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AN ALGEBRA OF GENERALIZED FUNCTIONS ON
AN OPEN INTERVAL: TWO-SIDED

OPERATIONAL CALCULUS

GREGERS KRABBE

Let (α, 6) be any open sub-interval of the real line, such
that — c o ^ α < 0 < δ ^ o o . Let L loc(α, b) be the space of all
the functions which are integrable on each interval (af, b')
with a < a' <b' < b. There is a one-to-one linear transforma-
tion % which maps L loc(α, b) into a commutative algebra S^
of (linear) operators. This transformation % maps convolu-
tion into operator-multiplication; therefore, this transforma-
tion % is a useful substitute for the two-sided Laplace trans-
formation; it can be used to solve problems that are not
solvable by the distributional transformations (Fourier or
bi-lateral Laplace).

In essence, the theme of this paper is a commutative
algebra S/ of generalized functions on the interval (a, b)
besides containing the function space Lloc(a, b), the algebra
Sf contains every element of the distribution space ϋ^'Cα, b)
which is regular on the interval (α, 0). The algebra S/ is
the direct sum Szf- 0 j&+, where j^L (respectively, J^+) (α, 0)
(respectively, to the interval (0, &)). There is a subspace i f
of Szf such that, if ?/eif, then y has an "initial value"
(y, 0—> and a "derivative" dty (which corresponds to the usual
distributional derivative). If y is a function /( ) which is
locally absolutely continuous on (α, &), then y belongs to i f,
the initial value (y, 0—> equals /(0), and dty corresponds to
the usual derivative /'( ). If y is a distribution (such as the
Dirac distribution) whose support is a locally finite subset of
the interval (α, 6), then both y and dty belong to the subspace
if. In case a — — oo and b = oo, the subspace ^/ contains
the distribution space <£2̂ +.

The resulting operational calculus takes into account the behavior
of functions to the left of the origin (in case a — —oo and b = oo, the
whole real line is accounted for—whereas Mikusiήski's operational
calculus only accounts for the positive axis). Since the functions are
not subjected to growth restrictions, the transformation X is a useful
substitute for the two-sided Laplace transformation (no strips of
convergence need to be considered: see Examples 2.21 and the four
problems 6.3-6.7). Problems such as

^Ly + y = sec^- (-a<t<a)
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can be solved by calculations which duplicate the ones that would
arise if the Laplace transformation could be applied to such problems.

The differential equation

(1) 3fi/ + V = kΈ δ ( ί - 2kπ)

is solved in 6.7 in order to illustrate our operational calculus the
right-hand side of this equation represents a series of unit impulses
starting at t = — oo. The differential equation (1) cannot be solved
by the distributional Fourier transformation nor by the distributional
two-sided Laplace transformation. When — co=a<t<b=cπ the
equation

y(t) = c0 cos t + cί sin t + (1 + — h sin £

defines the general solution of the equation (1).
The paper is subdivided as follows. § 1: the space of generalized

functions, § 2: two-sided operational calculus, § 3: translation pro-
perties, § 4 : the topological space J^ς, § 5 : derivative of an operator,
§ 6 : four problems.

The concepts introduced in § 5 (initial value, derivative, anti-
derivative of an operator) are more general and more appropriate than
the corresponding ones in my textbook [5].

0. Preliminaries. Henceforth, ω is an open sub-interval (ω_,
ω+) of the real line R we suppose that ω_ < 0 < ω+. If h( ) is a
function on ω, we denote by h+( ) the function defined by

/ ..x ί° for ί < 0
(0.1) h+(t) =

\h(t) for t ^ 0

we set

(0.2) hn() = h() - h+( ) .As usual, the support of a function /( ) (denoted Supp /) is the
complement of the largest open subset of R on which /( ) vanishes.
Let et( ) be the function defined by

fl for 0 < u < t
(0.3) et(u) = J

( - 1 for t < u < 0 ,

and by et(u) = 0 for all other values of u. It will be convenient to
denote by et the support of the function et( ) thus, et is the interval
with end-points 0 and t:
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[0, ί) for t ^ 0
(0.4) * = ( * , _ _ ( α o ) f o r ί < 0 >

Unless otherwise specified, suppose that /( ) and g( ) belong to
Lloc(ω) (this is the space of all the complex-valued functions which
are Lebesgue integrable on each interval (α, b) with ω_<a<0<b<
ω+). We denote by / A Q( ) the function defined by

(0.5) / A g{t) = [f(t - u)g{u)du (all t in ω)
Jo

that is,

(0.6) / A g(t) = \ f(t- u)et(u)g(u)du .

REMARK 0.7. Suppose that ω_ ̂  a <: 0 ^ b < ω^:

(0.8) if a < t < b and ueet then (t — u) e et c (α, 6) .

This is easily verified.

REMARKS 0.9. The following properties are direct consequences of

(0.1M0.8):

(o.io) / A g(t) = f+ A g(t) = Λ A g+(t) (for ί > o),

and

(0.11) f A g(t) = / u A flr(ί) = / u Λ ί/u(0 (for ί < 0).

FINAL REMARK 0.12. If/x( ) = / ( ) and g,( ) = g( ) almost-every-
where on ω, then f1/\gι{)=f/\g{) almost-everywhere on ω. This
is another easy consequence of (0.5)-(0.8).

LEMMA 0.13. If a ^ 0 ^ b and if f( ) = 0 almost-everywhere on
the interval (a, b), then f A ΰ{ ) — 0 on (a, b).

Proof. If t e (a, b) it follows from (0.8) that

n e et implies (t — u) e et a (α, b)

therefore, (t — u) e (α, 6), whence our hypothesis (/( ) = 0 almost-
everywhere on (α, b)) gives fit — u) = 0 for u almost-everywhere on the
interval et: the conclusion/A g{t) = 0 now follows directly from (0.6).

LEMMA 0.14. Suppose that a < 0 < b. If f( ) — 0 on the interval
(α>_, 6), then
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(0.15) / A 9(t) = Γ " V ( * - τ)g(τ)dτ (for b<t< ω+).
Jo

If h( ) e Lloc(ω) and if h{ ) = 0 on the interval (a, ω+), then

(0.16) h A g(t) = - Γ h(t - τ)g(τ)dτ {for ω_ < t < a).
Jt-a

Proof. First, the case b < t < ω+. From (0.5) we have

( 1 ) / Λ flf(ί) - ['"fit - τ)g{τ)dτ + [ f(t- u)g(u)du .
Jo Jί-δ

From (0.8) we see that

u e [0, t) implies (t — u) G et a ω ,

so that (t — u) G ω. lί u > t — b, then b > t — u, whence (t — u) e
{ω_, b) consequently, our hypothesis (/( ) = 0 on (ω__, b)) gives f(t —
u) — 0 whenever u > t — b: Conclusion (0.15) is now immediate from

(1).
Next, the case ω_ < t < a. From (0.5) we have

(2) h A 9(t) = - Γ"β Λ(ί - u)g{u)du - Γ A(ί - τ)g{τ)dτ .
Jt Jt-a

From (0.8) we again see that

u G (ί, 0) implies (t — u) e et a ω ,

so that (t — u) eo). If u < £ — α then t — u > a, whence (ί — u) e
(a, ω+) consequently, our hypothesis (h( ) = 0 on (α, ω+)) gives
h(t — u) = 0 whenever u < t — a: Conclusion (0.16) is now immediate
from (2).

0.17. Convolution. If F( ) and G( ) belong to Lι(R), then F*G()
is the function defined by

F*G(x) = [ F(x - u)G(u)du (all x in R)
JR

it is well-known that F*G( ) e Lι{R) (see [1], p. 634). Further,

(0.18) Supp F*Gcz (Supp F) + (Supp G):

see p. 385 in [2].

THEOREM 0.19. / / / ( ) and g( ) δeZ<m# to Lloc(ω), then f A θ( )
belongs to Lloc(ω), and

(0.20) / A # ( ) — 9 Kf{) cdmost-everywhere on a).
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Proof. Suppose that ω_ < a < 0 < b < ω+. If h( ) e Lloc(ω),
we can define the function hb( ) by

jΛ(ί) for 0 < ί < b
( 1 ) Λδίί) = j Λ ,,

(0 otherwise.
Similarly, ha( ) is defined by

(2) W t , = |
(0 otherwise.

Note that both hb( ) and ha( ) belong to L 1 ^ ) . Set

( 3 ) F( ) = -fa*ga( )+fb*gh( ) .

The four functions on the right-hand side of (3) are all integrable on
R consequently, both fa * ga( ) and fb * gb( ) are integrable on R from
(3) it now follows that F( ) is integrable on R. In consequence, if
we can prove that

( 4 ) F(t) = f A flf(ί) for α < ί ^ 0 < b ,

then / A Q{ ) is integrable on the arbitrary sub-interval (α, b) of the
interval ω our conclusion f A 9e Lloc(ω) is at hand moreover,
Conclusion (0.20) comes from (4)-(3) and the property F^F2( ) =
F2*F1{ ) (see [1], p. 635). Accordingly, the proof will be accomplished
by proving (4).

The proof of (4) is divided into two cases. First case: a < t < 0.
Since Supp/6 and Supp gb are subsets of the interval [0, ©o), we see
from (0.18) that

Supp/δ * gb c [0, oo)

consequently, fb * gb( ) vanishes for t < 0 therefore, (3) gives

( 5) F(t) - - Λ * </α(£) = - ί ° fa(t - n)g{u)du
Ja

(for a < £ < 0) the second equation comes from (2) and the fact that
ga(u) = 0 when u < a and when u > 0. From (5) it follows that

F(t) = -\[fa(t - u)g(u)du - jVβ(ί - τ)g(τ)dτ

but a < u < t implies t — u > 0, so that /α(ί — u) = 0 therefore,

( 6 )

but 0 > r > £ implies t < t — r < 0 in consequence, since a < t, we
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have a < t — τ < 0, so that (2) gives fa(t — τ) = f(t — τ): Equation
(6) becomes

F{t) = ( f(t - u)et(u)g(u)du .

In view of (0,6), this concludes the proof of (4) in case a < t < 0.
Second case. 0 < t < b. As in the first case, we observe that

fa * ffa(t) = 0 it is a question of proving that F(t) = fb * 06(£): the
reasoning is entirely analogous to the one used in the first case.

THEOREM 0.2Γ. Suppose that the functions /( ), g( ), and h( ) all
belong to L]oc(ω). If the function \f\ A (\Q\ A W)( ) is continuous
on ω then

(0.22) f A (g A A)(a?) = (f A 9) A h(x) for every x in ω.

Proof. From (0.6) it follows that

( 1 ) F A (G A H){x) = f ί F(x - t)G(t - u)H(u)dudt .
} e x Jet

Since | / | A (\Q\ A \h\)( ) is continuous on ω (by hypothesis), we there-
fore have \f\ A(\g\ A \h\)(x) < oo, so that (1) gives

( ί I/O ~ % ( * - u)h(u)\dudt < co

we may therefore apply Tonelli's Theorem [3, p. 131] to write

(2 ) / A (9 A h)(x) = \ \ f(x - t)g(t - u)h{u)dtdu ,
J e x J xu

where xu is the appropriate interval. Let us prove that

(3 ) / A (9 A h){x) = Γ h(u) [Xf(x - t)g{t - u)dtdu .
JO }u

In case α; > 0 the double integral is taken over the interior of
the triangle

{(u, t): 0 < t < x and 0 < u < t)

consequently, the range of t (in the integral (2)) is the interval xu =
[u, x]: this establishes (3). In case x < 0 the double integral is taken
over the triangle

{{u, t):x < t < 0 and t < u < 0}

1 The principle of this proof is due to R. B. Darst.
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consequently, the range of t (in the integral (2)) is the interval xu =
[x, u] the integral (2) becomes

/ A (9 A h)(x) = Γ [fix - t)g(t - u)h(u)dtdu ,
J X J X

which again establishes the equation (3). The change of variable
r = t — u brings (3) into the form

/ A (9 A h)(x) = \ h(u) I Uf(x - u- τ)g{τ)dτdu
Jo Jo

consequently, (0.5) gives

/ A (g A h)(χ) = [ h(u)[f A g(χ - u)]du:
Jo

Conclusion (0.22) is now immediate from (0.5).

DEFINITION 0.23. For any integer n ^ 1 we denote by qn( ) the
function defined by the equation qn(0) = 0 and

qn{t) = e x p ( τ = l ) (for
\\nt\J

τ\nt\

THEOREM 0.24. Suppose that /( ) belongs to Lloe(ω). If ω_ ^
a ^ 0 ^ b ίg (0+ and if

( 4 ) / A <7n(£) — 0 for a < t < b and every integer n ^ 1 ,

ίAβ^ /( ) vanishes almost-everywhere on the interval (a, b).

Proof. From (4) and (0.20) it follows that

0 = lim qn A fit) = lim I qn(t - u)et{u)f{u)du
n->oo w- + oo J e ^

since | qn{ ) \ ̂  1 we may apply the Lebesgue Dominated Convergence
Theorem:

( 5) 0 — I lim exp — H \et{u)f(u)du = 1 et(u)f(u)du .
j e ί %_>oo L n(t — U)Λ )et

From (5) and (0.3)-(0.4) we see that

0 = (V for 0 < t < 6, and 0 - - Γ/ for a < t < 0 ,
Jo Jί

which implies our conclusion: /( ) vanishes almost-everywhere on the
interval (α, b).
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1* The space J ^ of generalized functions* As before, (0 is
an arbitrary sub-interval of R = (— oo? oo) such that ω 9 0. If /( )
and g( ) are functions, the equation /( ) — g( ) will mean that the
functions are equal almost-e very where on the interval ω.

NOTATION 1.0. Let &Ό(ω) be the space of all the functions which
are continuous on ω and which vanish at the origin.

NOTATION 1.1. We denote by 1( ) the constant function defined
by l(ί) = 1 for all t in R.

L E M M A 1.2. If g()e Lloc(ω) then 1 A Q( )

Proof. From (0.5) we see that

(1.3) 1 A 9(t) = [* l(t - u)g(u)du = Γ g(u)du .
Jo Jo

On the other hand, g( )eL\a, b) whenever (a, b) is a compact sub-
interval of the open set ω: the conclusion is now at hand.

LEMMA 1.4. If Ψ( ) is continuous on ω, then (1 A Φ)' = Φ( )•

Proof. The equations

(lAΨYit) (i/

dt

are immediate from (1.3) and the Fundamental Theorem of Calculus.

LEMMA 1.5. Suppose that v( ) e ^0(ω). If v'{ ) has only countably
many discontinuities and is integrable in each compact sub-interval of
the open interval ω, then v{ ) = 1 A ^'( )•

Proof. Take t m ω. If t > 0 the equations

v(t) = v(t) - v(0) = [ v\u)du = 1 A v(t)
Jo

are from v(0) = 0, [4, p. 143], and (1.3). If t < 0, the same reasoning
yields

v(t) = ~[v(0) - v(t)] = ~[v'(u)du = 1 A v(ί) .

THEOREM 1.6. Let G( ) be a function whose derivative is continuous
on the interval ω. If /( ) e Lloc(ω), then G A /( )
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(1.7) GAf() = G(0)(l A/)( ) + 1 A (G' Λ/)( )

Proo/. Clearly, the function v{ ) = G( ) - G(0)l( ) belongs to
consequently, 1.5 gives

G{ ) - G(0)l( ) - 1 A G\ ) ,

so that 0.12 implies

(1) G Λ/( ) - G(0)(lΛ/)( ) - (1 A G') A/( ) -

From 0.19 it follows that (|G'| Λ l/l)( ) e L » ; we can therefore
conclude from 1.2 that the function | 1 | A (|G'| A l/l)( ) is continuous
on ω, whence the equation

(2) ( 1 Λ G ' ) Λ / ( ) = 1 Λ ( G ' Λ / ) O

now comes from 0.21. Conclusion (1.7) is immediate from (l)-(2). It
still remains to prove that G A/( ) £ ̂ ( ω ) .

Set &( ) = G' A /( ) Equation (1.7) becomes

(3) G A/( ) = G(0)(l A/)( ) + 1 A flTi( )

From 0.19 we see that gγ{ ) e Lloc(ω) the conclusion G A /( ) e <ĝ (ω)
is obtained from (3) by setting g = f and then g = ^ in 1.2.

1*8 The space of test-functions. Let Wω be the linear space of
all the complex-valued functions which are infinitely diίferentiable on
ω and whose every derivative vanishes at the origin. Thus, w( ) e
Wω if w( ) G c^0(ω) and w(fc) e ^(ω) for every integer k ^ 1.

EXAMPLE 1.9. Let gw( ) be the function defined in 0.23 it is
easily verified that ql!c)(0) = 0 for every integer k ^ 1 therefore,
Qn{ ) e Wω.

L E M M A 1.10. If f()e Lloc(ω) and q{ )eWω then

(1.11) q/if( )eϊ?0(ω)

and

(1.12) (9 A / ) ' ( ) = 9 ' Λ / ( ) .

Proof. Since g'( ) e ^(ω), we can set G = q in 1.6 to obtain
(1.11) and the equations

( 4 )

now come from (1.7) and g(0) = 0 (since g( ) e ^{ω)). Next, set
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( 5 )

Equation (4) becomes

( 6 )

Setting G = q' in 1.6, we see from (5) that Ψ( ) e <ίTΌ(ω) the equations

therefore follow from 1.4 and (5). Conclusion (1.12) is immediate
from (6)-(7).

LEMMA 1.13. Iff()e Lloc(ω) and w( ) e Wω, then w A / ( ) e Wω1

and

(1.14) (/A w)'( ) = w> Λ/( ) - / A w'{ ) .

Proof. If the equation

(8) (w AfYk)( ) = ^oik) Af( )

holds for A: = n, then it holds for k — n + 1: this is easily seen by
observing that the equations

l(w Λ / Γ Ύ ( ) - (w{n) AfY( ) - w(nτl) Λ/( )

come from (8) and (1.12). Since (8) holds for k = 0, it holds for any
integer fc ^ 0. From (8) and (1.11) (with q = wUί)) it follows that

(lυ A f){k)( ) e ^o(ω) for any integer k ^ 0

therefore, w A f( ) e T̂ ω Conclusion (1.14) comes from (1.12) and
(0.20).

DEFINITIONS 1.15. An operator is a linear mapping of Wω into
Wω. If A is an operator and w( ) e Wω, we denote by .Aw( ) the
function that the operator A assigns to w( ).

As usual, the product A,A2 of two operators is defined by

(1.16) .A,AM ) = .Aά.AwX ) (every w{ ) in Wω).

1ΛΊ. The space of generalized functions* Let J K be the set
of all the operators A such that the equation

(1.18) .A(wt A wύ( ) = ( A.v>d A w2

holds whenever w±( ) and w2( ) belong to Wω.
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DEFINITION 1.19. If /( ) e Lloc(ω) we denote by /* the operator
which assigns to each w( ) in Wω the function f A w( ) :

(1.20) .f*w( ) = / A w( ) (for each w( ) in Wω).

THEOREM 1.21. If f( ) and /2( ) belong to Ll0G(ω), then

(1.22) f*f* = (

Proof. Take any w2( ) in Wω. From 1.13 and (0.20) we see that
I/21 A |w2 |( )e TΓω; consequently, we can set w = |/ 2 | A 1^1 and
/ = l/iΐ in 1.13 to obtain

from 0.21 it therefore follows that

(1.23) A A (/, A O ( ) = (A A /*) A

which, in view of 1.19, means that

Since 2(;2( ) is an arbitrary element of Wω, Conclusion (1.22) is im-
mediate from (1.16).

REMARK 1.24. If /( ) e Lloc(ω) then / * e J K Indeed, / * is an
operator (by (1.20), (0.20), and 1.13): it only remains to prove that
the equation (1.18) holds for A = / * . Setting f=f and f2 — wγ in
(1.23), Λve obtain

/ A (wi A w2)( ) = (/ A Wi) A w2( )

in view of (1.20), this becomes

.f*(v>i A v>ύ( ) = ί / * ^ ) A wa( ) :

therefore, (1.18) holds when A = / * .

DEFINITIONS 1.25. We denote by D the differentiation operator:

(1.26) .Dw( ) = w'{ ) (all w( ) in Wω).

Let / be the identity-operator:

(1.27) Jw{ ) = w( ) (all w( ) in Wω).

If/( ) e L » , we denote by {/(ί)} the operator defined by

(1.28) λf(t)}w{ ) =fAw'() (all w( ) in Wω)
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the operator {/(£)} will be called the operator of the function /( ).

REMARK 1.29. {l(<t)} = I . Indeed, the equations

.{l(t)}w( ) = 1 A w'( ) = w{ )

are from (1.28) and 1.5.

REMARK 1.30. Des*fω. Indeed, D is clearly an operator, and
the equations

.D{w1 A w2)( ) = {w1 A w2y( ) = w[ A w2( ) = (.DwJ A w*( )

are from (1.26), (1.14), and (1.26).

DEFINITION 1.31. Let {a, b) be a sub-interval of ω such that
a ^ 0 <S b; if Ae S^ω and BeSϊfω, we say that A agrees with B on
(α, b) if

.Aw(t) = .Bw(t) for a < t < b and for every w( ) in Wω.

THEOREM 1.32. Suppose thatfk( ) e Lloc(ω) for k = 1, 2. 1/ {ftf)}
agrees with {f2(t)} on {a, b}, then /x( ) = /2( ) almost-everywhere on the
interval (a, b). Conversely, if the functions are equal almost-every-
where on (α, 6), then their operators agree on (α, δ).

Proof. Set fe( ) = f( ) — /2( ). By hypothesis, the relation

( 1 ) .{h(t)}w(t) = 0 (for a < t < b)

holds for every w( ) in Wω: it will suffice to show that h( ) = 0
almost-everywhere on (α, 6). Take any integer n ^ 1, and let gw( )
be the function that was defined in 0.23 since qn( ) e TΓω (see 1.9),
it follows from 1.13 (with / = 1) that qn A 1( ) e Wω in view of
(0.20) we may therefore set w( ) = 1 A <7»( ) ίn (1) to obtain

(2 ) .{h(t)}(l A ff )(ί) = 0 (for a < t < b).

The equations

(3 ) .{λ(ί)}(l Λ ?J( ) = h A (1 A QnY( ) = f t A ϊ . ( )

are from (1.28) and 1.4. Combining (2) and (3), we see that h A
qn(t) = 0 for a < t < b and for every integer π ^ 1 the conclusion
h( ) = 0 (almost-everywhere on (α, 6)) now comes from 0.24.

Conversely, suppose that fx{ ) =/ 2 ( ) almost-everywhere; this means
that h( ) = 0 almost-everywhere on (α, 6) we may therefore apply
0.13 to conclude that
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A Λ W( ) = 0 for a < t < δ and every w( ) in Wω

consequently, (1.28) gives .{h(t)}w(t) = 0, so that

Λfi(t)}w(t) = .{A(t)}w{t) for α < ί < δ and w( ) e Wω :

this proves that {/χ(ί)} agrees with {/2(ί)} on (α, 6).

COROLLARY 1.33. Suppose that f,( ) α^d /2( ) δeZ(m# to L l o c (ω):

Proof. Set α = ω_ and δ = ω + in 1.32: by definition, two
operators are equal if they agree on (α, δ) moreover, we agree that
the equation /x( ) = /2( ) means that these functions are equal almost-
everywhere on (α, δ). The conclusion is now immediate from 1.32.

THEOREM 1.34. The mapping /( ) ι-> {/(£)} is an injective linear
transformation of Lloc(ω) into Szfω such that

(1.35) {f{t)} = f*D .

Proof. The equation (1.35) is immediate from (1.28), (1.16), and
(1.26). On the other hand, it is easily verified that J K is an algebra
(if Ak e J K for k = 1, 2, then A,A2 e J K ) : since / * e JK (by 1.24),
and since D e J>fω (by 1.30), the conclusion {/(£)} e J^ζ, comes from
(1.35). From 1.33 we may now conclude t h a t / ( ) i—»{/(ί)} is an injec-
tive transformation of Lloc(co) into s/ω: the linearity is clear from
(1.28).

LEMMA 1.36. // Bes$fω then the equation

(1.37) .B(Pl A p2)( ) = P l Λ (.BPi)( )

for every pt( ) απd p2( ) in Wω.

Proof. The equations

>i A ft)( ) = .5(p2 A Pi)( ) - ( BPi) A Pi( )

are from (0.20), (0.12), and (1.18) conclusion (1.37) is now immediate
from (0.20).

THEOREM 1.38. ,S^fω is a commutative algebra.

Proof. The multiplication of the algebra ,Wω is the usual oper-
ator-multiplication (defined in (1.16)); it is easily verified that sfω is
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an algebra. Take Ax and A2 in jχ?ω to prove the commutativity, it
will suffice to demonstrate that AYA2 — A2A1 = 0. Let gx( ) and q2( )
be any two elements of Wω we begin by observing that

( 1 ) .AAiQi Λ ίθ( ) = A\{.A2qι) A (Jίl( ) = (.Aad A (.A1?0( ) :

these equations are from (1.16), (1.18), and (1.37) (with pt = .A2q[ and
p2 = q'2)m On the other hand, the equations

(2) .AAfa A φ{ ) = .A2(qi A (.A1?D) = (.ArfO A (.

are from (1.16), (1.37), and (1.18). We now subtract (2) from (1) to
obtain

( 3 ) .A(q, A ?0( ) = 0, where A = A,A2 - A2A,.

From (3) and (1.18) it results that

0 = (.AQl) A qί( ) = {.A?1(ί)}?2( ) (all ? 2( ) in Wω)

the last equation is from (1.28). Consequently, 0 = {.Aq^t)} we may
now infer from 1.33 that 0 = .Aq^ ) for each qL( ) in Wω: the desired
conclusion A = 0 is at hand.

THEOREM 1.39. If AejK and w( ) e Wω, then {.Aw(t)} = A{w(t)}.

Proof. Let w2{ ) be an arbitrary element of Wω the equations

(4) .{.Aw{t)}w2{ ) = (.Aw) A wί( ) = .A(w A O ( )

are from (1.28) and (1.18). On the other hand, the equations

(5) .A{w(t)}w2( ) = .A(.{w(t)}w2)( ) - .A(w A wί)( )

come from (1.16) and (1.28). Comparing (4) and (5):

(6 ) .{.Aw(t)}w2( ) = .{A{w{t)})ιv2{ ) .

Since (6) holds for every w2( ) in Wω, the proof is complete.

THEOREM 1.40. If f( ) and f2( ) both belong to Lloc(ω), then

Proof. The equations

(8) D{f A Λ(ί)} = D(f A Λ)*D = DffiiD = (fΐD)(f*D)

are obtained by using (1.35) (with / = fι A jQ* by using (1.22), and
by utilizing the commutativity and the associativity of the multipli-
cation in ,s$fω. Conclusion (7) comes directly from (8) and two more
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applications of 1.35.

2 Two-sided operational calculus* If c is a scalar (that is, a
complex number), the equation {cl(t)} = cl comes from 1.29 and the
linearity of the transformation /( ) ι--> {f{t)} consequently, cl e *S*fω

(recall that I is the identity: (1.27)). Since the correspondence c\-*cl
is an algebraic isomorphism of the field of scalars into the algebra
jyω, there is no reason to distinguish between the scalar c and the
operator cl:

(2.0) c = cl = {cl(t)} for any scalar c .

Since ctnl(t) = ctn for all t in R, it is natural to write {ctn} instead of
{ctnl(t)} in particular,

(2.1) c = cl = {c} and 1 = I = {1} .

Substituting /Ί = 1 into 1.40:

(2.2) 0{1Λ/.(<)} = {/.(«)}.

We can also combine the linearity property with (2.1) to obtain

(2.3) Kftί) + c2f2(t) + c,} = dίΛίί)} + c2{f2(t)} + cz

of course, we suppose throughout that ck (k = 1, 2, 3) are scalars, and
fk( ) (k = l, 2) belong to Lloc(ω).

THEOREM 2.4. Suppose that f( ) is a function which is continuous
on the interval ω. If /'( ) has at most countably-many discontinuities
and is integrable in each compact sub-interval of o), then

(2.5) {/'(«)} - D{f(t)} - fφ)D .

Proof. If v( ) = / ( ) - /(0)l, then v'( ) = / ' ( ) and we may apply

1.5:

( 1 ) / U - / ( θ ) i = v ( ) = i Λ / ' ( )

From (1) and (2.3) it follows that

( 2 ) {/(ί)}-ΛO) = {1 Λ/'(*)}•

Multiplying by D both sides of (2), we obtain

D{f(t)} - f(0)D = D{1 A/'(ί)} = {/'(ί)}:

the last equation is from (2.2).

2.6. Invertibility. As usual, an operator A is called invertible
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if A e J K and there exists an operator X in J K such that AX = 1.
Suppose that A is an invertible operator since J^fω is a commutative
algebra, it is easily verified that there exists exactly one operator
A'1 such that A'1 e St?ω and AA~ι = 1. Setting f(t) = t in 2.4, we
obtain

(2.7) {1} = D{t}

consequently, D is an invertible operator, and D~~ι — {t}.

THEOREM 2.8. Suppose that Yej%fω and F e J K If the equation
VY = R holds for some invertible R in s>/ω, then V is invertible,
and F = R/V, where R/V denotes RV~ι.

Proof. Easy; see 1.76 in [5].

REMARKS 2.9. From (2.5) we see that

(2.10) D{sin t} = {cos t) ,

whence J52{sin t) = Z){cos t) = — {sin t} + D (this last equation also
comes from (2.5)) we may therefore use 2.8 to obtain

(2.11) {sin t) = D

D2 + 1

The equation

(2.12) D~k = I—} (for any integer k ^ 0)

is an easy consequence of (2.7) and (2.5).

2.13. NOTATION. We shall often write f instead of {/(£)}. Con-
sequently, (2.3) can be re-written in the form

(2.14) {cj.it) + c2f2(t) + c8} = ci/i + c*/2 +
 C3 ,

and 1.33 becomes

(2.15) f = f2 if (and only if) /,( ) = /8( ).

Combining 1.40 with (0.5):

(2.16) ΛAΛ= ΛDr'Λ = {[[fit - u)Mu)du} .

Also, note that (2.2) gives

(2.17) f2 = D(l A /2)
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that is,

(2.18)

combining with (1.3):

(2.19)

Finally, note that Theorem 1.39 becomes

(2.20) .Aw = Aw (for 4 e j / ω and w( ) e Wω).

APPLICATION 2.21. Given a function/( ) in LloH—a, a), let us
solve the differential equation

( 1 ) y"{t) + y{t) =f(t) (-a<t<a);

for example, we could have f(t) = sec (πt/2a). To solve (1), set ω =
( — a,a),cQ = 7/(0), Cx = 2/'(0), and inject both sides of (1) into
this gives D2y + y = c ^ + c0Z)2 + / solving for y :

y = c + c0D — - — + — - — D~ιf:
i) 2 + 1 D2 + 1

y = c, — - — + c0D — - — + — - —
D2 + 1 i) 2 + 1 D2 + 1

we can now use (2.11), (2.10), and (2.16) to write

y — cx sin + cQ cos + < I (sin (ί — u))f(u)du > .

3* Translation properties* In this section we shall describe
some two-sided analogues of the translation properties described in [5].

If b ^ 0 we define the function T6( ) by

(3.0)

If α < 0

(3.1)

Observe

(3.2)

we set

that

T»(ί) =
0

1

~ lo

T / \ Π
• x\ ) ~~ ^ on

for t < b

for t ^ b .

for t

for t

( - I s

< α

^ a .

. x \) (for any x in R).

Until further notice, let g( ) be a function in Lloc(ω), and let
#-,. ( ) be the function defined by

(3.3) ga(u) = Tx(u)g(u - x) (for u e ω)
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note that gx( )eLloc(ω).

LEMMA 3.4. If b ̂  0 then 1 A gb( ) = T6 A g( ).

Proof. Observe that gb{ ) = 0 = Ίb( ) on the interval (ω_, 6)
from 0.13 it therefore follows that

( 1 ) ^ Λ l(ί) - 0 - T, A 9(t) (for t e (ω_, b)).

Next, suppose that t > b and tea): the equation

1 A 9b(t) = \ l(ί - u)Tb(u)g(u - x)du
Jo

comes from (0.5) and (3.3) in view of (3.0), we see that

( 2 ) 1 A 9b(t) = [g(u- x)du = Γ"6 g(τ)dτ = Ίb A flr(ί) :
Jδ Jo

the second equation is obtained by the change of variable τ = u — b
the last equation comes from (0.15) by setting / = T6 in 0.14. The
conclusion is immediate from (l)-(2)

T H E O R E M 3 .5 . If xeR then 1 A 9χ( ) = T* A 9( ) and

(3.6) gx = ̂ Tx .

Proof. In view of 3.4, it only remains to consider the case x =
a < 0. Observe that #α( ) = 0 = Tα( ) on the interval (α, ω+) from
0.13 it therefore follows that

(3 ) ga A l(ί) = 0 - Tα A flr(ί) (for t e (α, α>+)).

Next, suppose that t < a and teω: as in the proof of 3.4, we see
that

(4) lAga(t) = -\ag(u-x)du=-\° g(τ)dτ:

the second equation is obtained by the change of variable r = u — a.
Note that τα( ) = 0 on the interval (α, ω+): we can therefore set
h = Tα in 0.14 and use (0.16) to obtain

Tα A 9(t) = - (° Tβ(ί -
Jί ί - α

From (4)-(5) it results that 1 A 9a(t) = Tα A fl^(ί) for ω__ < ί < α the
conclusion 1 A 9a( ) = τα A 9( ) i s n o w immediate from (3). The
equations
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g. = D(i A g.) = D(τx Ag) = ixg

are from (2.17), from our conclusion (1 A g*{ ) — τ * A g)j and from
(2.17) : this proves (3.6).

3.7. Particular cases. In view of (3.3), we can write (3.6) in the
form

(3.8) {Tm(t)g(t - x)} = Ίmg ( f o r x e R a n d g( ) e L l o c ( ω ) ) .

This equation is a useful substitute for the Laplace-transform identity

&[Tx(t)g(t - x)] = e—2[g(t)] .

Let U( ) be the function 1( ) — l + ( ) that is,

(3.9) U( ) = 1( ) - To( ) .

From (0.1) and (3.0) it follows that g+( ) = Γo( )g{ ) but (3.8) then
gives {g+(t)} = Tog, so that

(3.9.1) {gn(t)} =g-i,g = \\g (by (0.2) and (3.9)).

Setting g( ) = To( ) in (3.8) we see that To = {T0(t)T0(t)} = T0T0, whence
it results that

(3.10) T0U = 0, Vo = To, and U2 - iχ.

If A e J K we set A+ = T0A and An = l\A clearly, A = An + A+

and AUA+ = 0 . If B e J K then

(3.11) A
n
B = A

n
B

a
 = H(AB)

and

(3.12) A
+
B = AB

+
 = A

+
B

+
 = (AB)+ .

Let {Bssf) denote the set {BA: Ae j$?) it is easily seen that
( U J ^ ) and (Tojy) are ideals in the algebra JK> and Jzfω is the direct
sum of these ideals:

(3.13) s^f = ( U J ^ ) 0 (TQj^) .

Note that sgn £ = — U(ί) + T0(ί), so that sgn = — U, + To. It is
easily verified that {[£[} = D~ι sgn, and

(3.14) {e i"} = J > 2 + α

If α > 0 we set

1«( ) = -T..β( ) + Tα( )
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from (3.8) it follows readily that

lag = {-Ί-a(t)g(t + a) + Ta(t)g(t - a)} .

If h( ) is a periodic function of period a, then

k _ {[1 - V(t)]h(t)}
1 - la

Finally, if a ^ 0 and /3 ^ 0 then laV = la+? and

(3.15) τaΊβ = Tα+^:

we define l α to be 1 in case a — 0.

3.16. Other operational calculi. Mikusiήski's injection (of L loc(0, oo)
into the Mikusiήski field) is an extension of the Laplace transforma-
tion analogously, our injection /( ) H» {/(£)} is comparable to the
two-sided Laplace transformation. However, if £{/(£)} denotes the
Laplace transform of the function /( ), then

8{e β}(β) ^ 8 { e } ( s )
1 — s2

the first equation holds for s > 1, the second for 0 < s < 1. This
contrasts with

{β-4 - e*} = j - ^ ̂  {β~lί!} (see (3.14)).

A problem which is not Laplace-transformable is discussed in 6.7.

THEOREM 3.17. If a > 0 and h( ) el/ l o c(ω), then the equation

(3.18) j Σ cfcTte(ί)flr(ί - to)} = J Σ c,Tte(ί)}

AoWs / o r απ^/ scalar-valued sequence ck (k = 0, ± 1 , ± 2 , ± 3 , •••)•

Proof. Set

(1) flr(T«)( ) = Σ ckgU ) .

Take any ί in ω : there exists an integer m > 0 such t h a t \t\ < via.
Clearly,

( 2 ) g(Ta)(t) = Σ,ckgka(t)+ ΣiCtfUt)-

Since ί e ( - m α , mα) c (— \i\a, \i\a) and since gia( ) = 0 on the interval
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(—\ί\a,\i\a) (by (3.2) a n d (3.3)), we have gia{t) = 0 : consequently,
t h e series (1) converges, a n d (3.3) gives

( 3 ) 9(Ta)(t)= Σ cjka(t)g(t-ka).

The equations

g(Ta) = D{1 A 9(Ta)} = D\ Σ ck(l A gka)(t)\

are from (2.17) and (1) from 3.5 it therefore follows that

( 4 ) g(Ίa) = D\ Σ c t(T te A

Equation (4) gives

( 5 ) g(Ta) = £>{</ Λ £ c»Tte(ί)} = J Σ c*Tte(ί)} :

the second equation is from 1.40. Conclusion (3.18) now comes from
(3) and (5).

REMARK 3.19. If c is a scalar and if λ ^ 0, the equation

l λ h = J Σ ck(hn(t + ka + λ) + h+(t -ha- λ))}
1 — cla U=o J

is not hard to verify; it is the two-sided analogue of Theorem 5.29
in [5].

T H E O R E M 3 .20. If XSR and w( ) e Wω then

(3.21) .Ίxw(t) = τ*(t)w(t - x) {for teω).

Proof. The equations

{Tx(t)w(t — x)} = Ίxw = . T ^

come from (3.8) and (2.20): Conclusion (3.21) now follows from (2.15).

LEMMA 3.22. If Res*fω and w{ ) e Wω then

(3.23) .Ruw{ ) = [.Rw]n( ) .

Proof. Setting g — .Rw in (3.9.1), we obtain

( 1 ) {[-RwMW = H{.Rw(t)} = HR{w(t)}:

the last equation is from 1.39. Since Bn = l\B (by definition), Equa-
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tion (1) becomes

( 2 ) {[.Rwlufjt)} = Rn{w(t)} = {.Ruw{t)}:

the second equation is from 1.39. Conclusion (3.23) is immediate from
(2) and 1.33.

THEOREM 3.24. If Ae Jϊfω and B e JK> then

An = Bn if (and only if) A agrees with B on (ω_, 0).

Proof. R e c a l l t h a t (α>_, 0) = ω f] ( - oo, 0 ) . L e t w() b e a n y
e l e m e n t of Wω t h e e q u a t i o n s

( 3 ) [.Aw]n( ) = .Anw( ) - .Bnw( ) = [.Bw]n( )

are from (3.23), our hypothesis An = J5U, and (3.23). Since h\χ(t) — h(t)
for t < 0 (see (0.1)-(0.2)), Equation (3) implies

( 4 ) .Aw(t) = .Bw(t) (for ω_ < t < 0).

From (4) and 1.31 we see that A agrees with B on (α>_, 0).
Conversely, if A agrees with B on (α>_, 0), then (4) holds, whence
the equation [.Aw]u( ) = [.Bw]n{ ) : combining this with (3.23), we
obtain

.Aιχw{ ) = .Bnw( ) (for every w( ) in Wω),

which gives A u = Bn.

THEOREM 3.25. The space (Toj^) consists of all the elements of
J^fω which agree with 0 on (α>_, 0). Moreover,

(3.26) B e (Tos^f) <==> Bn = 0 <=> B = B+ .

Proof. We begin with (3.26). If £ e ( T o j y ) then B = ΊQA for
some A in jzfω therefore, \\B — 0 (by (3.10)) this gives j?u = 0
since B = Bn + B+, the equation J?u = 0 implies B — Bu if B = B+
then B = To£, whence Be(l0Stf). This proves (3.26).

If Be (T0J^) then 5 U = 0 (by (3.26)), which implies that .B agrees
with 0 on the interval (α>_, 0) (by 3.24). Conversely, if B agrees with
0 on the interval (α>_, 0), then j?u = 0 (by (3.24)): the conclusion
Be(T0,W) now comes from (3.26).

THEOREM 3.27. // Be J K is such that the equation f = Bιχ holds
for some /( ) in Lloc(ω), then f agrees with B on the interval (ω_, 0).

Proof. The equations
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(3.28) fn = U / = UBn = U2B = HB = Bιχ

are from the definition (/u = LJjQ, from our hypothesis, from the
definition (Bιχ — L_U?), from (3.10), and again from the definition (J?u =
HB). From (3.28) and 3.24 we see that / agrees with B on the
interval (ω_, 0).

4 The topological space j ^ Let the function space Wω be
endowed with the topology of pointwise convergence on the interval
ω: this enables us to topologize s^ω by endowing it with the product
topology (recall that J K consists of mappings of Wω into the topolo-
gical space Wω). Consequently, the equation

(for B and Aλ in

means

( 1 )

that

.Bwit)

B =

= lim.

= lim .A

A,w(t) (for ί e ω and w{ ) e ωω).

It is immediately clear that Stfω is a locally convex Hausdorff
vector space: in fact, H. Shultz has proved that it is sequentially
complete and that the multiplication of the algebra ,S^ω is sequentially
continuous.

We denote by l i m ^ the mapping that assigns to each w( ) in
Wω the function .Bw( ) defined by (1):

(4.1) A lim. Aχ)w( ) = lim .A?w( ) (every tv( ) in Wω)

If x h-> F(x) is a mapping into .j>/ω, we set

(4.2) 4~ F(x) = l ί m — [^(» + ε) ~ ^ ) ] ί
ax e-*o ε

in view of (4.1), this means that dF(x)/dx is the operator defined for
any w( ) in Wω by

(4.3)

THEOREM 4.4. If xβR, then (—)τx = - T X D .

Proof. Take any w( ) in Wω9 take any ί Φ X in α> from (4.3)
we see that

( 2) . ( A τΛw(ί) = A (.Tβw(ί)) - A lx(t)w(t - a?) :
\dx / ox ox
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the second equation is from (3.21). Set E1 — {x: x > t) and E2 =
{x: x < t}: note that the function x H-» Tx(t) is constant on Ek when
k = 1, 2 consequently, since x Φ t then xeEk for some &, whence
dΊx(t)/dx = 0 we can use this to infer from (2) that

r T*V(*) τ*(0 T w ( * χ) Tβ(ί)w(ί ») (all t ^ a?).
dx / 3x

Consequently, we may use (3.21) to write

.(A. T W ) = -.T,w'( ) (all w( ) in Wω).
\dx /

Calling J5 = dTJdx, this gives .i?w( ) = —.ΊxDw( ), whence the con-
clusion B = — T^D.

COROLLARY 4.5. if xeR then Dlx = limβ_0+ (l/s)(Ts - τ x + e).

Proo/. From 4.4 and (4.2) it follows that

-TβZ> = l i m - ί ( T β + . - T β ) ,

which implies directly our conclusion.

REMARK 4.6. Corollary 4.5 indicates that DTX corresponds to the
Dirac delta distribution δx concentrated at the point x.

THEOREM 4.7. If Fk( ) (k = 0, ± 1 , ±2, ± 3 , •) is a sequence in
L loc(ω), then

(4.8)

Proof. Let TtoFj.( ) be the function defined by

(1) TteFfc(ί) = lka(t)Fk(t - ka) .

Set

(2) / . ( ) = Σ T t e F , ( ) .
A; = — s

For any integer n ^ 1, observe that

(3) / „ ( ) = Λ ( ) + Σ TίαF,( ) ;
|t|>»

since (—na, na) a (— |i\a, \ί\a) and since TίαFi( ) = 0 on the interval
(— \i\a, \i\a) (because of (3.2) and (1)), we may conclude that TiaFi( ) =
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0 on the interval (—na, na): consequently, (3) becomes

(4) /«,( ) =/»( ) on (—na, na) for any integer n ^ 1.

If tea) there exists an integer m ^ l such that te(—ma, ma):
from (4), (2), and (1) we see that

(5) Σ Tka(t)Fk(t - ka) = Ut) = Σ TteF*(ί) .

On the other hand,

(6) Λ = { Σ TtaF*(ί)} = Σ T t e F 4 ;

the second equation is from (3,8) and (1).
In view of (5)-(6), the proof of (4.8) will be accomplished by

showing that

(7) lim/.=/>.
n—>oo

To that effect, take any w( ) in Wω, and any t in the interval ω
we must prove that

(8) lim .fnw(t) = .f~w(t) .
n-*oa

Observe that there exists an integer m ^ 1 such that | ί | < ma
suppose that n ^ m from (4) and 1.32 it follows that the operators
fn and /«, agree on (—na, na): therefore, 1.31 gives

(9) .fnw(t) = ./coW(ί) (for all n ^ m)

this is because w( ) e Wω and - w α < t < mα. Conclusion (8) is
immediate from (9).

REMARK 4.9. Let ck (k = 0, ± 1 , ±2, ± 3 , •) be a scalar-valued
sequence. Setting Fk( ) = ck in (4.8), we obtain

(4.10) Σ c*Tte = j Σ

combining with (3.18):

(4.11) { Σ cjka(t)g(t - ka)\ = g Σ cfcTte .

Obviously, if g( ) is a periodic function of period α > 0, then (4.11)
becomes

(4.12) g Σ c j t e
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5* Derivative of an operator* Given Aej/ω and δ e X , let
us indicate by A c B the existence of a number a < 0 such that A
agrees with B on the interval (α, 0). The notion of "agreeing with"
has been defined in 1.31. Recall that F =- {F(t)} (see 2.13) as usual,
F(0~) denotes the limit of F{t) as t approaches zero through negative
values.

T H E O R E M 5.0. Suppose that J 5 e , j ^ . There is at most one scalar
cγ such that the equation cι = f(0 —) holds for some function fx( ) in
Lloc(ω) with f, c B.

Proof. Suppose t h a t t h e equation c2=f2(0 —) holds for some
function / 2( ) in L l o c (ω) wi th /2 c B: we m u s t prove t h a t ct = c2. By
definition, there exists an interval (ak, 0) such t h a t fk agrees wi th B
on the interval (ak, 0) (for k = 1, 2) from 1.31 we now see t h a t /Ί
agrees w i t h /2 on (α, 0), where a is the largest of the two negative
numbers a, and α2 from 1.32 it follows t h a t f,( ) = /2( ) on (α, 0),
whence /i(0 —) = / 2 ( 0 — ) : th i s proves t h a t c, = c2.

5*1* Der ivab le operators* An operator B is said to be d e r i v a b l e
if Be,s^fω and if there exists a function / x( ) w Lloc(ω) such that
1/1(0-)! < c>

5*2* Initial value of an operator* If B is derivable, we denote
by (B, 0 — ) the unique scalar c1 such that the equation cx = /i(0 —) holds
for some function fγ( ) in Lloc(ω) such that fczB; we also set

(5.3) 3,B = ZλB- <5, 0 - > D .

The uniqueness of c} comes from 5.0, while the existence of ct

can be verified by setting cι = fφ — ) in 5.1.

REMARKS 5.4. If /( ) is a function in LlOQ(ω) such that |/(0-) | <
co, then the operator / is derivable, and </, 0 — > =/(0 —) (this is
immediate from 5.1) from (5.3) we see that

dtf=Df-f(0-)D.

5.5. Suppose that /( ) is continuous on ω if /'( ) has at most
countably-many discontinuities and is integrable an each compact sub-
interval of the open interval o), then

dtf={f'(t)} and </,0->

this follows immediately from 2.4, 2.13, and 5.4.
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5.6. Suppose that B e .J>rω. If /( ) e Lloc(ω) is such that |/(0-) | <
oo and faB9 then B is derivable and <5, 0-> = / ( 0 - ) : this follows
directly from 5.0-5.2.

5.7. If Be.s/i is such that the equation i?u = / holds for some
function /( ) in Lloc(α>) such that |/(0-) | < oo, then B is derivable and
(B, 0-> = / ( 0 - ) . This is immediate from 3.27 and 5.6.

THEOREM 5.8. Suppose that a > 0. If Ak (k = 0, ± 1 , ±2, ±3, •)
is a sequence in s/ω such that the equation

( 1) B = Σ T/£(ίA/ £ ( ί A / £

defines an element B of , ^ , ίfeβπ 5 ΐs derivable, (B, 0 —> = 0, and
dtB = DB.

Proof Take any w( ) in Wω. From (1) and (3.21) it follows
that

( 2) .Bw(t) = Ίo(t).Aow(t) + Σ Tfcα(ί).Afcw(ί - ka) (for ί e ω).

If A: ̂  0 we see from (3.2) that Tka( ) = 0 on ( — a, a): consequently,
the equation (2) implies that

( 3 ) .Bw(t) - To(t).Aow(t) (for \t\ < a).

Since To( ) = 0 on (-a, 0), it now follows from (3) that .Bw(t) = 0
for — a < t < 0 and for any w( ) in Wω: therefore, the operator 0
agrees with B on ( — a, 0), whence OaB; the conclusion (B, 0 —> = 0
now follows from 5.6 in view of (5.3), the proof is concluded.

THEOREM 5.9. Suppose that xeR. Each element of (Tx.$/) is
infinitely derivable in fact,

(5.10) <J?, 0-> = 0 and d\B = DkB (for each integer k ^ 1)

ivhenever

Proof. Note that (ΊxsX) is the set ( U : 4 e , ^ ) . If B is an
element of (Tx.<y), then B = ΊXA for some 4̂ in s/0)\ clearly, B can
be written in the form (1) (set a — \x\ and Ak = A for k = sgn x and
Ak = 0 for other values of k): the conclusion <J5, 0 —> = 0 now comes
from 5.8. Since dk

tB = B (by definition) for k = 0, we proceed by
induction on k ^ 1. To that effect, we assume that d?B = DnB:
clearly,
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( 4 ) d?+1B = dt(DnB) = Dn+1B + (DnB, 0 - > D .

On the other hand, DnB = DnTxA = TxD
nA consequently, DnB belongs

to (Tβjy), whence (DnB, 0 — > = 0 (by what we established at the
beginning of this proof) therefore (4) gives d?+ιB = Dn+1B. The
induction proof is completed.

Note 5.11. Both T̂  and the Dirac delta distribution Dlx belong
to the space (Txj^f). If B = B+ or if J5U — 0 then B belongs to

: see 3.25.

THEOREM 5.12. Set a = α>_ and suppose that B e s*fω. If the
equation B\χ = / holds for some function /( ) in U(a, 0), there exists
a unique scalar cx such that the equation

S o
f,{u)du

a

holds for some f( ) in Lι(a, 0) with fγ — J5U.

Proof. Clearly, such a scalar exists. If

(6) c2 = \°f2(u)d
Ja

u

for /2( ) in U(a, 0) and /2 = 5 U , then both fι and /2 agree with B on
(α, 0) (by 3.27): therefore, fλ( ) equals /2( ) almost-everywhere on (α, 0)
(by 1.32) the conclusion cλ = c2 now comes from (5)-(6).

5*13* The anti-derivative* Let B be as in 5.12. We set

(7)

In a subsequent paper we shall prove that

(Γ B, 0-\ = cx and s i ^ = J5 .
\Jα / Jα

In case B = / with /( ) e Lϊ(a, 0) and /( ) e Lloc(ω), it follows imme-
diately from (2.19) and (3) (7) that

6. Four problems* Recall that DTX corresponds to the Dirac
delta distribution concentrated at the point x (see 4.6), it is infinitely
derivable (see 5.11). If an operator A is twice derivable, it follows
directly from (5.3) that
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(6.0) d\A = D2A - <A, 0->Z>2 - <3,il, 0 - > D .

We shall need two more facts. Each operator A in J K can be
written as a sum

(6.1) A = Aιχ + A+, where A+ = Al0 (see 3.7)

moreover, if g( ) e Lloc(ω) then

(6.2) (?T0 - {T0(ί)flf(ί)} (see (3.8)) .

6.3. First problem. Given two scalars m and α, to find an
operator y such that

(6.4) mdty = Z)T0 and <#, 0 — > = a :

Definition (5.3) gives mDy — mαD = DT0, whence y() = α + m~1T0().
This same problem has been discussed in [5, p. 38].

6.5. Second problem. The equations

( 1 ) i = dtq said q = CE

relate the current i to the change q in a simple electric circuit having
capacitance C, impressed electromotive force E, no inductance, and
no resistance (see 7.19 in [5]). From (1) and (5.3) it follows that

(2) i - CDE - (q,0-)D .

Multiplying by To both sides of (2), we can use (6.1) to write

( 3 ) i+ = CDE+ - <g, 0 - > D T 0 .

If there is a short-circuit at the time t = 0, then E+ — 0, so
that (3) gives the answer i+ = — <g, 0 — }DT0: this is an impluse whose
magnitude is the negative of the initial charge <g, 0 — >.

6.6. Third problem. Given a scalar c, to find an operator y such
that

8ly + y = dt(DTQ) and <3t2/, 0-> - <τ/, 0-> = c .

Since dt(DT0) = D2T0 (by 5.9), we can use (6.0) to write

(I? + 1)2/ - £>2T0 + <|/, 0->i) 2 + <9^, 0-)D

we now use the initial conditions and solve for y:

( 4 ) » = i τ +
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From (4) and (2.10)-(2.11) it results that

y = {cos t}Ί0 + c(sin + cos) ,

whence our conclusion y( ) = τo( ) cos + c(sin + cos) now comes directly
from (6.2) and 1.33.

Last problem 6.7. To find an element y of s$fω such that

( 5 ) d2

ty + y = Σ DT2kπ .

Setting c0 = (y, 0 — > and c, = (βty, 0 —>, we see from (6.0) that

( 6 ) (D2 + 1)2/ = c0D
2 + GlD + D ± Ί2kπ .

Solving (6) for y, we obtain y = c0 cos + cι sin + yp, where

( 7 ) yp = jJl-^ ^ T2/c, - {sin t) ±^ T2kπ:

the second equation is from (2.11). From (7) and (4.12) it now follows
that

( 8 ) yp

From (8) and (2.15) we can now write

( 9 ) yp(t) = sin t ^ Ί2kπ{t) = ( l + [ - ^ ] ) sin ί

as usual, [t/2π] is the greatest integer < t/2π (the last equation follows
directly from the definition of Ίx( )). In case o) = R, the answer (9)
to the problem (5) cannot be obtained by the Fourier transformation
nor by the distributional two-sided Laplace transformation.

Added in proof. There still remains to connect the theory pre-
sented in this paper with the theory of distributions; this has been
done in the Research Announcement "An algebra of generalized
functions on an open interval; two-sided operational calculus" (by
Gregers Krabbe), Bull. Amer. Math. Soc. 7 7 (1971), 78-84.
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