscr{N}_{\omega}$ and $AA^{-1} = 1$. Setting f(t) = t in 2.4, we obtain

$$(2.7) {1} = D{t};$$

consequently, D is an invertible operator, and $D^{-1} = \{t\}$.

THEOREM 2.8. Suppose that $Y \in \mathscr{S}_{\omega}$ and $V \in \mathscr{S}_{\omega}$. If the equation VY = R holds for some invertible R in \mathscr{S}_{ω} , then V is invertible, and Y = R/V, where R/V denotes RV^{-1} .

Proof. Easy; see 1.76 in [5].

REMARKS 2.9. From (2.5) we see that

$$(2.10) D\{\sin t\} = \{\cos t\},\,$$

whence $D^2\{\sin t\} = D\{\cos t\} = -\{\sin t\} + D$ (this last equation also comes from (2.5)); we may therefore use 2.8 to obtain

(2.11)
$$\{\sin t\} = \frac{D}{D^2 + 1}.$$

The equation

(2.12)
$$D^{-k} = \left\{ \frac{t^k}{k!} \right\} \qquad \text{(for any integer } k \ge 0 \text{)}$$

is an easy consequence of (2.7) and (2.5).

2.13. NOTATION. We shall often write f instead of $\{f(t)\}$. Consequently, (2.3) can be re-written in the form

$$\{c_1f_1(t)+c_2f_2(t)+c_3\}=c_1f_1+c_2f_2+c_3,$$

and 1.33 becomes

(2.15)
$$f_1 = f_2$$
 if (and only if) $f_1() = f_2()$.

Combining 1.40 with (0.5):

(2.16)
$$f_1 \wedge f_2 = f_1 D^{-1} f_2 = \left\{ \int_0^t f_1(t-u) f_2(u) du \right\}.$$

Also, note that (2.2) gives

$$(2.17) f_2 = D(1 \land f_2);$$

that is,

$$(2.18) D^{-1}f_2 = 1 \wedge f_2;$$

combining with (1.3):

(2.19)
$$\left\{\int_0^t f_2\right\} = D^{-1}f_2$$
 .

Finally, note that Theorem 1.39 becomes

$$(2.20) Aw = Aw (for A \in \mathscr{M}_{\omega} \text{ and } w() \in W_{\omega}).$$

APPLICATION 2.21. Given a function f() in $L^{\text{loc}}(-\alpha,\alpha)$, let us solve the differential equation

(1)
$$y''(t) + y(t) = f(t)$$
 $(-\alpha < t < \alpha);$

for example, we could have $f(t) = \sec(\pi t/2\alpha)$. To solve (1), set $\omega = (-\alpha, \alpha)$, $c_0 = y(0)$, $c_1 = y'(0)$, and inject both sides of (1) into \mathscr{L}_{ω} ; this gives $D^2y + y = c_1D + c_0D^2 + f$; solving for y:

$$y=c_{\scriptscriptstyle 1}rac{D}{D^{\scriptscriptstyle 2}+1}+c_{\scriptscriptstyle 0}Drac{D}{D^{\scriptscriptstyle 2}+1}+rac{D}{D^{\scriptscriptstyle 2}+1}\,D^{\scriptscriptstyle -1}f$$
 :

we can now use (2.11), (2.10), and (2.16) to write

$$y=c_{\scriptscriptstyle 1}\sin+{c_{\scriptscriptstyle 0}}\cos+\left\{\int_{\scriptscriptstyle 0}^{t}(\sin{(t-u)})f(u)du
ight\}$$
 .

3. Translation properties. In this section we shall describe some two-sided analogues of the translation properties described in [5]. If $b \ge 0$ we define the function $T_b()$ by

(3.0)
$$\mathsf{T}_b(t) = \begin{cases} 0 & \text{for } t < b \\ 1 & \text{for } t \geq b \end{cases}.$$

If a < 0 we set

(3.1)
$$\mathsf{T}_a(t) = \begin{cases} -1 & \text{for } t < a \\ 0 & \text{for } t \ge a \end{cases}.$$

Observe that

(3.2)
$$T_x(\) = 0 \text{ on } (-|x|, |x|) \text{ (for any } x \text{ in } \mathbf{R}).$$

Until further notice, let g() be a function in $L^{\text{loc}}(\omega)$, and let $g_x()$ be the function defined by

$$(3.3) g_x(u) = \mathsf{T}_x(u)g(u-x) (for \ u \in \omega);$$

note that $g_x(\cdot) \in L^{\text{loc}}(\omega)$.

LEMMA 3.4. If
$$b \ge 0$$
 then $1 \land g_b() = T_b \land g()$.

Proof. Observe that $g_b(\)=0={\sf T}_b(\)$ on the interval $(\pmb{\omega}_-,\,b)$; from 0.13 it therefore follows that

$$(1) g_b \wedge \mathbf{1}(t) = \mathbf{0} = \mathsf{T}_b \wedge g(t) (\text{for } t \in (\omega_-, b)).$$

Next, suppose that t > b and $t \in \omega$: the equation

$$1 \bigwedge g_b(t) = \int_0^t 1(t-u)\mathsf{T}_b(u)g(u-x)du$$

comes from (0.5) and (3.3); in view of (3.0), we see that

(2)
$$1 \bigwedge g_b(t) = \int_b^t g(u-x)du = \int_0^{t-b} g(\tau)d\tau = \mathsf{T}_b \bigwedge g(t):$$

the second equation is obtained by the change of variable $\tau = u - b$; the last equation comes from (0.15) by setting $f = T_b$ in 0.14. The conclusion is immediate from (1)-(2).

THEOREM 3.5. If $x \in \mathbb{R}$ then $1 \wedge g_x(\cdot) = T_x \wedge g(\cdot)$ and

$$(3.6) g_x = g\mathsf{T}_x.$$

Proof. In view of 3.4, it only remains to consider the case x=a<0. Observe that $g_a(\)=0={\rm T}_a(\)$ on the interval (a,ω_+) ; from 0.13 it therefore follows that

$$(3) g_a \wedge 1(t) = 0 = \mathsf{T}_a \wedge g(t) (\text{for } t \in (a, \omega_+)).$$

Next, suppose that t < a and $t \in \omega$: as in the proof of 3.4, we see that

(4)
$$1 \bigwedge g_a(t) = -\int_t^a g(u-x)du = -\int_{t-a}^0 g(\tau)d\tau :$$

the second equation is obtained by the change of variable $\tau=u-a$. Note that $T_a(\)=0$ on the interval (a,ω_+) : we can therefore set $h=T_a$ in 0.14 and use (0.16) to obtain

(5)
$$\mathsf{T}_a \bigwedge g(t) = -\int_{t-a}^0 \mathsf{T}_a(t-\tau)g(\tau)d\tau = -\int_{t-a}^0 g(\tau)d\tau.$$

From (4)-(5) it results that $1 \bigwedge g_a(t) = T_a \bigwedge g(t)$ for $\omega_- < t < \alpha$; the conclusion $1 \bigwedge g_a(\) = T_a \bigwedge g(\)$ is now immediate from (3). The equations

$$g_x = D(1 \land g_x) = D(\mathsf{T}_x \land g) = \mathsf{T}_x g$$

are from (2.17), from our conclusion $(1 \bigwedge g_x()) = T_x \bigwedge g)$, and from (2.17): this proves (3.6).

3.7. $Particular \ cases.$ In view of (3.3), we can write (3.6) in the form

$$\{\mathsf{T}_x(t)g(t-x)\} = \mathsf{T}_xg \qquad \text{(for } x \in \mathbf{R} \text{ and } g(\cdot) \in L^{\mathrm{loc}}(\omega)\}.$$

This equation is a useful substitute for the Laplace-transform identity

$$\mathfrak{L}[\mathsf{T}_x(t)g(t-x)] = e^{-xs}\mathfrak{L}[g(t)]$$
.

Let \coprod () be the function 1() - 1₊(); that is,

From (0.1) and (3.0) it follows that $g_+(\)=T_0(\)g(\)$; but (3.8) then gives $\{g_+(t)\}={\sf T}_0g,$ so that

(3.9.1)
$$\{g_{\coprod}(t)\} = g - \mathsf{T}_0 g = \coprod g$$
 (by (0.2) and (3.9)).

Setting $g(\)=T_0(\)$ in (3.8) we see that $T_0=\{T_0(t)T_0(t)\}=T_0T_0$, whence it results that

(3.10)
$$T_0 \coprod = 0$$
, $T_0^2 = T_0$, and $\coprod^2 = \coprod$.

If $A\in\mathscr{N}_{\omega}$ we set $A_{+}=\mathsf{T}_{\scriptscriptstyle{0}}A$ and $A_{\mathsf{I}\!\mathsf{I}}=\mathsf{L}\!\mathsf{I}A$; clearly, $A=A_{\mathsf{L}\!\mathsf{I}}+A_{+}$ and $A_{\mathsf{L}\!\mathsf{I}}A_{+}=0$. If $B\in\mathscr{N}_{\omega}$ then

$$(3.11) A_{\mathrm{II}}B = A_{\mathrm{II}}B_{\mathrm{II}} = \coprod (AB)$$

and

$$(3.12) A_{+}B = AB_{+} = A_{+}B_{+} = (AB)_{+}.$$

Let $(B\mathscr{A})$ denote the set $\{BA: A \in \mathscr{A}\}$; it is easily seen that $(\coprod \mathscr{A})$ and $(\mathsf{T}_0\mathscr{A})$ are ideals in the algebra \mathscr{A}_ω , and \mathscr{A}_ω is the direct sum of these ideals:

$$\mathscr{A} = (\coprod \mathscr{A}) \oplus (T_0 \mathscr{A}).$$

Note that $\operatorname{sgn} t = -\coprod(t) + \mathsf{T}_0(t)$, so that $\operatorname{sgn} = -\coprod + \mathsf{T}_0$. It is easily verified that $\{|t|\} = D^{-1}\operatorname{sgn}$, and

(3.14)
$$\{e^{a|t|}\} = \frac{D^2 + aD \operatorname{sgn}}{D^2 - a^2}.$$

If $\alpha > 0$ we set

$$1^{\alpha}(\) = -T_{-\alpha}(\) + T_{\alpha}(\);$$

from (3.8) it follows readily that

$$\mathbf{1}^{\alpha}g = \{-\mathsf{T}_{-\alpha}(t)g(t+\alpha) + \mathsf{T}_{\alpha}(t)g(t-\alpha)\}$$
.

If $h(\cdot)$ is a periodic function of period α , then

$$h = \frac{\{[1 - 1^{\alpha}(t)]h(t)\}}{1 - 1^{\alpha}}$$
.

Finally, if $\alpha \geq 0$ and $\beta \geq 0$ then $1^{\alpha}1^{\beta} = 1^{\alpha+\beta}$ and

$$\mathsf{T}_{\alpha}\mathsf{T}_{\beta}=\mathsf{T}_{\alpha+\beta}:$$

we define 1^{α} to be 1 in case $\alpha = 0$.

3.16. Other operational calculi. Mikusiński's injection (of $L^{\text{loc}}(0, \infty)$ into the Mikusiński field) is an extension of the Laplace transformation; analogously, our injection $f(\cdot) \mapsto \{f(t)\}$ is comparable to the two-sided Laplace transformation. However, if $\mathfrak{L}\{f(t)\}$ denotes the Laplace transform of the function $f(\cdot)$, then

$$\mathfrak{L}\{e^{-t}-e^t\}(s)=\frac{2}{1-s^2}=\mathfrak{L}\{e^{-|t|}\}(s)$$
;

the first equation holds for s>1, the second for 0< s<1. This contrasts with

$$\{e^{-t} - e^t\} = \frac{2D}{1 - D^2} \neq \{e^{-|t|}\}$$
 (see (3.14)).

A problem which is not Laplace-transformable is discussed in 6.7.

THEOREM 3.17. If $\alpha > 0$ and $h(\cdot) \in L^{\text{loc}}(\omega)$, then the equation

(3.18)
$$\left\{ \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) g(t-k\alpha) \right\} = g \left\{ \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) \right\}$$

holds for any scalar-valued sequence c_k $(k = 0, \pm 1, \pm 2, \pm 3, \cdots)$.

Proof. Set

$$g(\mathsf{T}_lpha)(\) = \sum\limits_{k=-\infty}^\infty c_k g_{klpha}(\)$$
 .

Take any t in ω : there exists an integer m > 0 such that $|t| < m\alpha$. Clearly,

$$g(\mathsf{T}_lpha)(t) = \sum\limits_{|k| < m} c_k g_{klpha}(t) + \sum\limits_{|i| \ge m} c_i g_{ilpha}(t)$$
 .

Since $t \in (-m\alpha, m\alpha) \subset (-|i|\alpha, |i|\alpha)$ and since $g_{i\alpha}(\cdot) = 0$ on the interval

 $(-|i|\alpha, |i|\alpha)$ (by (3.2) and (3.3)), we have $g_{i\alpha}(t) = 0$: consequently, the series (1) converges, and (3.3) gives

$$g(\mathsf{T}_{\alpha})(t) = \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) g(t-k\alpha) .$$

The equations

$$g(\mathsf{T}_{\scriptscriptstylelpha}) = D\{1 \bigwedge g(\mathsf{T}_{\scriptscriptstylelpha})\} = D\Big\{ \sum_{k=-\infty}^\infty \, c_k (1 \bigwedge g_{klpha})(t) \Big\}$$

are from (2.17) and (1); from 3.5 it therefore follows that

$$g(\mathsf{T}_\alpha) \,=\, D\Big\{ \sum_{k=-\infty}^\infty \, c_k(\mathsf{T}_{k\alpha} \, \bigwedge \, g)(t) \Big\} \; .$$

Equation (4) gives

$$(5) \hspace{1cm} g(\mathsf{T}_{\alpha}) \, = \, D \Big\{ g \, \bigwedge \, \sum_{k=-\infty}^{\infty} \, c_k \mathsf{T}_{k\alpha}(t) \Big\} \, = \, g \Big\{ \sum_{k=-\infty}^{\infty} \, c_k \mathsf{T}_{k\alpha}(t) \Big\} :$$

the second equation is from 1.40. Conclusion (3.18) now comes from (3) and (5).

Remark 3.19. If c is a scalar and if $\lambda \ge 0$, the equation

$$rac{1^{\lambda}h}{1-c1^{lpha}}=\left\{ \sum_{k=0}^{\infty}c^{k}(h_{\mathrm{LI}}(t+klpha+\lambda)\,+\,h_{+}(t-klpha-\lambda))
ight\}$$

is not hard to verify; it is the two-sided analogue of Theorem 5.29 in [5].

THEOREM 3.20. If $x \in \mathbb{R}$ and $w(\cdot) \in W_{\omega}$ then

(3.21)
$$T_x w(t) = T_x(t)w(t-x)$$
 (for $t \in \omega$).

Proof. The equations

$$\{T_x(t)w(t-x)\}=T_xw=.T_xw$$

come from (3.8) and (2.20): Conclusion (3.21) now follows from (2.15).

LEMMA 3.22. If $R \in \mathscr{N}_{\omega}$ and $w() \in W_{\omega}$ then

(3.23)
$$R_{\coprod}w(\)=[.Rw]_{\coprod}(\)$$
 .

Proof. Setting g = Rw in (3.9.1), we obtain

(1)
$$\{[.Rw]_{\coprod}(t)\} = \coprod \{.Rw(t)\} = \coprod R\{w(t)\}:$$

the last equation is from 1.39. Since $B_{\coprod} = \coprod B$ (by definition), Equa-

tion (1) becomes

$$\{[.Rw]_{\coprod}(t)\} = R_{\coprod}\{w(t)\} = \{.R_{\coprod}w(t)\}:$$

the second equation is from 1.39. Conclusion (3.23) is immediate from (2) and 1.33.

THEOREM 3.24. If $A \in \mathcal{A}_{\omega}$ and $B \in \mathcal{A}_{\omega}$, then

 $A_{\rm LL}=B_{\rm LL}$ if (and only if) A agrees with B on $(\omega_-,0)$.

Proof. Recall that $(\omega_{-},0)=\omega\cap(-\infty,0)$. Let w() be any element of W_{ω} ; the equations

$$[.Aw]_{II}() = .A_{II}w() = .B_{II}w() = [.Bw]_{II}()$$

are from (3.23), our hypothesis $A_{II} = B_{II}$, and (3.23). Since $h_{II}(t) = h(t)$ for t < 0 (see (0.1)-(0.2)), Equation (3) implies

(4)
$$Aw(t) = Bw(t) \qquad (\text{for } \omega_{-} < t < 0).$$

From (4) and 1.31 we see that A agrees with B on $(\omega_{-}, 0)$. Conversely, if A agrees with B on $(\omega_{-}, 0)$, then (4) holds, whence the equation $[.Aw]_{\text{LI}}(\) = [.Bw]_{\text{LI}}(\)$: combining this with (3.23), we obtain

$$A_{II}w() = B_{II}w()$$
 (for every $w()$ in W_{ω}),

which gives $A_{\coprod} = B_{\coprod}$.

THEOREM 3.25. The space $(T_0 \mathcal{A})$ consists of all the elements of \mathcal{A}_{ω} which agree with 0 on $(\omega_{-}, 0)$. Moreover,

$$(3.26) B \in (\mathsf{T}_0 \mathscr{A}) \Longleftrightarrow B_{\mathsf{II}} = 0 \Longleftrightarrow B = B_+.$$

Proof. We begin with (3.26). If $B \in (\mathsf{T}_0 \mathscr{S})$ then $B = \mathsf{T}_0 A$ for some A in \mathscr{S}_ω ; therefore, $\coprod B = 0$ (by (3.10)); this gives $B_{\coprod} = 0$; since $B = B_{\coprod} + B_{+}$, the equation $B_{\coprod} = 0$ implies $B = B_{+}$; if $B = B_{+}$ then $B = \mathsf{T}_0 B$, whence $B \in (\mathsf{T}_0 \mathscr{S})$. This proves (3.26).

If $B \in (\mathsf{T}_0 \mathscr{M})$ then $B_{\mathsf{II}} = 0$ (by (3.26)), which implies that B agrees with 0 on the interval $(\omega_-, 0)$ (by 3.24). Conversely, if B agrees with 0 on the interval $(\omega_-, 0)$, then $B_{\mathsf{II}} = 0$ (by (3.24)): the conclusion $B \in (\mathsf{T}_0 \mathscr{M})$ now comes from (3.26).

THEOREM 3.27. If $B \in \mathscr{S}_{\omega}$ is such that the equation $f = B_{\coprod}$ holds for some f() in $L^{\text{loc}}(\omega)$, then f agrees with B on the interval $(\omega_{-}, 0)$.

Proof. The equations

$$(3.28) f_{\mathrm{II}} = \coprod f = \coprod B_{\mathrm{II}} = \coprod^{2} B = \coprod B = B_{\mathrm{II}}$$

are from the definition $(f_{II} = \coprod f)$, from our hypothesis, from the definition $(B_{II} = \coprod B)$, from (3.10), and again from the definition $(B_{II} = \coprod B)$. From (3.28) and 3.24 we see that f agrees with B on the interval $(\omega_{-}, 0)$.

4. The topological space \mathscr{N}_{ω} . Let the function space W_{ω} be endowed with the topology of pointwise convergence on the interval ω : this enables us to topologize \mathscr{N}_{ω} by endowing it with the product topology (recall that \mathscr{N}_{ω} consists of mappings of W_{ω} into the topological space W_{ω}). Consequently, the equation

$$B = \lim_{\lambda o \mu} A_{\lambda}$$
 (for B and A_{λ} in \mathscr{S}_{ω})

means that

(1)
$$.Bw(t) = \lim_{\lambda \leftarrow \mu} .A_{\lambda}w(t) \qquad \text{(for } t \in \omega \text{ and } w(\cdot) \in \omega_{\omega}).$$

It is immediately clear that \mathscr{N}_{ω} is a locally convex Hausdorff vector space: in fact, H. Shultz has proved that it is sequentially complete and that the multiplication of the algebra \mathscr{N}_{ω} is sequentially continuous.

We denote by $\lim A_{\lambda}$ the mapping that assigns to each w() in W_{ω} the function .Bw() defined by (1):

$$(4.1) \qquad \qquad . \Big(\lim_{\lambda \to a} A_{\lambda}\Big) w(\) = \lim_{\kappa \to a} .A_{\lambda} w(\) \qquad \text{(every } w(\) \text{ in } W_{\omega}).$$

If $x \mapsto F(x)$ is a mapping into \mathscr{N}_{ω} , we set

(4.2)
$$\frac{d}{dx} F(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[F(x + \varepsilon) - F(x) \right];$$

in view of (4.1), this means that dF(x)/dx is the operator defined for any $w(\)$ in W_{ω} by

(4.3)
$$\cdot \left(\frac{d}{dx} F(x)\right) w(\) = \frac{\partial}{\partial x} \left(\cdot F(x) w(\) \right) .$$

Theorem 4.4. If
$$x \in \mathbf{R}$$
, then $\left(\frac{d}{dx}\right)\mathsf{T}_x = -\mathsf{T}_xD$.

Proof. Take any $w(\)$ in $W_{\omega},$ take any $t\neq x$ in ω ; from (4.3) we see that

(2)
$$(\frac{d}{dx} \mathsf{T}_x) w(t) = \frac{\partial}{\partial x} (\mathsf{T}_x w(t)) = \frac{\partial}{\partial x} \mathsf{T}_x(t) w(t-x) :$$

the second equation is from (3.21). Set $E_1 = \{x : x > t\}$ and $E_2 = \{x : x < t\}$: note that the function $x \mapsto T_x(t)$ is constant on E_k when k = 1, 2; consequently, since $x \neq t$ then $x \in E_k$ for some k, whence $\partial T_x(t)/\partial x = 0$; we can use this to infer from (2) that

$$\cdot \left(\frac{d}{dx}\mathsf{T}_x\right) \! w(t) = \mathsf{T}_x(t) \, \frac{\partial}{\partial x} \, w(t-x) = -\mathsf{T}_x(t) w'(t-x) \qquad \text{(all } t \neq x).$$

Consequently, we may use (3.21) to write

$$.\left(\frac{d}{dx}\mathsf{T}_x\right)w(\)=-.\mathsf{T}_xw'(\)$$
 (all $w(\)$ in $W_\omega).$

Calling $B=dT_x/dx$, this gives $.Bw(\)=-.{\sf T}_xDw(\),$ whence the conclusion $B=-{\sf T}_xD$.

Corollary 4.5. if $x \in \mathbf{R}$ then $D\mathsf{T}_x = \lim_{\varepsilon \to 0+} (1/\varepsilon)(\mathsf{T}_x - \mathsf{T}_{x+\varepsilon})$.

Proof. From 4.4 and (4.2) it follows that

$$-\mathsf{T}_x D = \lim_{\varepsilon \to 0} rac{1}{arepsilon} \left(\mathsf{T}_{x+arepsilon} - \mathsf{T}_x
ight)$$
 ,

which implies directly our conclusion.

REMARK 4.6. Corollary 4.5 indicates that DT_x corresponds to the Dirac delta distribution δ_x concentrated at the point x.

Theorem 4.7. If $F_k(\)$ $(k=0,\,\pm 1,\,\pm 2,\,\pm 3,\,\cdots)$ is a sequence in $L^{\text{loc}}(\omega),\,\,then$

$$(4.8) \qquad \sum_{k=-\infty}^{\infty} \mathsf{T}_{k\alpha} F_k = \left\{ \sum_{k=-\infty}^{\infty} \mathsf{T}_{k\alpha}(t) F_k(t-k\alpha) \right\}.$$

Proof. Let $T_{k\alpha}F_k(\cdot)$ be the function defined by

(1)
$$\mathsf{T}_{k\alpha}F_k(t) = \mathsf{T}_{k\alpha}(t)F_k(t-k\alpha).$$

Set

$$f_s(\) = \sum_{k=-s}^s \mathsf{T}_{k\alpha} F_k(\) \ .$$

For any integer $n \ge 1$, observe that

$$f_{\infty}(\)=f_{n}(\)+\sum_{|i|>n}\mathsf{T}_{i\alpha}F_{i}(\)\;;$$

since $(-n\alpha, n\alpha) \subset (-|i|\alpha, |i|\alpha)$ and since $T_{i\alpha}F_i() = 0$ on the interval $(-|i|\alpha, |i|\alpha)$ (because of (3.2) and (1)), we may conclude that $T_{i\alpha}F_i() = 0$

0 on the interval $(-n\alpha, n\alpha)$: consequently, (3) becomes

(4)
$$f_{\infty}() = f_{n}()$$
 on $(-n\alpha, n\alpha)$ for any integer $n \ge 1$.

If $t \in \omega$ there exists an integer $m \ge 1$ such that $t \in (-m\alpha, m\alpha)$: from (4), (2), and (1) we see that

$$\sum_{k=-\infty}^{\infty} \mathsf{T}_{k\alpha}(t) F_k(t-k\alpha) = f_{\infty}(t) = \sum_{k=-m}^{\infty} \mathsf{T}_{k\alpha} F_k(t) .$$

On the other hand,

$$(6) f_n = \left\{ \sum_{k=-n}^n \mathsf{T}_{k\alpha} F_k(t) \right\} = \sum_{k=-k}^n \mathsf{T}_{k\alpha} F_k ;$$

the second equation is from (3.8) and (1).

In view of (5)-(6), the proof of (4.8) will be accomplished by showing that

$$\lim_{n\to\infty} f_n = f_\infty .$$

To that effect, take any $w(\)$ in $W_{\ \omega}$, and any t in the interval $\ \omega$; we must prove that

(8)
$$\lim_{n \to \infty} f_n w(t) = f_\infty w(t).$$

Observe that there exists an integer $m \ge 1$ such that $|t| < m\alpha$; suppose that $n \ge m$; from (4) and 1.32 it follows that the operators f_n and f_∞ agree on $(-n\alpha, n\alpha)$: therefore, 1.31 gives

(9)
$$f_n w(t) = f_\infty w(t) \qquad \text{(for all } n \ge m);$$

this is because $w() \in W_{\omega}$ and $-m\alpha < t < m\alpha$. Conclusion (8) is immediate from (9).

REMARK 4.9. Let c_k $(k=0,\pm 1,\pm 2,\pm 3,\cdots)$ be a scalar-valued sequence. Setting $F_k(\)=c_k$ in (4.8), we obtain

$$(4.10) \qquad \qquad \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha} = \left\{ \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) \right\} ;$$

combining with (3.18):

$$\left\{\sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) g(t-k\alpha)\right\} = g \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}.$$

Obviously, if $g(\)$ is a periodic function of period $\alpha>0$, then (4.11) becomes

$$(4.12) g \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha} = \left\{ g(t) \sum_{k=-\infty}^{\infty} c_k \mathsf{T}_{k\alpha}(t) \right\}.$$

5. Derivative of an operator. Given $A \in \mathcal{N}_{\omega}$ and $B \in \mathcal{N}_{\omega}$, let us indicate by $A \subset B$ the existence of a number a < 0 such that A agrees with B on the interval (a, 0). The notion of "agreeing with" has been defined in 1.31. Recall that $F = \{F(t)\}$ (see 2.13); as usual, F(0-) denotes the limit of F(t) as t approaches zero through negative values.

THEOREM 5.0. Suppose that $B \in \mathscr{N}_{\omega}$. There is at most one scalar c_1 such that the equation $c_1 = f_1(0-)$ holds for some function $f_1()$ in $L^{1\text{oc}}(\omega)$ with $f_1 \subset B$.

- *Proof.* Suppose that the equation $c_2 = f_2(0-)$ holds for some function $f_2(\cdot)$ in $L^{\text{loc}}(\omega)$ with $f_2 \subset B$: we must prove that $c_1 = c_2$. By definition, there exists an interval $(a_k, 0)$ such that f_k agrees with B on the interval $(a_k, 0)$ (for k = 1, 2); from 1.31 we now see that f_1 agrees with f_2 on (a, 0), where a is the largest of the two negative numbers a_1 and a_2 ; from 1.32 it follows that $f_1(\cdot) = f_2(\cdot)$ on (a, 0), whence $f_1(0-) = f_2(0-)$: this proves that $c_1 = c_2$.
- 5.1. Derivable operators. An operator B is said to be derivable if $B \in \mathscr{N}_{\omega}$ and if there exists a function $f_1(\cdot)$ in $L^{loc}(\omega)$ such that $|f_1(0-)| < \infty$ and $f_1 \subset B$.
- 5.2. Initial value of an operator. If B is derivable, we denote by $\langle B, 0-\rangle$ the unique scalar c_1 such that the equation $c_1 = f_1(0-)$ holds for some function $f_1(\cdot)$ in $L^{\text{loc}}(\omega)$ such that $f \subset B$; we also set

$$\partial_t B = DB - \langle B, 0 - \rangle D.$$

The uniqueness of c_1 comes from 5.0, while the existence of c_1 can be verified by setting $c_1 = f_1(0-)$ in 5.1.

REMARKS 5.4. If f() is a function in $L^{\text{loc}}(\omega)$ such that $|f(0-)| < \infty$, then the operator f is derivable, and $\langle f, 0- \rangle = f(0-)$ (this is immediate from 5.1); from (5.3) we see that

$$\partial_t f = Df - f(0-)D$$
.

5.5. Suppose that f() is continuous on ω ; if f'() has at most countably-many discontinuities and is integrable an each compact sub-interval of the open interval ω , then

$$\partial_t f = \{f'(t)\}$$
 and $\langle f, 0 - \rangle = f(0)$:

this follows immediately from 2.4, 2.13, and 5.4.

- 5.6. Suppose that $B \in \mathcal{N}_{\omega}$. If $f(\cdot) \in L^{\text{loc}}(\omega)$ is such that $|f(0-)| < \infty$ and $f \subset B$, then B is derivable and $\langle B, 0-\rangle = f(0-)$: this follows directly from 5.0-5.2.
- 5.7. If $B \in \mathcal{N}_{\omega}$ is such that the equation $B_{\mathbb{H}} = f$ holds for some function $f(\cdot)$ in $L^{\text{loc}}(\omega)$ such that $|f(0-)| < \infty$, then B is derivable and $\langle B, 0-\rangle = f(0-)$. This is immediate from 3.27 and 5.6.

THEOREM 5.8. Suppose that $\alpha > 0$. If A_k $(k = 0, \pm 1, \pm 2, \pm 3, \cdots)$ is a sequence in \mathscr{N}_{ω} such that the equation

(1)
$$B = \sum\limits_{k=-\infty}^{\infty} \mathsf{T}_{k\alpha} A_k$$

defines an element B of \mathcal{N}_{ω} , then B is derivable, $\langle B, 0- \rangle = 0$, and $\partial_t B = DB$.

Proof. Take any $w(\)$ in $W_{\mbox{\tiny ω}}.$ From (1) and (3.21) it follows that

(2)
$$.Bw(t) = \mathsf{T_0}(t).A_0w(t) + \sum_{k \neq 0} \mathsf{T}_{k\alpha}(t).A_kw(t-k\alpha) \qquad \text{(for } t \in \omega).$$

If $k \neq 0$ we see from (3.2) that $T_{k\alpha}() = 0$ on $(-\alpha, \alpha)$: consequently, the equation (2) implies that

(3)
$$Bw(t) = \mathsf{T}_0(t) \cdot A_0 w(t) \qquad (\text{for } |t| < \alpha).$$

Since $T_0(\)=0$ on $(-\alpha,0)$, it now follows from (3) that .Bw(t)=0 for $-\alpha < t < 0$ and for any $w(\)$ in W_{ω} : therefore, the operator 0 agrees with B on $(-\alpha,0)$, whence $0 \subset B$; the conclusion $\langle B,0-\rangle = 0$ now follows from 5.6; in view of (5.3), the proof is concluded.

THEOREM 5.9. Suppose that $x \in \mathbb{R}$. Each element of $(\mathsf{T}_x.\mathscr{S})$ is infinitely derivable; in fact,

(5.10)
$$\langle B, 0-\rangle = 0$$
 and $\partial_t^k B = D^k B$ (for each integer $k \ge 1$) whenever $B \in (\mathsf{T}_x, \mathscr{S})$.

Proof. Note that $(\mathsf{T}_x.\mathscr{S})$ is the set $\{\mathsf{T}_xA\colon A\in\mathscr{S}_\omega\}$. If B is an element of $(\mathsf{T}_x.\mathscr{S})$, then $B=\mathsf{T}_xA$ for some A in \mathscr{S}_ω : clearly, B can be written in the form (1) (set $\alpha=|x|$ and $A_k=A$ for $k=\operatorname{sgn} x$ and $A_k=0$ for other values of k): the conclusion $\langle B,0-\rangle=0$ now comes from 5.8. Since $\partial_t^k B=B$ (by definition) for k=0, we proceed by induction on $k\geq 1$. To that effect, we assume that $\partial_t^n B=D^n B$: clearly,

$$(4) \qquad \qquad \partial_t^{n+1}B = \partial_t(D^nB) = D^{n+1}B + \langle D^nB, 0-\rangle D.$$

On the other hand, $D^nB = D^n\mathsf{T}_xA = \mathsf{T}_xD^nA$; consequently, D^nB belongs to $(\mathsf{T}_x\mathscr{A})$, whence $\langle D^nB, 0-\rangle = 0$ (by what we established at the beginning of this proof); therefore (4) gives $\partial_t^{n+1}B = D^{n+1}B$. The induction proof is completed.

Note 5.11. Both T_x and the Dirac delta distribution DT_x belong to the space $(T_x \mathcal{N})$. If $B = B_+$ or if $B_{\coprod} = 0$ then B belongs to $(T_0 \mathcal{N})$: see 3.25.

THEOREM 5.12. Set $a=\omega_-$ and suppose that $B\in\mathscr{S}_\omega$. If the equation $B_{\text{II}}=f$ holds for some function $f(\)$ in $L^{\text{I}}(a,\ 0)$, there exists a unique scalar c_1 such that the equation

$$(5) c_1 = \int_a^0 f_1(u) du$$

holds for some $f_1()$ in $L^1(a,0)$ with $f_1=B_{11}$.

Proof. Clearly, such a scalar exists. If

$$(6) c_2 = \int_a^0 f_2(u) du$$

for $f_2()$ in $L^1(a,0)$ and $f_2=B_{LL}$, then both f_1 and f_2 agree with B on (a,0) (by 3.27): therefore, $f_1()$ equals $f_2()$ almost-everywhere on (a,0) (by 1.32); the conclusion $c_1=c_2$ now comes from (5)-(6).

5.13. The anti-derivative. Let B be as in 5.12. We set

$$\int_a^t B = D^{-1}B + c_1$$
 .

In a subsequent paper we shall prove that

$$\left\langle \int_a^t B, 0- \right
angle = c_1$$
 and $\partial_t \int_a^t B = B$.

In case B = f with $f() \in L^1(a, 0)$ and $f() \in L^{loc}(\omega)$, it follows immediately from (2.19) and (3) (7) that

$$\int_a^t f = \left\{ \int_a^t f(u) du \right\}.$$

6. Four problems. Recall that DT_x corresponds to the Dirac delta distribution concentrated at the point x (see 4.6), it is infinitely derivable (see 5.11). If an operator A is twice derivable, it follows directly from (5.3) that

$$(6.0) \partial_t^2 A = D^2 A - \langle A, 0 - \rangle D^2 - \langle \partial_t A, 0 - \rangle D.$$

We shall need two more facts. Each operator A in \mathscr{N}_{ω} can be written as a sum

(6.1)
$$A = A_{\text{II}} + A_{+}$$
, where $A_{+} = A_{\text{I}}$ (see 3.7);

moreover, if $g(\cdot) \in L^{\text{loc}}(\omega)$ then

(6.2)
$$gT_0 = \{T_0(t)g(t)\}$$
 (see (3.8)).

6.3. First problem. Given two scalars m and a, to find an operator y such that

(6.4)
$$m\partial_t y = DT_0$$
 and $\langle y, 0-\rangle = a$:

Definition (5.3) gives $mDy - maD = DT_0$, whence $y() = a + m^{-1}T_0()$. This same problem has been discussed in [5, p. 38].

6.5. Second problem. The equations

$$(1) i = \partial_t q \text{ and } q = CE$$

relate the current i to the change q in a simple electric circuit having capacitance C, impressed electromotive force E, no inductance, and no resistance (see 7.19 in [5]). From (1) and (5.3) it follows that

$$(2) i = CDE - \langle q, 0 - \rangle D.$$

Multiplying by T_0 both sides of (2), we can use (6.1) to write

$$i_{+} = CDE_{+} - \langle q, 0 - \rangle D\mathsf{T}_{\scriptscriptstyle{0}}.$$

If there is a short-circuit at the time t=0, then $E_+=0$, so that (3) gives the answer $i_+=-\langle q,0-\rangle D\mathsf{T}_0$: this is an impluse whose magnitude is the negative of the initial charge $\langle q,0-\rangle$.

6.6. Third problem. Given a scalar c, to find an operator y such that

$$\partial_t^2 y + y = \partial_t(DT_0)$$
 and $\langle \partial_t y, 0 - \rangle = \langle y, 0 - \rangle = c$.

Since $\partial_t(DT_0) = D^2T_0$ (by 5.9), we can use (6.0) to write

$$(D^2+1)y=D^2\mathsf{T}_0+\langle y,0-\rangle D^2+\langle \partial_t y,0-\rangle D;$$

we now use the initial conditions and solve for y:

$$y = \frac{D^2}{D^2 + 1} \, \mathsf{T_0} + c \Big(\frac{D^2}{D^2 + 1} + \frac{D}{D^2 + 1} \Big) \, .$$

From (4) and (2.10)-(2.11) it results that

$$y = {\cos t} T_0 + c(\sin + \cos),$$

whence our conclusion $y() = T_0() \cos + c(\sin + \cos)$ now comes directly from (6.2) and 1.33.

Last problem 6.7. To find an element y of \mathcal{A}_{ω} such that

$$\hat{\sigma}_{t}^{2}y + y = \sum_{k=-\infty}^{\infty} D\mathsf{T}_{2k\pi} .$$

Setting $c_0 = \langle y, 0 - \rangle$ and $c_1 = \langle \partial_t y, 0 - \rangle$, we see from (6.0) that

$$(6) \qquad \qquad (D^2+1)y=c_{\scriptscriptstyle 0}D^2+c_{\scriptscriptstyle 1}D+D\sum_{\scriptscriptstyle k=-\infty}^{\infty}\mathsf{T}_{2k\pi}\;.$$

Solving (6) for y, we obtain $y = c_0 \cos + c_1 \sin + y_p$, where

(7)
$$y_p = \frac{D}{D^2 + 1} \sum_{k=-\infty}^{\infty} \mathsf{T}_{2k\pi} = \{\sin t\} \sum_{k=-\infty}^{\infty} \mathsf{T}_{2k\pi} :$$

the second equation is from (2.11). From (7) and (4.12) it now follows that

$$y_p = \left\{ \sin t \sum_{k=-\infty}^{\infty} \mathsf{T}_{2k\pi}(t) \right\}.$$

From (8) and (2.15) we can now write

$$(9) y_p(t) = \sin t \sum_{k=-\infty}^{\infty} \mathsf{T}_{2k\pi}(t) = \left(1 + \left\lceil \frac{t}{2\pi} \right\rceil\right) \sin t;$$

as usual, $[t/2\pi]$ is the greatest integer $< t/2\pi$ (the last equation follows directly from the definition of $T_x()$). In case $\omega = \mathbf{R}$, the answer (9) to the problem (5) cannot be obtained by the Fourier transformation nor by the distributional two-sided Laplace transformation.

Added in proof. There still remains to connect the theory presented in this paper with the theory of distributions; this has been done in the Research Announcement "An algebra of generalized functions on an open interval; two-sided operational calculus" (by Gregers Krabbe), Bull. Amer. Math. Soc. 77 (1971), 78-84.

REFERENCES

^{1.} N. Dunford and J. T. Schwartz, *Linear Operators*, Part I: General Theory. Interscience, New York, 1958.

^{2.} J. Horváth, Topological Vector Spaces and Distributions, vol. I, Addison-Wesley. Reading, Mass., 1966.

- 3. H. G. Garnir, Fonctions de Variables Réelles, Tome II, Gauthier-Villars, Paris, 1965.
- 4. R. L. Jeffery, The Theory of Functions of a Real Variable, University of Toronto Press, Toronto, 1953.
- 5. G. Krabbe, Operational Calculus, Springer-Verlag, 1970.

Received August 19, 1971.

PURDUE UNIVERSITY