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AN ALGEBRA OF GENERALIZED FUNCTIONS ON
AN OPEN INTERVAL: TWO-SIDED
OPERATIONAL CALCULUS

GREGERS KRABBE

Let (a,b) be any open sub-interval of the real line, such
that —0c <a <0< b =< . Let L°(a,b) be the space of all
the functions which are integrable on each interval (a’,d’)
with @ < a’ < b’ <b. There is a one-to-one linear transforma-
tion T which maps L!°*(a, b) into a commutative algebra &7
of (linear) operators. This transformation ¥ maps convolu-
tion into operator-multiplication; therefore, this transforma-
tion T is a useful substitute for the two-sided Laplace irans-
formation; it can be used to solve problems that are not
solvable by the distributional transformations (Fourier or
bi-lateral Laplace).

In essence, the theme of this paper is a commutative
algebra 7 of generalized functions on the interval (a,b);
besides containing the function space L!°°(a,b), the algebra
& contains every element of the distribution space </(a,b)
which is regular on the interval (a¢,0). The algebra & is
the direct sum .o~ @ .o, where .97 (respectively, .9%) (a, 0)
(respectively, to the interval (0,b)). There is a subspace 27
of .&7 such that, if y€ 2/, then y has an “initial value”
{y,0—> and a “derivative” 0;y (which corresponds to the usual
distributional derivative). If ¥ is a function f( ) which is
locally absolutely continuous on (a, b), then y belongs to Z7,
the initial value <{y, 0—) equals f(0), and 9J;y corresponds to
the usual derivative f/( ). If y is a distribution (such as the
Dirac distribution) whose support is a locally finite subset of
the interval (a, b), then both ¥ and d.y belong to the subspace
Z/’. In case @ = —co and b = o, the subspace 2’ contains
the distribution space ..

The resulting operational calculus takes into account the behavior
of functions to the left of the origin (in case ¢ = —c and b = oo, the
whole real line is accounted for—whereas Mikusihski’s operational
calculus only accounts for the positive axis). Since the functions are
not subjected to growth restrictions, the transformation < is a useful
substitute for the two-sided Laplace transformation (no strips of
convergence need to be considered : see Examples 2.21 and the four
problems 6.3-6.7). Problems such as
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can be solved by calculations which duplicate the ones that would
arise if the Laplace transformation could be applied to such problems.

The differential equation
(1) by +y= 3 at— 2w

is solved in 6.7 in order to illustrate our operational calculus; the
right-hand side of this equation represents a series of unit impulses
starting at ¢ = — . The differential equation (1) cannot be solved
by the distributional Fourier transformation nor by the distributional
two-sided Laplace transformation. When —o =a <t< b= o the
equation

y(t) = ¢,co8t + ¢, sint + (1 + [—E—]) sint
2

defines the general solution of the equation (1).

The paper is subdivided as follows. §1: the space of generalized
functions, §2: two-sided operational calculus, §3: translation pro-
perties, §4: the topological space .o, §5: derivative of an operator,
§6: four problems.

The concepts introduced in §5 (initial value, derivative, anti-
derivative of an operator) are more general and more appropriate than
the corresponding ones in my textbook [5].

0. Preliminaries. Henceforth, w is an open sub-interval (w_,
w,) of the real line R; we suppose that w_ <0< w,. If k() is a
function on @, we denote by &.( ) the function defined by

0 for t <0
©-1 he®) = {h(t) for t = 0;
we set
(0.2) h() =h() — k().

As usual, the support of a function f( ) (denoted Supp f) is the
complement of the largest open subset of R on which f( ) vanishes.
Let e,( ) be the function defined by

1 for0su<t

0. =
0.3) e.(w) {—l for t<u <0,

and by e, (u) = 0 for all other values of w. It will be convenient to
denote by e, the support of the function e,( ); thus, e, is the interval
with end-points 0 and ¢:
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[0,2) for t=0

(0.4) e=G0 Ul = {(t, 0 fort<0.

Unless otherwise specified, suppose that f( ) and g( ) belong to
L*(w) (this is the space of all the complex-valued functions which
are Lebesgue integrable on each interval (a, b)) with o_ < a <0< b <
®,). We denote by f A g( ) the function defined by

(0.5 £ Aty = | £t — wgGwdu @l ¢ in o);
that is,
(0.6) FAg) = | 7t~ wewodu .

REMARK 0.7. Suppose that o_ <a<0=Zb< w..:
(0.8) ifa<t<band uece, then (t — u)ce, < (a,d) .

This is easily verified.

REMARKS 0.9. The following properties are direct consequences of
(0.1)-(0.8) :

(0.10) FANa®) =7 Aag®) =1 Ag.() (for ¢ > 0),
and
(0.11) FAg®=rfuAg@® =rful ou® (for ¢ < 0).

FinaL REMARK 0.12. If fi( ) = f( ) and g.( ) = g( ) almost-every-
where on @, then f, A g9,( ) = f A g( ) almost-everywhere on w. This
is another easy consequence of (0.5)—(0.8).

LEMMA 0.13. If a <0< b and if f( ) = 0 almost-everywhere on
the interval (a, d), then f A g( ) =0 on (a,b).

Proof. If te(a,bd) it follows from (0.8) that
uc€e, implies (t— u)ce, C (a,d);

therefore, (¢t — w)€ (a, b), whence our hypothesis (f( ) =0 almost-
everywhere on (a, b)) gives f(t — u) = 0 for w almost-everywhere on the
interval e,: the conclusion f A ¢(t) = 0 now follows directly from (0.6).

LemMMA 0.14. Suppose that a < 0 < b. If f( ) = 0 on the interval
(w_, b), then
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(0.15) A o) = S:"’ ft — Dg@)de  (for b< t < @,).
If h( )e L"(w) and if h( ) = 0 on the interval (a, w.), then

(0.16) h A g(t) = -S° Wt — Dg(de  (for o_ < t < a).
t—a
Proof. First, the case b < t < w,. From (0.5) we have

(1) FAe) = At~ De@de + |t — wodu .
From (0.8) we see that
ue€0,t) implies (t—u)ee,C @,

so that (¢t —uw)ew. If w >t — b, then b >t — u, whence ({ — )€
(w_, b); consequently, our hypothesis (f( ) = 0 on (w_, b)) gives f(t —
u) = 0 whenever u >t — b: Conclusion (0.15) is now immediate from
).

Next, the case w_ < t < a. From (0.5) we have

(2) hAg®)= —St"“ It — w)g(u)du — S h(t — Dg(c)dr
t t—a
From (0.8) we again see that
ue(t,0) implies (t —u)ee, C ®,

so that (t —u)yew. If w<t— a then ¢t — u > a, whence ({ —u)e
(a, ®.); consequently, our hypothesis (2( ) =0 on (a,®,)) gives
h(t — u) = 0 whenever 4 < t — a: Conclusion (0.16) is now immediate
from (2).

0.17. Convolution. If F( ) and G( ) belong to L'(R), then F = G( )
is the function defined by

FsGz) = L Flo — u)Gu)du @all z in R);
it is well-known that FxG( )€ L'(R) (see [1], p. 634). Further,
(0.18) Supp F+G < (Supp F') + (Supp G) :
see p. 385 in [2].

THEOREM 0.19. If f( ) and g( ) belong to L' (), then f A g()
belongs to L'™*(w), and

(0.20) FAg()=gASf() almost-everywhere on w.
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Proof. Suppose that w_<a<0<b<w,. If h()eL*(w),
we can define the funection %,( ) by

h(t) for 0 <t<b
0 otherwise.

(1) o = |

Similarly, h,( ) is defined by

h(t) fora <t<0
0 otherwise.

(2) halt) = {

Note that both #4,( ) and k() belong to L'(R). Set
(3) F()=—fox9.()+Ffixg() .

The four functions on the right-hand side of (3) are all integrable on
R ; consequently, both f,*g.,( ) and f,+g¢,( ) are integrable on R; from
(8) it now follows that F( ) is integrable on R. In consequence, if
we can prove that

(4) Fit)y =fAgl) fora<t=0<b,

then f A g( ) is integrable on the arbitrary sub-interval (a, b) of the
interval w; our conclusion f A ge L™ (w) is at hand; moreover,
Conclusion (0.20) comes from (4)-(8) and the property F,=F,() =
F,«F,() (see [1], p. 635). Accordingly, the proof will be accomplished
by proving (4).

The proof of (4) is divided into two cases. Flirstcase: a < t < 0.
Since Suppf, and Supp g, are subsets of the interval [0, =), we see
from (0.18) that

Supp f; * g, < [0, =) ;

consequently, f;, = g,( ) vanishes for ¢ < 0; therefore, (3) gives

(5) Ft) = —fu = 0u() = = | £t — wow)dn

(for @ < t < 0); the second equation comes from (2) and the fact that
9.(w) = 0 when 4 < ¢ and when » > 0. From (5) it follows that

13 0
) = ~| £t = wodu — | 1.t - Do)
but a < u < ¢ implies ¢ — » > 0, so that f,(t — w) = 0; therefore,

(6) F) = | 7.t ~ Dg(@)ds

but 0 > 7 >t implies t < ¢t — 7 < 0; in consequence, since a < ¢, we
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have ¢ <t — 7 <0, so that (2) gives f,(t — 7) = f(t — 7): Equation
(6) becomes

Fo) = |t — wewodu

In view of (0.6), this concludes the proof of (4) in case a < ¢ < 0.
Second case. 0 < t<b. As in the first case, we observe that

Jo*g.(t) =0; it is a question of proving that F(t) = f, = g,(t) : the

reasoning is entirely analogous to the one used in the first case.

THEOREM 0.21'. Suppose that the functions (), g( ), and h( ) all

belong to L' (w). If the function |f1 A (gl A|RD() is continuous
on @ then

(0.22) FTAGARE=(Ag AR for every x in .
Proof. From (0.6) it follows that
(1) FA(GA H( :S S F(x — t)G(t — w)H(u)dudt .

Since |f| A (lg] A |R])() is continuous on ® (by hypothesis), we there-
fore have [f| A (lg] A |k])(x) < o, so that (1) gives

. S @ — Dg(t — Wh(w) |dudt < < ;

we may therefore apply Tonelli’s Theorem [3, p. 131] to write
(2)  FAGAR®=| | f@- et - whdtd,
where z, is the appropriate interval. Let us prove that

3)  FAGANE = | s - v - witdu.

In case z > 0 the double integral is taken over the interior of
the triangle
{(u, t): 0< t <z and 0 <u<t};

consequently, the range of ¢ (in the integral (2)) is the interval x, =
[u, x] : this establishes (3). In case x < 0 the double integral is taken
over the triangle

{(u, t):x < t<0and t<u<0};

1 The principle of this proof is due to R. B. Darst.
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consequently, the range of ¢ (in the integral (2)) is the interval z, =
[x, w] ; the integral (2) becomes
0 (fu
FAGARE = | | 1w = 9t — whwdtdu,

which again establishes the equation (3). The change of variable
T =t — u brings (3) into the form

FA@@AR@ = S: h(u) S:_uf(x — u — 7)g(t)dedu ;
consequently, (0.5) gives
FAG@ADE = | h@If A 9@ — wldu:

Conclusion (0.22) is now immediate from (0.5).

DEFINITION 0.23. For any integer n =1 we denote by q,( ) the
function defined by the equation q,(0) = 0 and

7.(t) = exp (@—tll) (for t =+ 0).

THEOREM 0.24. Suppose that f( ) belongs to L"™(w). If w_=<
a=20=b=2w, and if

(4) FAR =0 for a<t<b and every integer n =1,
then f( ) vanishes almost-everywhere on the interval (a, b).
Proof. From (4) and (0.20) it follows that
0=1limg, A fit) = lim | .t — we,wfwdu;
n—oco n-»c0 Jey

since |q,( )] £ 1 we may apply the Lebesgue Dominated Convergence
Theorem :

(5) 0= lim|exp—— Jwstwdu = | e
From (5) and (0.3)-(0.4) we see that
O:S:f for 0 < t< b, and 0 = —Sif for a<t<O0,

which implies our conclusion: f( ) vanishes almost-everywhere on the
interval (a, b).
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1. The space .7, of generalized functions. As before, w is
an arbitrary sub-interval of R = (— o, o) such that w>0. If f()
and g( ) are functions, the equation f( ) = ¢g( ) will mean that the
functions are equal almost-everywhere on the interval w.

NoTtaTIiON 1.0. Let & ,(®w) be the space of all the functions which
are continuous on @w and which vanish at the origin.

NoraTIiON 1.1. We denote by 1( ) the constant function defined
by 1(¢) = 1 for all ¢ in R.

LEMMA 1.2. If g( ) e L™ (w) then 1 A g( ) e &H(w).
Proof. From (0.5) we see that
(1.3) 1Amonga—ummmuzgpmmu.

On the other hand, ¢( )€ L'(a, b) whenever (e, b) is a compact sub-
interval of the open set ®: the conclusion is now at hand.

LEMMA 1.4. If () is continuous on @, then L AY) =T().
Proof. The equations
CATY®) = L LA =T
are immediate from (1.3) and the Fundamental Theorem of Calculus.

LEMMA 1.5. Suppose that v( ) € Go(w). If v'( ) has only countably
many discontinuities and is integrable in each compact sub-interval of
the open interval w, then v( ) =1 A V().

Proof. Take t in w. If ¢ > 0 the equations
mo:u@—wm:Ywmmu:1Auo

are from v(0) = 0, [4, p. 143], and (1.3). If ¢ < 0, the same reasoning
yields

mw:-mm—mm:—ﬁwwmzlAmw.

THEOREM 1.6. Let G( ) be a function whose derivative is continuous
on the interval . If f()e L™ (w), then G A f( ) € To(w) and
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(1.7) GA()=GOXAN)+1TAG ANC) -
Proof. Clearly, the function »( ) = G( ) — G(0)1( ) belongs to
&,(w) ; consequently, 1.5 gives
G()—-GOL()=1AG(),
so that 0.12 implies
(1) GAS()—GOXAN)=QAAG) AS).

From 0.19 it follows that (|G'| A |f)( )e L™ (w); we can therefore
conclude from 1.2 that the function [1] A (IG’| A |f( ) is continuous
on @, whence the equation

(2) AAG)AA)=1AG ANO)

now comes from 0.21. Conclusion (1.7) is immediate from (1)-(2). It
still remains to prove that G A f( ) € &(w).
Set g.( ) = G A f(); Equation (1.7) becomes

(3) GASO)=GOAANC)+1LAal).

From 0.19 we see that ¢,( ) € L'*(w) ; the conclusion G A f( ) € &(w)
is obtained from (3) by setting g = f and then g = g, in 1.2.

1.8. The space of test-functions. Let W, be the linear space of
all the complex-valued functions which are infinitely differentiable on
w and whose every derivative vanishes at the origin. Thus, w( )e
W, if w()e &(w) and w* € &3(w) for every integer k = 1.

ExampLE 1.9. Let g,( ) be the function defined in 0.23; it is
easily verified that ¢(0) = 0 for every integer k = 1; therefore,
¢.()e W,

LEMMA 1.10. If f( )e L*(w) and q( )e W, then

(1.11) g ANf()e &(w)
and
(1.12) @ANC)=aANS).

Proof. Since ¢'( )e &(w), we can set G =¢ in 1.6 to obtain
(1.11) and the equations

(4) aASO=adOQANO)+FLIAQ@ANO)=1TAEQ@ANC)
now come from (1.7) and ¢(0) = 0 (since ¢( ) € &(w)). Next, set
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(5) V()=d AS():

Equation (4) becomes

(6) aAS()=1AY().

Setting G = ¢’ in 1.6, we see from (5) that ¥'( ) € °(w); the equations
(7) QAL =¥() =9 ASO)

therefore follow from 1.4 and (5). Conclusion (1.12) is immediate
from (6)-(7).

LemmaA 1.138. If f( ) e L™ (w) and w( )e W,, then w A f( ) W,,
and

(1.14) (AW ()= AS)=FAW().
Proof. If the equation

(8) (w AHPC) =w? ASC)

holds for ¥ = n, then it holds for &k = » + 1: this is easily seen by
observing that the equations

[(w ADTTC) = @™ ASY() =w™ AF()

come from (8) and (1.12). Since (8) holds for £ = 0, it holds for any
integer £ = 0. From (8) and (1.11) (with ¢ = w™) it follows that

(w AN e cyw) for any integer k& = 0;

therefore, w A f( )e W,. Conclusion (1.14) comes from (1.12) and
(0.20).

DEFINITIONS 1.15. An operator is a linear mapping of W, into
W,. If A is an operator and w( )e W,, we denote by .Aw( ) the
function that the operator A assigns to w( ).

As usual, the product 4,4, of two operators is defined by
(1.16) AAw() = A (Aw)( ) (every w( ) in W,).

1.17. The space of generalized functions. Let .%7, be the set
of all the operators 4 such that the equation

(1.18) Aw, A w)( ) = ((Aw) A ws( )
holds whenever w,( ) and w,( ) belong to W,.
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DEFINITION 1.19. If f( ) e L™(w) we denote by f* the operator
which assigns to each w( ) in W, the function f A w( ):

(1.20) Jrw( ) =F ANw() (for each w( ) in W,).

THEOREM 1.21. If fi( ) and fi( ) belong to L'*(w), then
(1.22) =N

Proof. Take any w,( ) in W,. From 1.13 and (0.20) we see that
[fel A Jw.]()e W,; consequently, we can set w = |f;] A |w,] and
S =1f. in 1.13 to obtain

AL A Tw)()e W, :
from 0.21 it therefore follows that

(1.23) HAGAw)() = (AL Awl ),

which, in view of 1.19, means that
JSTCSFw)() = (i A D) wo( ) -

Since w,( ) is an arbitrary element of W,, Conclusion (1.22) is im-
mediate from (1.16).

REMARK 1.24. If f( )e L™ (w) then f*e.%,. Indeed, f* is an
operator (by (1.20), (0.20), and 1.13): it only remains to prove that
the equation (1.18) holds for A = f*. Setting /. =f and f, = w, in
(1.23), we obtain

SN Aw)() = FAw) Aw();

in view of (1.20), this becomes
JEw Aw) () = (fFw) Aws( )
therefore, (1.18) holds when A = f*.

DEFINITIONS 1.25. We denote by D the differentiation operator:
(1.26) Dw( ) =w'() (all w( ) in W,).
Let I be the identity-operator :

(1.27) Jw( ) = w() (all w( ) in W,).
If f()e L™ (w), we denote by {f(t)} the operator defined by
(1.28) Lf@Yw() = A w'() @l w() in W,);
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the operator {f(t)} will be called the operator of the function f( ).

REMARK 1.29. {1(¢)} = I. Indeed, the equations
A1@w() =1 Aw'() =w()
are from (1.28) and 1.5.

REMARK 1.30. De.%,. Indeed, D is clearly an operator, and
the equations

D(w, A w)() = (w, Awy)'() =wi Aw( )= (Dw) A wi()
are from (1.26), (1.14), and (1.26).

DEFINITION 1.31. Let (a,b) be a sub-interval of ® such that
a=0=0b; 1of Ae 7, and Be .7, we say that A agrees with B on
(a, b) if

Aw(t) = .Bw(t) for a < t<b and for every w( ) in W,.

THEOREM 1.32. Suppose that fi( ) € L™ (w) for k =1, 2. If {fi(?)}
agrees with {f,(t)} on (a, b}, then fi( ) = fi( ) almost-everywhere on the
wnterval (a, b). Conversely, if the functions are equal almost-every-
where on (a,b), then their operators agree on (a,b).

Proof. Set h( ) = fi( ) — fo( ). By hypothesis, the relation
(1) Ar@®}w(t) = 0 (for a <t < b)

holds for every w( ) in W,: it will suffice to show that A() =0
almost-everywhere on (a,b). Take any integer » = 1, and let q,( )
be the function that was defined in 0.23; since q,( )€ W, (see 1.9),
it follows from 1.13 (with f=1) that ¢, A 1()e W,; in view of
(0.20) we may therefore set w( ) =1 A ¢.( ) in (1) to obtain

(2) JR@Y A q)(@®) =0 (for @ < ¢t < b).
The equations
(3) AR I A@)() =R AQTAC)()=rAaql)

are from (1.28) and 1.4. Combining (2) and (3), we see that 7 A
q,(t) =0 for a < t<b and for every integer » = 1; the conclusion
h( ) = 0 (almost-everywhere on (a, b)) now comes from 0.24.

Conversely, suppose that f.( ) = f.( ) almost-everywhere; this means
that () = 0 almost-everywhere on (a, b); we may therefore apply
0.13 to conclude that
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AAW()=0 for a < t < b and every w( ) in W,;
consequently, (1.28) gives .{h(t)}w(f) = 0, so that

AL @OYw(t) = {fo(O)}w(t) fora<t<band w()eW,:
this proves that {f(¢)} agrees with {f.(t)} on (a, b).

COROLLARY 1.33. Suppose that fi( ) and f,( ) belong to L**(w):
5i() = £:0) of (and only if) {fi(9} = {/2(D)} .

Proof. Set a=w_ and b= w, in 1.32: by definition, two
operators are equal if they agree on (a, b); moreover, we agree that
the equation f,( ) = f,( ) means that these functions are equal almost-
everywhere on (a, b). The conclusion is now immediate from 1.32.

THEOREM 1.34. The mapping f( ) — {f(1)} is an injective limear
transformation of L' (w) into .&7, such that

(1.35) {f®}y =r*D.

Proof. The equation (1.35) is immediate from (1.28), (1.16), and
(1.26). On the other hand, it is easily verified that .97, is an algebra
(if Aye 7, for k =1,2, then A4, 4,€.97): since f*e., (by 1.24),
and since De.%, (by 1.30), the conclusion {f(?)} €.9, comes from
(1.35). From 1.33 we may now conclude that f( ) — {f(¢)} is an injec-
tive transformation of L' (w) into .o, : the linearity is clear from
(1.28).

LEMMA 1.36. If Be .7, then the equation

(1.37) B(p, A p)() = 0. A (.Bp)()
holds for every pn.( ) and p,( ) in W,.

Proof. The equations

B(», A p)() = .B®: A p)() = (-Bp) A ()

are from (0.20), (0.12), and (1.18); conclusion (1.37) is now immediate
from (0.20).

THEOREM 1.38. .%7, 1s a commutative algebra.

Proof. The multiplication of the algebra .o, is the usual oper-
ator-multiplication (defined in (1.16)); it is easily verified that .97, is
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an algebra. Take A, and A, in .o/, ; to prove the commutativity, it
will suffice to demonstrate that 4,4, — 4,4, = 0. Let ¢,( ) and ¢.()
be any two elements of W,; we begin by observing that

(1) Ad(e A () = Al(A:9) A al() = (Ag) A CAG)():

these equations are from (1.16), (1.18), and (1.37) (with p, = .A,q; and
P, = ¢;). On the other hand, the equations

(2) 'AzAl((L A q;)( ) = .A:(q. A ('qu;)) = (.A:q) A (‘Alqg)( )

are from (1.16), (1.37), and (1.18). We now subtract (2) from (1) to
obtain

(3) A A @)( ) =0, where A = A A, — AA,.
From (3) and (1.18) it results that
0=(A4q) A () = {{Aq.(9}e( ) @ll ¢.() in W,);

the last equation is from (1.28). Consequently, 0 = {.Aq,(?)}; we may
now infer from 1.33 that 0 = .Aq,( ) for each ¢,( ) in W,: the desired
conclusion A = 0 is at hand.

THEOREM 1.39. If Aec .7, and w( )€ W, then {{Aw(t)} = A{w(?t)}.

Proof. Let w,( ) be an arbitrary element of W, ; the equations
(4) LAw@Ohe( ) = (Aw) A wi( ) = A(w A w)( )
are from (1.28) and (1.18). On the other hand, the equations
(5) Alw®lw( ) = AG{w@®}w)( ) = Aw A w:)()
come from (1.16) and (1.28). Comparing (4) and (5):
(6) LAw@®w,( ) = (A{w®)}w( ) -
Since (6) holds for every w.( ) in W,, the proof is complete.
THEOREM 1.40. If f.( ) and fi( ) both belong to L'°*(w), then
(7) D{f. A (0} = {/(OHA®) -
Proof. The equations
(8) D{f: A .(O} = D(f. A £)*D = DffiD = (fiD)(fiD)

are obtained by using (1.35) (with f = f, A f»), by using (1.22), and
by utilizing the commutativity and the associativity of the multipli-
cation in .97,. Conclusion (7) comes directly from (8) and two more
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applications of 1.35.

2. Two-sided operational calculus. If ¢ is a scalar (that is, a
complex number), the equation {c1(¢)} = ¢I comes from 1.29 and the
linearity of the transformation f( ) {f(¢)}; consequently, c¢le.7,
(recall that I is the identity: (1.27)). Since the correspondence ¢+ ¢l
is an algebraic isomorphism of the field of scalars into the algebra
%, there is no reason to distinguish between the scalar ¢ and the
operator cI :

(2.0) ¢ = cl = {c1(¢)} for any scalar ¢ .

Since ct"1(t) = ct™ for all ¢ in R, it is natural to write {c¢t"} instead of
{et*1(t)}; in particular,

2.1 c=cl={cand 1=1=1{1}.
Substituting f; = 1 into 1.40:
(2.2) D1 A £.(0} = {£:(D)} -
We can also combine the linearity property with (2.1) to obtain
(2.3) {ei() + efo(®) + e} = e{fi()} + a{fi(D} + ¢
of course, we suppose throughout that ¢, (k = 1, 2, 3) are scalars, and

£i() (k =1,2) belong to L°*(w).

THEOREM 2.4. Suppose that f( ) is a function which is continuous
on the interval w. If f'( ) has at most countably-many discontinuities
and s integrable in each compact sub-interval of w, then

(2.5) (7'} = D{f®)} — fO)D .

Proof. If v( ) = f() — f(0)1, then v'( ) = f'( ) and we may apply
1.5:

(1) JO)=/01=2v()=1AF().
From (1) and (2.3) it follows that
(2) {f(O} = f0) =LA S @)} -

Multiplying by D both sides of (2), we obtain
D{f@®} — f(0)D = D{L A f'(t)} = {f'(D)} :

the last equation is from (2.2).

2.6. Invertibility. As usual, an operator A is called invertible



396 GREGERS KRABBE

if Ae. o7, and there exists an operator X in .%7, such that AX = 1.
Suppose that A is an invertible operator; since .&7, is a commutative
algebra, it is easily verified that there exists exactly one operator
A~ such that A7'e.o7, and AA™ = 1. Setting f(¢) =¢ in 2.4, we
obtain

(2.7) {1} = D{t};

consequently, D is an invertible operator, and D™ = {t}.

THEOREM 2.8. Suppose that Y e .57, and Ve .57,. If the equation
VY = R holds for some invertible R in .7, then V is inmwvertible,
and Y = R/V, where R/V denotes RV,

Proof. Easy; see 1.76 in [5].
REMARKS 2.9. From (2.5) we see that

(2.10) Dfsin t} = {cos t},

whence D*sint} = D{cost} = —{sint} + D (this last equation also
comes from (2.5)); we may therefore use 2.8 to obtain

. D
2.11 f=_* .
(2.11) {sin ¢} 1
The equation
(2.12) D = {Z—k'} (for any integer k = 0)

is an easy consequence of (2.7) and (2.5).

2.13. NOTATION. We shall often write f instead of {f(t)}. Con-
sequently, (2.3) can be re-written in the form

(2.14) {e.fi(t) + eufu(t) + ¢} = efs + eofs + €5,
and 1.33 becomes

(2.15) fi = f, if (and only if) fi( ) = fo( ).
Combining 1.40 with (0.5):

(2.16) £ =107 = {| At — wirau)
Also, note that (2.2) gives

(2.17) f.= DI A )
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that is,

(2.18) D, =1A 1
combining with (1.3):

(2.19) {[ £} =D

Finally, note that Theorem 1.39 becomes
(2.20) Aw = Aw (for Ae.o7, and w( )e W,).

APPLICATION 2.21. Given a function f( ) in L'“(—«, «), let us
solve the differential equation

(1) y'(®) + y(®) = ft) (—a<t<a);

for example, we could have f(t) = sec (zt/2a). To solve (1), set w =
(—a, a), ¢, = y(0), ¢, = ¥'(0), and inject both sides of (1) into .97 ;
this gives D + y = ¢,D + ¢,D* + f; solving for y:

D D

D )
=Cl—+ D DI:
veap gt Pyt P

we can now use (2.11), (2.10), and (2.16) to write

Yy = ¢, 8in + ¢, cos + {S: (sin (t — u))f(u)du} .

3. Translation properties. In this section we shall describe
some two-sided analogues of the translation properties described in [5].
If b = 0 we define the function T,( ) by

0 for t<b
3.0 T.(t) =
.0 o(8) il for t=5.
If a <0 we set
-1 for t<a
3.1 T, (1) =
@1 @ {0 fort=a.
Observe that
3.2) T.()=0 on (—|z| |z (for any « in R).

Until further notice, let g( ) be a function in L(w), and let
¢.( ) be the function defined by

(3.3) g.(u) = T (uw)yg(u — x) (for uew);
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note that g,( ) € L'"°(w).
LEMMA 3.4, Ifb=0 then 1A g() =T, A g().

Proof. Observe that ¢,() =0 =T, ) on the interval (w_, d);
from 0.13 it therefore follows that

(1) B A1) =0=T, A g(® (for te (w_, b)).
Next, suppose that ¢ > b and t€ ®: the equation

LA 0 = | 1¢ - wTwew — vdu
comes from (0.5) and (3.3); in view of (3.0), we see that
(2)  1Aa® = ow—vdu =" g@dc =1 A g

the second equation is obtained by the change of variable z = u — b;
the last equation comes from (0.15) by setting f = T, in 0.14. The
conclusion is immediate from (1)-(2).

THEOREM 3.5. If cR then 1 A g.() =T, A g( ) and

(3.6) g, = 9T, .

Proof. In view of 3.4, it only remains to consider the case & =
a < 0. Observe that g,() =0 =T,( ) on the interval (a, w,); from
0.13 it therefore follows that

(3) G A1) =0=T, A g(® (for te(a, .)).
Next, suppose that ¢t < a and te®: as in the proof of 3.4, we see
that

(4) LA 0.0 = —| o - odu= -] g@ds:

the second equation is obtained by the change of variable 7 = u — a.
Note that T,() =0 on the interval (a, w.): we can therefore set
h =T, in 0.14 and use (0.16) to obtain

(5)  LAo®=-| T¢-99E@d =~ _o@ds.

From (4)-(5) it results that 1 A ¢.(t) = T, A 9(t) for o_ < ¢t < a; the
conclusion 1 A g.() =T, A g() is now immediate from (3). The
equations
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9. =DAAg.) =DT.Ag) =T.g

are from (2.17), from our conclusion (L1 A g.() =T. A ¢), and from
(2.17) : this proves (3.6).

3.7. Particular cases. In view of (3.3), we can write (3.6) in the
form
(3.8) {T.()g(t — x)} = T.9 (for xeR and g¢g( )€ L"(w)).
This equation is a useful substitute for the Laplace-transform identity

R[T()g(t — )] = e7R[g(¥)] -

Let LI( ) be the function 1( ) — 1.( ); that is,

3.9) ) =10) = 7() .

From (0.1) and (3.0) it follows that g.( ) = T,( )g( ); but (3.8) then
gives {g.()} = T,9, so that

(3.9.1) {ou® =9 —Tg=Lg  (by (0.2) and (3.9)).

Setting g( ) = T,( ) in (3.8) we see that T, = {T,({)T,(Y)} = T,T,, whence
it results that

(3.10) T =0, T; =T, and 1I* = LI.

If Ae o/, we set A, =T,A and A;; = U4 ; clearly, A = Ay + A,
and A4, =0. If Be., then

(3.11) AyB = Ay By = LI(AB)
and
(3.12) A.B=AB, = A.B, = (AB), .

Let (B.7) denote the set {BA: Aec.or}; it is easily seen that
(I.27) and (T,.7) are ideals in the algebra .27, and .o, is the direct
sum of these ideals:

(3.13) o7 = (U) D (To7) «

Note that sgn¢ = —L[(¢) + T,(¢), so that sgn = —1[ + T,. It is
easily verified that {|¢|} = D'sgn, and

. D? 4+ aD sgn
3.14 Wy = — T 2557
(3.14) oy = 2L 2D

If « >0 we set
1(!( ) = T--a( ) + Ta( );
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from (3.8) it follows readily that
179 = {—T_(t)9(t + @) + T()9(t — @)} .
If k() is a periodic function of period «, then

= {1 = 1*O1®)}
1-—-1¢

Finally, if « =0 and 8 = 0 then 1°1¢ = 1** and
(3.15) T Ts = Tais:

we define 1% to be 1 in case a = 0.

3.16. Other operational caleult. Mikusinski’s injection (of L'¢(0, =)
into the Mikusinski field) is an extension of the Laplace transforma-
tion; analogously, our injection f( )+ {f(f)} is comparable to the
two-sided Laplace transformation. However, if 2{f({)} denotes the
Laplace transform of the function f( ), then

2

et — es) = T

= 2fe)(s) 5

the first equation holds for s > 1, the second for 0 < s < 1. This
contrasts with

2D
1- D

{et — e} = #* {e "} (see (3.14)).
A problem which is not Laplace-transformable is discussed in 6.7.

THEOREM 3.17. If a > 0 and h( ) € L"(w), then the equation

(3.18) {k DRV ka)} - g{k S ckaa(t)}

holds for any scalar-valued sequence c;, (k =0, =1, +2, 3, ««-).
Proof. Set

(1) 91)() = 3 el ) -

Take any ¢ in ®: there exists an integer m > 0 such that [t| < ma.
Clearly,

(2) 010 = 3 cinlt) + 3 ciad) -

Since te (—ma, ma) C (—|i|a, |i|«) and since g;.( )} = 0 on the interval
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(=7, |i|la) (by (3.2) and (3.3)), we have g..(f) = 0: consequently,
the series (1) converges, and (3.3) gives

(3) 910 = 5 eTwu®g(t — ka) .
The equations

0(T) = DL A 9} = Df & et A )}
are from (2.17) and (1); from 3.5 it therefore follows that
(4) o(t) = Df 3\ et A 9O} -
Equation (4) gives
(5) 9) = D{g A 3 atu®) = o 3 et} :

the second equation is from 1.40. Conclusion (3.18) now comes from
(3) and (5).
REMARK 3.19. If ¢ is a scalar and if A = 0, the equation

1°h
1—cl®

= {ki Hhua(t + kew + ) + o (t — ke — x))}

is not hard to verify; it is the two-sided analogue of Theorem 5.29
in [5].

THEOREM 3.20. If xcR and w( )e W, then
(3.21) Tw(t) = T,(w(t — @) (for te w).
Proof. The equations
{T.0)w(t — )} = T,w = .T,w

come from (3.8) and (2.20): Conclusion (3.21) now follows from (2.15).

LEmMA 3.22. If Re.o7, and w( )e W, then
(3.23) Ryw( ) = [LRw]y( ) .

Proof. Setting g = .Rw in (3.9.1), we obtain
(1) {[.Rwlu(®)} = L{.Rw(t)} = LR{w(®)} :
the last equation is from 1.39. Since By = LIB (by definition), Equa-
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tion (1) becomes

(2) {[-.Bw]lu(®)} = Bufw®)} = {-Buw(®)} :

the second equation is from 1.39. Conclusion (3.23) is immediate from
(2) and 1.33.

THEOREM 3.24. If Ae.®, and Be ., then
Ay = By if (and only if) A agrees with B on (w_, 0).

Proof. Recall that (w_,0) =wN(—c,0). Let w() be any
element of W,; the equations

(3) [[Awlu() = Ayw() = .Buw( ) = [.Bw]u()

are from (3.23), our hypothesis A;; = By, and (3.23). Since Ay(t) = h(?)
for ¢ < 0 (see (0.1)-(0.2)), Equation (3) implies

(4) LAw(t) = .Bw(t) (for w_ <t <0).

From (4) and 1.831 we see that A agrees with B on (w_, 0).
Conversely, if A agrees with B on (w_, 0), then (4) holds, whence
the equation [.Aw]y( ) = [.Bw]y( ): combining this with (3.23), we
obtain

Apw( ) = .Byw( ) (for every w( ) in W,),

which gives A;; = By.

THEOREM 3.25. The space (T,.57) consists of all the elements of
7, which agree with 0 on (®w_, 0). Moreover,

(3.26) Be(Tow) — By =0—— B =B, .

Proof. We begin with (3.26). If Be(T,.%) then B =T,A for
some A in .o/, ; therefore, LIB = 0 (by (3.10)); this gives B;; = 0;
since B = Bj; + B,, the equation B = 0 implies B = B.; if B= B.
then B = T,B, whence Be (T,.%7). This proves (3.26).

If Be (T,.&7) then By = 0 (by (3.26)), which implies that B agrees
with 0 on the interval (w_, 0) (by 3.24). Conversely, if B agrees with
0 on the interval (w_, 0), then By =0 (by (3.24)): the conclusion
Be (T,.%7) now comes from (3.26).

THEOREM 3.27. If Be ., is such that the equation f = By holds
for some f( ) in L'(w), then f agrees with B on the interval (®_, 0).

Proof. The equations
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(3.28) Ju=Uf=UBy =1’B=1UB= By

are from the definition (f;; = LIf), from our hypothesis, from the
definition (By = LIB), from (3.10), and again from the definition (By =
I[B). From (3.28) and 3.24 we see that f agrees with B on the
interval (w_, 0).

4. The topological space .%7,. Let the function space W, be
endowed with the topology of pointwise convergence on the interval
 : this enables us to topologize .27, by endowing it with the product
topology (recall that .o, consists of mappings of W, into the topolo-
gical space W,). Consequently, the equation

B=1limA, (for B and A4; in .o7)

At

means that

(1) Bw(t) = lim .4,w(?) (for tew and w( )ecw,).
et

It is immediately clear that .oz, is a locally convex Hausdorff
vector space: in fact, H. Shultz has proved that it is sequentially
complete and that the multiplication of the algebra .7, is sequentially
continuous.

We denote by lim A, the mapping that assigns to each w( ) in
W, the function .Bw( ) defined by (1):

“.1) .(lim Az)w( ) = lim.Aw()  (every w( ) in W.).
Aot T ft
If +— F(x) is a mapping into .%7,, we set

(4.2) ‘d% F(2) = lim % [Flo + &) — F@)];

in view of (4.1), this means that dF(x)/dx is the operator defined for
any w( ) in W, by

4.3) (-c% F@) Ju( ) = 2 (F@u( ) .
THEOREM 4.4. If x€R, then (%)T = —T,D.

Proof. Take any w( ) in W,, take any ¢+ in w; from (4.3)
we see that

Ta,)w(t) - ;_x (Tw(t) = % T.(H)w(t — ) :

(2) (L
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the second equation is from (3.21). Set E, = {x:2 >t} and FE, =
{x:2 < t}: note that the function x+— T,(f) is constant on E, when
k =1, 2; consequently, since x = ¢ then xze E, for some k, whence
0T, (t)/ox = 0; we can use this to infer from (2) that

(i Tz>w(t) = T,(t) 9 wt — 2) = —T,B)w'(t — x) (all t = 2).
dx 0w

Consequently, we may use (8.21) to write

.(é% Tx>w( ) = —.T'() @ll w() in W,).

Calling B = dT,/dx, this gives .Bw( ) = —.T,Dw( ), whence the con-
clusion B = —T,D.

COROLLARY 4.5. if w€R then DT, = lim._,. (1/e)(T, — T,..)-
Proof. From 4.4 and (4.2) it follows that

_Ta:D = lim—l_ (Tx-r’-e - Ta:) ’

e=0 &

which implies directly our conclusion.

REMARK 4.6. Corollary 4.5 indicates that DT, corresponds to the
Dirac delta distribution 6, concentrated at the point x.

THEOREM 4.7. If F\() (k =0, £1, £2, £38, -++) is a sequence in
L"(w), then

(4.8) S By = { 3 TLOFt — ke
Proof. Let T, F.() be the function defined by

(1) T () = Te(®) Fi(t — k) .

Set

(2) £0) = 3 TuFi() .

For any integer n = 1, observe that
(3) fo() = 1) + MZM TiFi( )5

since (—na, na) C (—|i|a, |1|a) and since T, F;( ) = 0 on the interval
(—|ila, |1 @) (because of (3.2) and (1)), we may conclude that T, Fi( ) =
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0 on the interval (—na, na): consequently, (3) becomes
(4) fo() = fu() on (—na, na) for any integer n = 1.

If tew there exists an integer m =1 such that te(—ma, ma):
from (4), (2), and (1) we see that

(5) S TLOF(— k) = 1) = 5 TLFu) -

On the other hand,

(6) fo={ 3 TR} = 3 T

the second equation is from (3.8) and (1).

In view of (5)-(6), the proof of (4.8) will be accomplished by
showing that
(7) limf, = f..

n—rco

To that effect, take any w( ) in W,, and any ¢ in the interval w;
we must prove that

(8) lim .fw(t) = fow(t) .

N~»00

Observe that there exists an integer m = 1 such that |¢{| < ma;
suppose that # = m; from (4) and 1.32 it follows that the operators
f. and f. agree on (—na, na): therefore, 1.31 gives

(9) Jaw(t) = fow(t) (for all n = m);

this is because w( )e W, and —ma <t < ma. Conclusion (8) is
immediate from (9).

REMARK 4.9. Let ¢, (k =0, =1, +£2, +3, --+) be a scalar-valued
sequence. Setting F,( ) = ¢, in (4.8), we obtain

(4.10) kg@ Crlhe = {kgw Ckaa(t)} 5

combining with (3.18):

oo

(4.1 {2 oot — ko) =g 3 al..
Obviously, if g( ) is a periodic function of period a > 0, then (4.11)
becomes

co

(.12 ¢ 3 alu={s0 3 an.o}.



406 GREGERS KRABBE

5. Derivative of an operator. Given A€.%, and Be.%, let
us indicate by A < B the existence of a number a < 0 such that A
agrees with B on the interval (a, 0). The notion of “agreeing with”
has been defined in 1.31. Recall that F = {F(t)} (see 2.13); as usual,
F(0—) denotes the limit of F(¢) as ¢ approaches zero through negative
values.

THEOREM 5.0. Suppose that Be.%/,. There is at most one scalar
¢, such that the equation ¢, = f,(0—) holds for some function f( ) in
L' (w) with f,C B.

Proof. Suppose that the equation ¢, = f,(0—) holds for some
function f,( ) in L'*(w) with f,C B: we must prove that ¢, = ¢,. By
definition, there exists an interval (a,, 0) such that f, agrees with B
on the interval (a, 0) (for k& =1, 2); from 1.31 we now see that f,
agrees with f, on (a, 0), where a is the largest of the two negative
numbers a, and a,; from 1.32 it follows that fi( ) = f.( ) on (a, 0),
whence f,(0—) = f,(0—) : this proves that ¢, = c,.

5.1. Derivable operators. An operator B is said to be derivable
if Be.o, and if there exists a fumnction fi( ) in L'(w) such that
fi(0=)] < oo and f,C B.

5.2. Initial value of an operator. If B is derivable, we denote
by {B, 0—) the unique scalar ¢, such that the equation ¢, = f,(0—) holds
for some function fi( ) in L' (w) such that fC B; we also set

(5.3) 0.B= DB —{B,0—->D.
The uniqueness of ¢, comes from 5.0, while the existence of ¢,

can be verified by setting ¢, = f,(0—) in 5.1.

REMARKS 5.4. If f( ) is a function in L'*(®w) such that |f(0—)]| <
<o, then the operator f is derivable, and {f,0—> = f(0—) (this is
immediate from 5.1); from (5.3) we see that

0.f = Df — f(0—)D .

5.5. Suppose that f( ) is continuous on ®; if f'( ) has at most
countably-many discontinuities and is integrable an each compact sub-
interval of the open interval @, then

of ={f'®} and (f,0-) =f(0):

this follows immediately from 2.4, 2.13, and 5.4.
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5.6. Suppose that Be.o7,. If f( ) e L'(w) is such that |f(0—)| <
o and fC B, then B is derivable and (B, 0—) = f(0—): this follows
directly from 5.0-5.2.

5.7. If Be./, is such that the equation Bj; = f holds for some
function f( ) in L'°(®) such that | f(0—)| < <o, then B is derivable and
{B,0—> = f(0—). This is immediate from 3.27 and 5.6.

THEOREM 5.8. Suppose that &« > 0. If A, (k =0, +1, +£2, +3, --+)
1S a sequemnce tn .7, such that the equation

(1) B = ’:Z TlmA/c
defines an element B of .o/, then B is derivable, {(B,0—) = 0, and
0,B = DB.

Proof. Take any w( ) in W,. From (1) and (3.21) it follows
that

(2) Bu(t) = T(t).Aw(®) + 3, Tul®)-Aaw(t — ka)  (for tcw).

If £+ 0 we see from (3.2) that T,,( ) = 0 on (—«, ) : consequently,
the equation (2) implies that

(3) Bw(t) = T,(t). Aaw(t) (for |t] < a).

Since T,( ) =0 on (—«, 0), it now follows from (3) that .Bw(t) =0
for —a<t<0 and for any w( ) in W,: therefore, the operator 0
agrees with B on (—a, 0), whence 0 C B; the conclusion (B,0—> =0
now follows from 5.6; in view of (5.3), the proof is concluded.

THEOREM 5.9. Suppose that x€R. FEach element of (T.%) is
infinitely derivable; in fact,

(5.10) {(B,0—> =0 and 0B = DB (for each integer k = 1)

whenever Be (T,.%7).

Proof. Note that (T,.2) is the set {T,A:Ae.>}. If B is an
element of (T,.o”), then B = T,A for some A in .%,: clearly, B can
be written in the form (1) (set = |2| and A, = A for k = sgn 2 and
A, = 0 for other values of k): the conclusion (B, 0—) = 0 now comes
from 5.8. Since 0*B = B (by definition) for k = 0, we proceed by
induction on &k >1. To that effect, we assume that o/B = D"B:
clearly,
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(4) 37*'B = 9,(D"B) = D**'B + <D"B, 0—>D .

On the other hand, D"B = D"T,A = T,D"A ; consequently, D"B belongs
to (T,.7), whence <D"B,0—)> =0 (by what we established at the
beginning of this proof); therefore (4) gives 07*'B = D"*'B. The
induction proof is completed.

Note 5.11. Both T, and the Dirac delta distribution DT, belong
to the space (T,.). If B= B, or if B; =0 then B belongs to
(Te7) : see 3.25.

THEOREM 5.12. Set a = w_ and suppose that Be.o7,. If the
equation By = f holds for some function f( ) in L'(a,0), there exists
a unique scalar ¢, such that the equation

(5) o, = | fwdu
holds for some f,( ) in L'(a,0) with f, = By.

Proof. Clearly, such a scalar exists. If

©o

(6) &=\ flwdu
for f,( ) in L'(a,0) and f, = By, then both f; and f, agree with B on
(a, 0) (by 3.27) : therefore, f,( ) equals f;( ) almost-everywhere on (a, 0)
(by 1.32); the conclusion ¢, = ¢, now comes from (5)-(6).

5.13. The anti-derivative. Let B be as in 5.12. We set
(7) StB:D‘IB+cl.
In a subsequent paper we shall prove that

<gt B, 0—> =¢, and 8tSt B=B.

In case B = f with f( )e L'(a, 0) and f( )e L"*(w), it follows imme-
diately from (2.19) and (3) (7) that

). = sy

6. Four problems. Recall that DT, corresponds to the Dirac
delta distribution concentrated at the point = (see 4.6), it is infinitely
derivable (see 5.11). If an operator A is twice derivable, it follows
directly from (5.3) that
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(6.0) #A = DA — (A, 0—>D* — (3,A,0—>D .

We shall need two more facts. Each operator A in .97, can be
written as a sum

(6.1) A=A+ A., where A, = AT, (see 3.7);
moreover, if g( )€ L"(w) then

(6.2) g7, = {To(8)g()} (see (3.9)) -

6.3. First problem. Given two scalars m and a, to find an
operator y such that

(6.4) moy = DT, and <(y,0—)> =a:

Definition (5.8) gives mDy — maD = DT,, whence y() = a +m™T,( ).
This same problem has been discussed in [5, p. 38].

6.5. Second problem. The equations
(1) 1=0,q and ¢q=CE

relate the current 7 to the change ¢ in a simple electric circuit having
capacitance C, impressed electromotive force E, no inductance, and
no resistance (see 7.19 in [5]). From (1) and (5.3) it follows that

(2) 1 =CDE — {q,0—>D.
Multiplying by T, both sides of (2), we can use (6.1) to write
(3) i, = CDE, —<q,0-)DT,.

If there is a short-circuit at the time ¢ =0, then E. =0, so
that (3) gives the answer ¢, = —<q, 0—>DT,: this is an impluse whose
magnitude is the negative of the initial charge <{q, 0—).

6.6. Third problem. Given a scalar ¢, to find an operator y such
that
oy +y = 0,(DT) and (0,y,0—)> =<y, 0—) =¢c.
Since 0,(DT,) = DT, (by 5.9), we can use (6.0) to write
(D* + 1)y = DT, + {y, 0—>D* + (0,45, 0—)>D;
we now use the initial conditions and solve for y:

D D)
DP+1 D+ 1/

2

_ D
(4) Z/——Dm-ro'f‘c(
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From (4) and (2.10)-(2.11) it results that
y = {cos t}T, + c(sin + cos) ,

whence our conclusion y( ) = T,( ) cos + ¢(sin + cos) now comes directly
from (6.2) and 1.33.

Last problem 6.7. To find an element y of .97, such that
(5) Gy +y= 3 Dl

Setting ¢, = {y, 0—> and ¢, = {d,y, 0—>, we see from (6.0) that
(6) (D*+ Dy = aD + eD + D 3 T

Solving (6) for y, we obtain y = ¢, cos + ¢, sin + y,, where

D & . = .
(7) Yp = m—l kzZ_‘,m Tow: = {sin t} Ic:Z_.M Tops *
the second equation is from (2.11). From (7) and (4.12) it now follows
that

(8) Yy = {sin t ki Tz,ﬂ(t)} :

From (8) and (2.15) we can now write
. & t .
(9) uolt) = sint 3 Tu® = (14 [ = ])sints
fp=—o0 21

as usual, [t/27] is the greatest integer < t/27 (the last equation follows
directly from the definition of T,( )). In case w = R, the answer (9)
to the problem (5) cannot be obtained by the Fourier transformation
nor by the distributional two-sided Laplace transformation.

Added in proof. There still remains to connect the theory pre-
sented in this paper with the theory of distributions; this has been
done in the Research Announcement “An algebra of generalized
functions on an open interval, two-sided operational calculus” (by
Gregers Krabbe), Bull. Amer. Math. Soc. 77 (1971), 78-84.
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