CONTINUITY OF SAMPLE FUNCTIONS OF BIADDITIVE PROCESSES

W. N. Hudson

Abstract

Let $\{X(s, t): 0 \leqq s, t \leqq 1\}$ be a stochastic process which has independent increments (second differences). Necessary and sufficient conditions are established to ensure the existence of a version with the property that almost every sample function is continuous. A corollary to these results is the existence of a class of measures on Wiener-Yeh space. The conditions are analogous to the usual case of additive processes $Z(t)$ indexed by one time parameter.

$X(s, t)$ will be said to have independent "increments" (second differences) if whenever $0 \leqq s_{0}<s_{1}<\cdots<s_{m} \leqq 1$ and $0 \leqq t_{0}<t_{1}<\cdots<t_{n} \leqq 1$ the random variables $X\left(s_{i}, t_{j}\right)-X\left(s_{i-1}, t_{j}\right)-X\left(s_{i}, t_{j-1}\right)+X\left(s_{i-1}, t_{j-1}\right)$ $i=1, \cdots, m, j=1, \cdots, n$ are independent. If $X(s, t)$ has independent increments and $X(0, t)=X(s, 0)=0$, then $X(s, t)$ will be called biadditive. Let $m(s, t)=E[X(s, t)]$ and $v(s, t)=\operatorname{var}[X(s, t)]$. The following result is proved below:

There is a version of a biadditive process $X(s, t)$ with the property that almost every sample function is continuous if and only if $X(s, t)$ is Gaussian, $m(s, t)$ and $v(s, t)$ are continuous, and $v(s, t)$ is the distribution function of a Lebesgue-Stieltjes measure on $[0,1] \times[0,1]$.

A special case of this result occurs when $m(s, t)=0$ and $v(s, t)=$ st. This process is realized when the space C_{2} of continuous functions of two variables on $[0,1] \times[0,1]$ is assigned the Wiener-Yeh measure and $X(s, t)$ is defined by $X(s, t)(f)=f(s, t)$ where $f \in C_{2}$. Theorem 2 will imply the existence of a class of Wiener-Yeh measures on C_{2} corresponding to the choices of a pair of continuous functions $m(s, t)$ and $v(s, t)$.

The conditions on $m(s, t)$ and $v(s, t)$ are analogous to the wellknown conditions for the usual case of a stochastic process indexed by one time parameter. The case for a process indexed by n-time parameters is similar. The proof here is probabilistic in nature, unlike the analytic proof given by Yeh in [2] for the special case above.
2. Statement of main results.

Theorem 1. Let $X(s, t)$ be a biadditive process having the property that almost every sample function is continuous. Then $X(s, t)$ is Gaussian and the increments of $X(s, t)$ are Gaussian. Furthermore the functions $m(s, t)=E X(s, t)$ and $v(s, t)=\operatorname{var}(X(s, t))$ are continuous
and determine the distribution of the process.
The following corollary is easy and its proof will be omitted.
Corollary. Let $X(s, t)$ be as in Theorem 1. If the increments of $X(s, t)$ are stationary, that is, if the distribution of $X\left(s+h_{1}, t+h_{2}\right)$ $X\left(s, t+h_{2}\right)-X\left(s+h_{1}, t\right)+X(s, t)$ depends only on h_{1} and h_{2}, then there are constants c_{1} and c_{2} such that

$$
\begin{aligned}
m(s, t) & =E X(s, t)=c_{1} s t \\
v(x, t) & =\operatorname{var}(X(s, t))=c_{2} s t
\end{aligned}
$$

Theorem 2. Let $m(s, t)$ and $v(s, t)$ be continuous functions on $[0,1] \times[0,1]$ such that $m(s, 0)=0=m(0, t)$ and $v(s, 0)=0=v(0, t)$ for $0 \leqq s, t \leqq 1$. Suppose that $v(s, t)$ satisfies the condition

$$
\begin{equation*}
v\left(s^{\prime \prime}, t^{\prime \prime}\right)-v\left(s^{\prime \prime}, t^{\prime}\right)-v\left(s^{\prime}, t^{\prime \prime}\right)+v\left(s^{\prime}, t^{\prime}\right) \geqq 0 \tag{A}
\end{equation*}
$$

whenever

$$
0 \leqq s^{\prime} \leqq s^{\prime \prime} \leqq 1 \quad \text { and } \quad 0 \leqq t^{\prime}<t^{\prime \prime} \leqq 1
$$

Then there is a biadditive Gaussian process $X(s, t), 0 \leqq s, t \leqq 1$, such that
(i) $E X(s, t)=m(s, t)$ and $\operatorname{var}(X(s, t))=v(s, t)$ and
(ii) almost every sample function of $X(s, t)$ is continuous on $[0,1] \times[0,1]$.

The distribution of $X(s, t)$ is determined by $m(s, t)$ and $v(s, t)$.
3. Proof of Theorem 1. We prove first that $X(s, t)$ is Gaussian.

Lemma 3.1. If almost every sample function of $X(s, t)$ is continuous on $[0,1] \times[0,1]$, then $X(s, t)$ and its increments are normally distributed.

Proof. We show that the version of the central limit theorem in reference [1] (Theorem 2, p. 197) applies. Let (s, t) be a fixed point in $[0,1] \times[0,1]$ and define $s_{i}=s(i / n), t_{i}=t(i / n)$, and

$$
\Delta_{i j}(n)=X\left(s_{i}, t_{j}\right)-X\left(s_{i}, t_{j-1}\right)-X\left(s_{i-1}, t_{j}\right)+X\left(s_{i-1}, t_{j-1}\right) .
$$

Let $\varepsilon>0$ be given and let $A_{n}=\left[\max _{i, j=1,2, \ldots, n}\left|\Delta_{i j}(n)\right| \geqq \varepsilon\right]$. Then almost every sample function of $X(s, t)$ is uniformly continuous on $[0,1] \times[0,1]$, and consequently

$$
P\left\{\limsup _{n \rightarrow \infty} A_{n}\right\}=0 .
$$

Hence $\lim \sup _{n \rightarrow \infty} P\left(A_{n}\right)=0$.
Now $X(s, t)$ is the sum of independent random variables, that is,

$$
X(s, t)=\sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_{i j}(n)
$$

The $\Delta_{i j}(n)$ form an infinitesimal system because

$$
\max _{i, j=1,2, \cdots, n} P\left[\left|\Delta_{i j}(n)\right| \geqq \varepsilon\right] \leqq P\left[\max _{i, j=1,2, \cdots, n}\left|\Delta_{i j}(n)\right| \geqq \varepsilon\right]
$$

and since

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} P\left(A_{n}\right)=0, \\
\lim _{n \rightarrow \infty} \max _{i, j=1,2, \cdots, n} P\left[\left|\Delta_{i j}(n)\right| \geqq \varepsilon\right]=0 .
\end{gathered}
$$

It follows that $X(s, t)$ is normally distributed.
To show that the increments of $X(s, t)$ are normally distributed, let s_{0} and t_{0} be fixed and for $s \geqq s_{0}, t \geqq t_{0}$ consider the process

$$
Y(s, t)=X(s, t)-X\left(s_{0}, t\right)-X\left(s, t_{0}\right)+X\left(s_{0}, t_{0}\right)
$$

It is biadditive and has continuous sample functions a.s. The above argument shows that $Y(s, t)$ is Gaussian and hence the increments of $X(s, t)$ are Gaussian.

To complete the proof of Theorem 1 we need to check that $m(s, t)$ and $v(s, t)$ are continuous and determine the distribution of the process. Since $X(s, t)$ is biadditive, we have for $s^{\prime}<s^{\prime \prime}$ and $t^{\prime}<t^{\prime \prime}$

$$
\begin{aligned}
& \operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime \prime}\right)\right)= \operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime \prime}\right)-X\left(s^{\prime}, t^{\prime \prime}\right)-X\left(s^{\prime \prime}, s^{\prime}\right)+X\left(s^{\prime}, t^{\prime}\right)\right) \\
&+\operatorname{var}\left(X\left(s^{\prime}, t^{\prime \prime}\right)-X\left(s^{\prime}, t^{\prime}\right)\right)+\operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime}\right)\right. \\
&\left.-X\left(s^{\prime}, t^{\prime}\right)\right)+\operatorname{var}\left(X\left(s^{\prime}, t^{\prime}\right)\right) \\
& \operatorname{var}\left(X\left(s^{\prime}, t^{\prime \prime}\right)-X\left(s^{\prime}, t^{\prime}\right)\right)+\operatorname{var}\left(X\left(s^{\prime}, t^{\prime}\right)\right)=\operatorname{var}\left(X\left(s^{\prime}, t^{\prime \prime}\right)\right) \\
& \operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime}\right)-X\left(s^{\prime}, t^{\prime}\right)\right)+\operatorname{var}\left(X\left(s^{\prime}, t^{\prime}\right)\right)=\operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime}\right)\right)
\end{aligned}
$$

From these equations using $v(s, t)=\operatorname{var}(X(s, t))$ we obtain

$$
\begin{aligned}
& \operatorname{var}\left(X\left(s^{\prime \prime}, t^{\prime \prime}\right)-X\left(s^{\prime \prime}, t^{\prime}\right)-X\left(s^{\prime}, t^{\prime \prime}\right)+X\left(s^{\prime}, t^{\prime}\right)\right) \\
& \quad=v\left(s^{\prime \prime}, t^{\prime \prime}\right)-v\left(s^{\prime}, t^{\prime \prime}\right)-v\left(s^{\prime \prime}, t^{\prime}\right)+v\left(s^{\prime}, t^{\prime}\right)
\end{aligned}
$$

Since a similar relation holds for $m(s, t)=E X(s, t)$, the fact that the increments are Gaussian and $X(s, t)$ is biadditive implies that the distribution of $X(s, t)$ is determined by $m(s, t)$ and $v(s, t)$.

Since almost every sample function is continuous,

$$
\lim _{h_{1}, h_{2} \rightarrow 0} X\left(s+h_{1}, t+h_{2}\right)=X(s, t) .
$$

Let $\varphi\left(h_{1}, h_{2}, u\right)$ denote the characteristic function of $X\left(s+h_{1}, t+h_{2}\right)$. Then

$$
\varphi\left(h_{1}, h_{2}, u\right)=\exp \left\{i u m\left(s+h_{1}, t+h_{2}\right)-\frac{u^{2}}{2} v\left(s+h_{1}, t+h_{2}\right)\right\}
$$

and hence

$$
\begin{aligned}
v(s, t) & =-2 \log |\rho(0,0,1)| \\
& =-2 \lim _{h_{1}, h_{2} \rightarrow 0} \log \left|\varphi\left(h_{1}, h_{2}, 1\right)\right| \\
& =\lim _{h_{1}, h_{2} \rightarrow 0} v\left(s+h_{1}, t+h_{2}\right)
\end{aligned}
$$

so $v(s, t)$ is continuous. To show $m(s, t)$ is continuous, we use Chebychef's inequality.

$$
\begin{gathered}
\lim _{h_{1}, h_{2} \rightarrow 0} P\left[\left|X\left(s+h_{1}, t+h_{2}\right)-X(s, t)-m\left(s+h_{1}, t+h_{2}\right)+m(s, t)\right| \geqq \varepsilon\right] \\
\leqq \lim _{h_{1}, h_{2} \rightarrow 0} \frac{v\left(s+h_{1}, t+h_{2}\right)-v(s, t)}{\varepsilon^{2}}=0
\end{gathered}
$$

so that

$$
X\left(s+h_{1}, t+h_{2}\right)-X(s, t)-m\left(s+h_{1}, t+h_{2}\right)+m(s, t) \xrightarrow{P} 0 .
$$

Since $X\left(s+h_{1}, t+h_{2}\right) \rightarrow X(s, t)$, it follows that $m(s, t)$ is continuous.
4. Lemmas for Theorem 2. In §3, we have shown that any biadditive stochastic process with almost all its sample functions continuous is Gaussian with continuous mean and variance functions. The next task is to show that given a pair of continuous functions $m(s, t)$ and $v(s, t)$ where $v(s, t)$ is a normalized distribution function for a Lebesgue-Stieltjes measure on $[0,1] \times[0,1]$, there is a biadditive process $X(s, t)$ such that $E X(s, t)=m(s, t)$ and $\operatorname{var}(X(s, t))=v(s, t)$. For this proof a few preparatory results are needed. In the following Lemma, * denotes convolution.;

Lemma 4.1. Suppose there is a system of probability distributions $\left\{\Phi\left(a_{1}, b_{1}, a_{2}, b_{2}\right) \mid 0 \leqq a_{1}<a_{2} \leqq 1,0 \leqq b_{1}<b_{2} \leqq 1\right\}$ such that for any $\alpha>0$ and $\beta>0$

$$
\begin{gather*}
\Phi\left(a_{1}, b_{1}, a_{2}+\alpha, b_{2}\right)=\Phi\left(a_{1}, b_{1}, a_{2}, b_{2}\right) * \Phi\left(a_{2}, b_{1}, a_{2}+\alpha, b_{2}\right) \tag{1}\\
\Phi\left(a_{1}, b_{1}, a_{2}, b_{2}+\beta\right)=\Phi\left(a_{1}, b_{1}, a_{2}, b_{2}\right) * \Phi\left(a_{1}, b_{2}, a_{2}, b_{2}+\beta\right) \tag{2}
\end{gather*}
$$

Then there is a biadditive process $X(s, t)$ such that the increment

$$
X\left(a_{2}, b_{2}\right)-X\left(a_{1}, b_{2}\right)-X\left(a_{2}, b_{1}\right)+X\left(a_{1}, b_{1}\right)
$$

has the probability distribution $\Phi\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$ for $0 \leqq a_{1}<a_{2} \leqq 1$ and $0 \leqq b<b_{2} \leqq 1$.

Proof. The proof uses the Daniell-Kolmogorov extension theorem in the usual manner and is therefore omitted. Conditions (1) and (2) guarantee the consistency of the system.

Lemma 4.2. (Ottaviani's Inequality). Let $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ be independent random variables and let $S_{k} \equiv \sum_{i=1}^{k} X_{i}$. If for some $\varepsilon>0$,

$$
P\left[\left|S_{n}-S_{k}\right|>\varepsilon\right] \leqq \frac{1}{2} \quad \text { for } \quad k=0,1,2, \cdots n
$$

where $S_{0} \equiv 0$, then

$$
P\left[\max _{k=1,2 \cdots n}\left|S_{k}\right|>2 \varepsilon\right] \leqq 2 P\left[\left|S_{n}\right|>\varepsilon\right]
$$

Proof. The proof may be found in reference [3]. It is very similar to the following lemma which will be proved in full.

Lemma 4.3. (An extended version of Ottaviani's Inequality). Let $s_{0}<s_{1}<\cdots s_{m}$ and $t_{0}<t_{1}<t_{2}<\cdots<t_{n}$. Define

$$
\Delta_{i j} \equiv X\left(s_{i}, t_{j}\right)-X\left(s_{i-1}, t_{j}\right)-X\left(s_{i}, t_{j-1}\right)+X\left(s_{i-1}, t_{j-1}\right)
$$

where $X(s, t)$ is a biadditive process on $D=[0,1] \times[0,1]$. Let $R_{l} \equiv$ $\sum_{i=1}^{m} \sum_{j=l+1}^{n} \Delta_{i j}$ and $Q_{k l}=\sum_{i=k+1}^{m} \Delta_{i l}$. If for all $k=1,2, \cdots, m$ and $l=0,1, \cdots, n$

$$
P\left[\left|R_{\imath}\right|>\frac{\varepsilon}{2}\right] \leqq 1-\sqrt{\frac{1}{2}}
$$

and

$$
P\left[\left|Q_{k l}\right|>\frac{\varepsilon}{2}\right] \leqq 1-\sqrt{\frac{1}{2}}
$$

then

$$
P\left[\max _{\substack{k=1,2, \ldots, m \\ l=1,2, \cdots, n}}\left|S_{k l}\right|>2 \varepsilon\right] \leqq 2 P\left[\left|S_{m n}\right|>\varepsilon\right]
$$

Proof. Let $A_{i j}$ be defined for $i=1,2, \cdots, m$, and $j=1,2, \cdots, n$ by

$$
\begin{aligned}
& A_{i j} \equiv\left[\left|S_{k l}\right| \leqq 2 \varepsilon \quad \text { for } \quad l<j \quad \text { and } \quad k \leqq m,\left|S_{k j}\right| \leqq 2 \varepsilon \quad \text { for } \quad k<i,\left|S_{i j}\right|>2 \varepsilon\right] \\
& A_{11} \equiv\left[\left|S_{11}\right|>2 \varepsilon\right] .
\end{aligned}
$$

Let $T \equiv\{(i, j): 1=1,2, \cdots, m$ and $j=1,2, \cdots, n\}$. It is clear that

$$
\left[\max _{(i, j) \in T}\left|S_{i j}\right|>2 \varepsilon\right]=\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} A_{i j}
$$

and the $A_{i j}$'s are disjoint. Now let

$$
B_{k l} \equiv\left[\left|R_{l}\right|<\frac{\varepsilon}{2},\left|Q_{k l}\right|<\frac{\varepsilon}{2}\right] .
$$

Then,

$$
A_{k l} \cap B_{k l} \subset\left[\left|S_{m n}\right|>\varepsilon\right]
$$

and so,

$$
\bigcup_{l=1}^{n} \bigcup_{k=1}^{m}\left(A_{k l} \cap B_{k l}\right) \subset\left[\left|S_{m n}\right|>\varepsilon\right]
$$

Since $X(s, t)$ is biadditive, $A_{k l}$ and $B_{k l}$ are independent events, and R_{l} and $Q_{k l}$ are independent random variables. It follows that

$$
P\left(B_{k l}\right)=P\left[\left|R_{l}\right|<\frac{\varepsilon}{2}\right] \cdot P\left[\left|Q_{k l}\right|<\frac{\varepsilon}{2}\right] \geqq \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2}}=\frac{1}{2} .
$$

Hence,

$$
\begin{aligned}
\frac{1}{2} P\left[\max \left|S_{i j}\right|>2 \varepsilon\right] & =\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} P\left(A_{i j}\right) \leqq \sum_{i=1}^{m} \sum_{j=1}^{n} P\left(A_{i j} \cap B_{i j}\right) \\
& \left.=P\left(\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} A_{i j} \cap B_{i j}\right)\right) \\
& \leqq P\left[\left|S_{m n}\right|>\varepsilon\right]
\end{aligned}
$$

Lemma 4.4. Let $X(s, t)$ be a biadditive process on a probability space $(\Omega, \mathfrak{R}, P)$ with $(s, t) \in D=[0,1] \times[0,1]$. Let $m(s, t) \equiv E X(s, t)$ and $v(s, t) \equiv \operatorname{var}(X(s, t))$ be continuous on D. Then for any point $\left(s_{0}, t_{0}\right) \in D$ and for any sequence of points $\left\{\left(s_{n}, t_{n}\right)\right\} \subset D$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(s_{n}, t_{n}\right)=\left(s_{0}, t_{0}\right) \\
P\left[\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)=X\left(s_{0}, t_{0}\right)\right]=1 .
\end{gathered}
$$

Proof. Let $\varepsilon>0$ be chosen arbitrarily except for the condition $\varepsilon<1-\sqrt{1 / 2}<1 / 2$. Chebychef's Inequality and the uniform continuity of $m(s, t)$ and $v(s, t)$ imply that there is a $\delta>0$ such that for $\left(s^{\prime}, t^{\prime}\right)$ and $(s, t) \in\left[s_{0}-\delta, s_{0}+\delta\right] \times\left[t_{0}-\delta, t_{0}+\delta\right]$

$$
\begin{equation*}
P\left[\left|X(s, t)-X\left(s^{\prime}, t^{\prime}\right)\right| \geqq \frac{\varepsilon}{2}\right]<\frac{\varepsilon}{4} \tag{1}
\end{equation*}
$$

Now let S be a countable dense set in D and let S_{1}, S_{2}, S_{3}, and S_{4}
denote the sets

$$
\begin{aligned}
S_{1} & \equiv S \cap\left(\left[s_{0}, s_{0}+\delta\right] \times\left[t_{0}, t_{0}+\delta\right]\right) \\
S_{2} & \equiv S \cap\left(\left[s_{0}, s_{0}+\delta\right] \times\left[t_{0}-\delta, t_{0}\right]\right) \\
S_{3} & \equiv S \cap\left(\left[s_{0}-\delta, s_{0}\right] \times\left[t_{0}, t_{0}+\delta\right]\right) \\
S_{4} & \equiv S \cap\left(\left[s_{0}-\delta, s_{0}\right] \times\left[t_{0}-\delta, t_{0}\right]\right) .
\end{aligned}
$$

The first part of the proof will show that

$$
P\left[\sup _{(s, t) \in S_{1}}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 6 \varepsilon
$$

The same kind of argument can be used to show that for $i=2,3$, and 4

$$
\begin{equation*}
P\left[\sup _{(s, t) \in S_{i}}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 6 \varepsilon \tag{3}
\end{equation*}
$$

and so only the case for S_{1} will be done here.
Let the elements of S_{1} be numbered in an arbitrary manner so that $S_{1}=\left\{\left(s_{i}, t_{i}\right): i=1,2, \cdots\right\}$. Then

$$
\begin{align*}
& P\left[\sup _{(s, t) \in S_{1}}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \tag{4}\\
& \quad=\lim _{n \rightarrow \infty} P\left[\max _{i=1, \ldots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] .
\end{align*}
$$

Thus it suffices to show that

$$
\begin{equation*}
P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 6 \varepsilon \tag{5}
\end{equation*}
$$

in order to prove (2). Now clearly

$$
\begin{align*}
& P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \\
& \quad \leqq P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{i}\right)-X\left(s_{i}, t_{0}\right)+X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \tag{6}\\
& \quad+P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{0}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \\
& \quad+P\left[\max _{i=1, \cdots, n}\left|X\left(s_{0}, t_{i}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] .
\end{align*}
$$

Consider the first n points $\left(s_{1}, t_{1}\right), \cdots,\left(s_{n}, t_{n}\right)$ in S_{1}. Let $\sigma_{1}, \cdots, \sigma_{n}$ and $\tau_{1}, \cdots, \tau_{n}$ be rearrangements of s_{1}, \cdots, s_{n} and t_{1}, \cdots, t_{n} respectively so that $s_{0} \leqq \sigma_{1} \leqq \sigma_{2} \leqq, \cdots, \leqq \sigma_{n} \leqq s_{0}+\delta$ and $t_{0} \leqq \tau_{1} \leqq \tau_{2} \leqq, \cdots, \leqq \tau_{n} \leqq$ $t_{0}+\delta$. Since $X(s, t)$ is biadditive,

$$
\begin{gathered}
X\left(\sigma_{i}, \tau_{j}\right)-X\left(\sigma_{i}, t_{0}\right)-X\left(s_{0}, \tau_{j}\right)+X\left(s_{0}, t_{0}\right) \\
=\sum_{m=1}^{i} \sum_{l=1}^{j}\left\{X\left(\sigma_{m}, \tau_{l}\right)-X\left(\sigma_{m-1}, \tau_{l}\right)-X\left(\sigma_{m}, \tau_{l-1}\right)+X\left(\sigma_{m-1}, \tau_{l-1}\right)\right\} \\
X\left(\sigma_{i}, t_{0}\right)-X\left(s_{0}, t_{0}\right)=\sum_{m=1}^{i}\left\{X\left(\sigma_{m}, t_{0}\right)-X\left(\sigma_{m-1}, t_{0}\right)\right\} \\
X\left(s_{0}, t_{j}\right)-X\left(s_{0}, t_{0}\right)=\sum_{l=1}^{j}\left\{X\left(s_{0}, \tau_{l}\right)-X\left(s_{0}, \tau_{l-1}\right)\right\}
\end{gathered}
$$

are sums of independent random variables. Now if $\left(s^{\prime}, t^{\prime}\right)$ and $\left(s^{\prime \prime}, t^{\prime \prime}\right)$ are any two points in $\left[s_{0}-\delta, s_{0}+\delta\right] \times\left[t_{0}+\delta, t_{0}+\delta\right]$, then using (1) we may verify that the hypotheses of the Ottaviani inequalities, Lemmas 4.2 and 4.3, are satisfied. Thus

$$
\begin{align*}
& P\left[\max _{i=1, \cdots, n}\left|X\left(\sigma_{i}, t_{0}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \leqq 2 P\left[\left|X\left(\sigma_{n}, t_{0}\right)-X\left(s_{0}, t_{0}\right)\right|>\varepsilon\right] \tag{7}\\
& P\left[\max _{j=1, \cdots, n}\left|X\left(s_{0}, \tau_{j}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \leqq 2 P\left[\left|X\left(s_{0}, \tau_{n}\right)-X\left(s_{0}, t_{0}\right)\right|>\varepsilon\right] \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& P\left[\max _{\substack{i=1, \ldots, n \\
j=1, \ldots, n}}\left|X\left(\sigma_{i}, \tau_{j}\right)-X\left(s_{0}, \tau_{j}\right)-X\left(\sigma_{i}, t_{0}\right)+X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \tag{9}\\
& \quad \leqq 2 P\left[\left|X\left(\sigma_{n}, \tau_{n}\right)-X\left(s_{0}, \tau_{n}\right)-X\left(\sigma_{n}, t_{0}\right)+X\left(s_{0}, t_{0}\right)\right|>\varepsilon\right] .
\end{align*}
$$

From the choice of δ we see that the right sides of inequalities (7), (8), and (9) are each not greater than 2ε. Since the σ_{i} 's are s_{i} 's and τ_{i} 's are t_{i} 's, we have

$$
\begin{align*}
& P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{0}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \leqq 2 \varepsilon \tag{10}\\
& P\left[\max _{j=1, \cdots, n}\left|X\left(s_{0}, t_{j}\right)-X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \leqq 2 \varepsilon \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{i}\right)-X\left(s_{i}, t_{0}\right)+X\left(s_{0}, t_{0}\right)\right|>2 \varepsilon\right] \leqq 2 \varepsilon \tag{12}
\end{equation*}
$$

Substituting (10), (11), and (12) into (6) we get (5), i.e.

$$
P\left[\max _{i=1, \cdots, n}\left|X\left(s_{i}, t_{i}\right)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 6 \varepsilon
$$

Then

$$
P\left[\sup _{(s, t) \in S_{1}}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 6 \varepsilon .
$$

Since the proof of (2) is similar, it is omitted.

Now let $V=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$. Then

$$
\begin{align*}
& P\left[\sup _{(s, t) \in V}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \\
& \quad \leqq \sum_{i=1}^{4} P\left[\sup _{(s, t) \in S_{i}}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \tag{13}
\end{align*}
$$

and hence

$$
\begin{equation*}
P\left[\sup _{(s, t) \in V}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 24 \varepsilon \tag{14}
\end{equation*}
$$

Taking limits as $\delta \downarrow 0$, we obtain

$$
\begin{equation*}
P\left[\lim _{-\sigma \downarrow 0} \sup _{V}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|>6 \varepsilon\right] \leqq 24 \varepsilon \tag{15}
\end{equation*}
$$

Now let $\varepsilon \downarrow 0$ and take complements to get

$$
\begin{equation*}
P\left[\lim _{\delta \downarrow 0} \sup _{V}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|=0\right]=1 \tag{16}
\end{equation*}
$$

If an arbitrary sequence $\left(s_{n}, t_{n}\right)$ with $\lim _{n \rightarrow \infty}\left(s_{n}, t_{n}\right)=\left(s_{0}, t_{0}\right)$ is given, we extend the point set $\left\{s_{n}, t_{n}\right\}$ to a countable dense set S in D. Then

$$
\left[\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)=X\left(s_{0}, t_{0}\right)\right] \supset\left[\lim _{\dot{\partial} \downarrow 0} \sup _{V}\left|X(s, t)-X\left(s_{0}, t_{0}\right)\right|=0\right]
$$

and by (16)

$$
P\left[\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)=X\left(s_{0}, t_{0}\right)\right]=1
$$

Lemma 4.5. Let $X(s, t)$ be a biadditive process on a probability space $(\Omega, \mathfrak{F}, P)$ with $(s, t) \in D=[0,1] \times[0,1]$. Suppose that $v(s, t) \equiv$ $\operatorname{var}(X(s, t))$ is continuous over D. Furthermore, suppose that for any $\varepsilon>0$,

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sum_{k=1}^{n} P\left[\left\lvert\, X\left(\frac{k}{n}, \frac{j}{n}\right)-X\left(\frac{k-1}{n}, \frac{j}{n}\right)-X\left(\frac{k}{n}, \frac{j-1}{n}\right)\right.\right. \\
\left.\left.\quad+X\left(\frac{k-1}{n}, \frac{j-1}{n}\right) \right\rvert\,>\varepsilon\right]=0 \tag{1}\\
\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n} P\left[\left|X\left(1, \frac{k}{n}\right)-X\left(1, \frac{k-1}{n}\right)\right|>\varepsilon\right]=0 \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} P\left[\left|X\left(\frac{j}{n}, 1\right)-X\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right]=0 \tag{3}
\end{equation*}
$$

Then there is a process $Y(s, t)$ equivalent to $X(s, t)$ such that almost
every sample function of $Y(s, t)$ is continuous on D.

Proof. Let S be the set of all rational numbers in [0,1] and let $D^{\prime}=S \times S$. Define Ω^{\prime} by $\Omega^{\prime}=\{\omega \in \Omega: X(s, t)$ is uniformly continuous on $\left.D^{\prime}\right\}$. In the first part of the proof, we show that $P\left(\Omega^{\prime}\right)=1$.

Let Z_{n} be defined on $(\Omega, \mathfrak{B}, P)$ by

$$
\begin{aligned}
Z_{n}= & \sup \left\{\left|X\left(s^{\prime \prime}, t^{\prime \prime}\right)-X\left(s^{\prime}, t^{\prime}\right)\right|:\left(s^{\prime \prime}, t^{\prime \prime}\right) \in D^{\prime},\left(s^{\prime}, t^{\prime}\right) \in D^{\prime} \quad\right. \text { and } \\
& \left.\left|s^{\prime \prime}-s^{\prime}\right|<\frac{1}{n},\left|t^{\prime \prime}-t^{\prime}\right|<\frac{1}{n}\right\}
\end{aligned}
$$

Then $X(s, t)$ is uniformly continuous on D^{\prime} if and only if $\lim _{n \rightarrow \infty} Z_{n}=0$. Hence,

$$
\begin{equation*}
P\left(\Omega^{\prime}\right)=P\left[\lim _{n \rightarrow \infty} Z_{n}=0\right] \tag{4}
\end{equation*}
$$

Let $S_{j} \equiv S \cap[(j-1) / n, j / n] j=1, \cdots, n$, and fix n. We number the elements of S_{j} in an arbitrary manner for each $j=1, \cdots, n$. Let j and k be now fixed and let s_{1}, \cdots, s_{m-1} and t_{1}, \cdots, t_{m-1} denote the first $m-1$ elements of S_{j} and S_{k} respectively. Let $\sigma_{1}, \cdots, \sigma_{m-1}$ and $\tau_{1}, \cdots, \tau_{m-1}$ be the arrangements of $\left\{s_{1}, \cdots, s_{m-1}\right\}$ and $\left\{t_{1}, \cdots, t_{m-1}\right\}$ respectively in ascending order so that $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{m-1}$ and $\tau_{1}<\tau_{2}<\cdots<$ τ_{m-1}. Choose $\sigma_{0}=(j-1) / n, \sigma_{m}=j / n, \tau_{0}=(k-1) / n$, and $\tau_{m}=k / n$, and define $S_{j m} \equiv\left\{\tau_{0}, \tau_{1}, \cdots, \tau_{m}\right\}$. We will use the notation:

$$
\Delta\left(s, t, s^{\prime}, t^{\prime}\right) \equiv X\left(s^{\prime}, t^{\prime}\right)-X\left(s, t^{\prime}\right)-X\left(s^{\prime}, t\right)+X(s, t)
$$

Since $X(s, t)$ is biadditive, the three collections of random variables below are systems of independent random variables:

$$
\begin{gathered}
\left\{\Delta\left(\sigma_{\mu-1}, \tau_{\gamma-1}, \sigma_{\mu}, \tau_{r}\right): \mu, \gamma=1, \cdots, m\right\} \\
\left\{\Delta\left(\frac{j-1}{n}, \tau_{\gamma-1}, \frac{j}{n}, \tau_{\gamma}\right): \gamma=1, \cdots, m \quad \text { and } \quad j=1, \cdots, n\right\} \\
\left\{\Lambda\left(\sigma_{\mu-1}, \frac{k-1}{n}, \sigma_{\mu}, \frac{k}{n}\right): \mu=1, \cdots, m \quad \text { and } \quad k=1, \cdots, n\right\} .
\end{gathered}
$$

Let $\varepsilon>0$ be chosen arbitrarily. Since $v(s, t)$ and $m(s, t)$ are continuous on D, they are uniformly continuous and if n is sufficiently large and if $0<s^{\prime \prime}-s^{\prime}<1 / n$ or $0<t^{\prime \prime}-t^{\prime}<1 / n$, then from Chebychef's inequality it follows that

$$
\begin{equation*}
P\left[\left|\Delta\left(s^{\prime}, t^{\prime}, s^{\prime \prime}, t^{\prime \prime}\right)\right|>\frac{\varepsilon}{2}\right] \leqq 1-\sqrt{\frac{1}{2}} \tag{5}
\end{equation*}
$$

Let $\left.Y_{n, j, k} \equiv \sup _{s_{i} \times S_{k}} \mid X(s, t)-X((j-1) / n,(k-1) / n)\right) \mid$. Then from the
triangle inequality we get

$$
\begin{aligned}
Y_{n} \equiv & \max _{j, k=1, \cdots, n} Y_{n, j, k} \\
\leqq & \max _{j, k, 1, \ldots, n} \sup _{S_{j} \times S_{k}}\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, s, t\right)\right| \\
& +\max _{j, k=1, \cdots, n} \sup _{s \in S_{j}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right| \\
& +\max _{j, k=1, \cdots, n} \sup _{t \in S_{k}}\left|X\left(\frac{j-1}{n}, t\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right| .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& P\left[Y_{n}>6 \varepsilon\right] \\
& \quad \leqq P\left[\max _{j, k=1, \cdots, n} \sup _{S_{j} \times S_{k}}\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, s, t\right)\right|>2 \varepsilon\right]
\end{aligned}
$$

$$
\begin{align*}
& +P\left[\max _{j, k=1, \cdots, n} \sup _{s \in S_{j}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right] \tag{7}\\
& +P\left[\max _{j, k=1, \cdots, n} \sup _{t \in S_{k}}\left|X\left(\frac{j-1}{n}, t\right)-X\left(\frac{j-1}{n}, \frac{k-1}{m}\right)\right|>2 \varepsilon\right]
\end{align*}
$$

For $\left(\sigma_{\mu}, \tau_{\gamma}\right) \in S_{j m} \times S_{k m}$, we see that

$$
\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, \sigma_{\mu}, \tau_{r}\right)=\sum_{q=1}^{r} \sum_{p=1}^{\mu} \Delta\left(\sigma_{p-1}, \tau_{q-1}, \sigma_{p}, \tau_{q}\right)
$$

a sum of independent random variables. Now (5) implies that the hypotheses of the extended Ottaviani's Inequality (Lemma 4.3) are satisfied and consequently

$$
P\left[\max _{\mu, r=1, \ldots, m}\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, \sigma_{\mu}, \tau_{r}\right)\right|>2 \varepsilon\right] \leqq 2 P\left[\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, \frac{j}{n}, \frac{k}{n}\right)\right|>\varepsilon\right] .
$$

Letting $m \rightarrow \infty$, it follows that

$$
P\left[\sup _{s_{j} \times S_{k}}\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, s, t\right)\right|>2 \varepsilon\right] \leqq 2 P\left[\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, \frac{j}{n}, \frac{k}{n}\right)\right|>\varepsilon\right]
$$

and hence

$$
\begin{align*}
& P\left[\max _{j, k=1, \cdots, n} \sup _{S_{j} \times S_{k}}\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, s, t\right)\right|>2 \varepsilon\right] \\
& \quad \leqq 2 \sum_{j=1}^{n} \sum_{k=1}^{n} P\left[\left|\Delta\left(\frac{j-1}{n}, \frac{k-1}{n}, \frac{j}{n}, \frac{k}{n}\right)\right|>\varepsilon\right] . \tag{9}
\end{align*}
$$

Now if $\sigma_{\mu} \in S_{i m}$, since $X\left(\sigma_{\mu}, 0\right)=X(0,(k-1) / n)=0$, we have

$$
X\left(\sigma_{\mu}, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)=\sum_{p=1}^{\mu} \sum_{q=1}^{k-1} \Delta\left(\sigma_{p-1}, \frac{q-1}{n}, \sigma_{p}, \frac{q}{n}\right),
$$

as before, a sum of independent random variables. Again, (5) allows us to use the extended Ottaviani's Inequality to obtain

$$
\begin{aligned}
& P\left[\max _{k=1, \cdots, n} \max _{t \in S_{j m}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right] \\
& \quad \leqq 2 P\left[\left|X\left(\frac{j}{n}, 1\right)-X\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right]
\end{aligned}
$$

Letting $m \rightarrow \infty$, we get

$$
\begin{aligned}
& P\left[\max _{k=1, \cdots, n} \sup _{s \in S_{j}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right] \\
& \quad \leqq 2 P\left[\left|X\left(\frac{j}{n}, 1\right)-X\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right]
\end{aligned}
$$

and

$$
\begin{align*}
& P\left[\max _{j, k=1, \ldots, n} \sup _{s \in S_{j}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right] \\
& \quad=P\left\{\bigcup_{j=1}^{n}\left[\max _{k=1, \ldots, n} \sup _{s \in S_{j}}\left|X\left(s, \frac{k-1}{n}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right]\right\} \tag{10}\\
& \quad \leqq 2 \sum_{j=1}^{n} P\left[\left|X\left(\frac{j}{n}, 1\right)-X\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right]
\end{align*}
$$

Similarly for $\tau_{r} \in S_{k, m}$

$$
X\left(\frac{j-1}{n}, \tau_{r}\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)=\sum_{p=1}^{j-1} \sum_{q=1}^{\gamma} \Delta\left(\frac{p-1}{n}, \tau_{q-1}, \frac{p}{n}, \tau_{q}\right),
$$

a sum of independent random variables, and so by (5) we may again apply the extended Ottaviani's Inequality and take limits as $m \rightarrow \infty$. We get

$$
\begin{align*}
& P\left[\max _{j, k=1, \cdots, n} \sup _{t \in S_{k}}\left|X\left(\frac{j-1}{n}, t\right)-X\left(\frac{j-1}{n}, \frac{k-1}{n}\right)\right|>2 \varepsilon\right] \\
& \quad \leqq 2 \sum_{k=1}^{n} P\left[\left|X\left(1, \frac{k}{n}\right)-X\left(1, \frac{k-1}{n}\right)\right|>\varepsilon\right] . \tag{11}
\end{align*}
$$

Inserting (9), (10), and (11) into (7) and letting $n \rightarrow \infty$, we see from the hypotheses (1), (2), and (3) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[Y_{n}>6 \varepsilon\right]=0 \tag{12}
\end{equation*}
$$

The inequality $Z_{n} \leqq 4 Y_{n}$ can be checked by succesive applications of the triangle inequality. (If $\left|s^{\prime}-s^{\prime \prime}\right|<1 / n$ and $\left|t^{\prime}-t^{\prime \prime}\right|<1 / n$, $\left(s^{\prime}, t^{\prime}\right) \in[(j-1) / n, j / n] \times[(k-1) / n, k / n]$ implies that $\left(s^{\prime \prime}, t^{\prime \prime}\right) \in[(j-2) / n$, $(j+1) / n] \times[(k-2) / n,(k+1) n]$ and it suffices to check each possibility.) It follows that

$$
P\left[Z_{n}>24 \varepsilon\right] \leqq P\left[Y_{n}>6 \varepsilon\right] .
$$

Since $0 \leqq Z_{n}$ and $Z_{n+1} \leqq Z_{n}$ for all n,

$$
\lim _{n \rightarrow \infty} P\left[Z_{n}>24 \varepsilon\right]=P\left[\lim _{n \rightarrow \infty} Z_{n}>24 \varepsilon\right]=0
$$

by (12). Letting $\varepsilon \downarrow 0$, we obtain

$$
P\left[\lim _{n \rightarrow \infty} Z_{n}>0\right]=0
$$

and since $Z_{n} \geqq 0$, we get

$$
P\left(\Omega^{\prime}\right)=P\left[\lim _{n \rightarrow 0} Z_{n}=0\right]=1,
$$

which finishes the first part of the proof.
Now if $x(s, t)$ is any real-valued function uniformly continuous on a set D, it has a unique continuous extension to the closure of D. Let $Y(s, t, \omega)$ be defined for $\omega \in \Omega^{\prime}$ by $Y(s, t, \omega)=X(s, t, \omega)$ if $(s, t) \in D^{\prime}$.

If $(s, t) \notin D^{\prime}$, choose a sequence of points $\left(s_{n}, t_{n}\right)$ in D^{\prime} such that $\lim _{n \rightarrow \infty}\left(s_{n}, t_{n}\right)=(s, t)$ and define $Y(s, t, \omega) \equiv \lim _{n \rightarrow \infty} Y\left(s_{n}, t_{n}, \omega\right)$ for $\omega \in$ Ω^{\prime}. Since for $\omega \in \Omega^{\prime} Y(s, t, \omega)$ is uniformly continuous on D^{\prime} which is dense in $D, Y(s, t, \omega)$ is well-defined for $\omega \in \Omega^{\prime}$. If $\omega \notin \Omega^{\prime}$, let $Y(s, t, \omega) \equiv 0$. Then for $(s, t) \in D^{\prime}$,

$$
P[Y(s, t)=X(s, t)] \geqq P\left(\Omega^{\prime}\right)=1
$$

and if $(s, t) \in D$ but $(s, t) \notin D^{\prime}$,

$$
P\left[Y(s, t)=\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)\right] \geqq P\left(\Omega^{\prime}\right)=1
$$

for some sequence $\left\{\left(s_{n}, t_{n}\right)\right\}$ in D^{\prime} such that $\lim _{n \rightarrow \infty}\left(s_{n}, t_{n}\right)=(s, t)$. But by Lemma 2.6 ,

$$
P\left[X(s, t)=\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)\right]=1
$$

and hence for any $(s, t) \in D$,

$$
P[Y(s, t)=X(s, t)]=1 .
$$

That is, $Y(s, t)$ is a process which is equivalent to $X(s, t)$. It follows from the definition of $Y(s, t)$, that its sample functions are continuous on Ω^{\prime}, a set of probability one.

5. Proof of Theorem 2.

Proof. Let $\Phi(a, b, c, d)$ denote the normal probability distribution
with mean zero and variance $v(c, d)-v(a, d)-v(c, b)+v(a, b)$ where $0 \leqq a<c \leqq 1$ and $0 \leqq b<d \leqq 1$. Then since the convolution of normal distributions is a normal distribution whose mean and variance are the respective sums of the means and variances of the original distributions, for any $\alpha>0$ we have

$$
\begin{aligned}
& \Phi(a, b, c+\alpha, d)=\Phi(a, b, c, d) * \Phi(c, b, c+\alpha, d) \\
& \Phi(a, b, c, d+\alpha)=\Phi(a, b, c, d) * \Phi(a, d, c, d+\alpha)
\end{aligned}
$$

where "*" denotes the operation of convolution.
By Lemma 4.1, there is a biadditive process $Y(s, t)$ such that for $s^{\prime}<s^{\prime \prime}$ and $t^{\prime}<t^{\prime \prime}, Y\left(s^{\prime \prime}, t^{\prime \prime}\right)-Y\left(s^{\prime}, t^{\prime \prime}\right)-Y\left(s^{\prime \prime}, t^{\prime}\right)+Y\left(s^{\prime}, t^{\prime}\right)$ is normally distributed with mean zero and variance $v\left(s^{\prime \prime}, t^{\prime \prime}\right)-v\left(s^{\prime}, t^{\prime \prime}\right)-v\left(s^{\prime \prime}, t^{\prime}\right)+$ $v\left(s^{\prime}, t^{\prime}\right)$. If $Y(s, t)$ satisfies conditions (1), (2), and (3) of Lemma 4.5 there is a process $Y_{0}(s, t)$ equivalent to $Y(s, t)$ such that almost every sample function of $Y_{0}(s, t)$ is continuous over D. Define $X(s, t)=$ $Y_{0}(s, t)+m(s, t)$. Then $X(s, t)$ satisfies (i) and (ii) and is biadditive since $Y_{0}(s, t)$ is. Furthermore almost every sample function of $X(s, t)$ is continuous over D.

Let $\Delta_{j_{k}}$ denote the random variable

$$
\Delta_{j k} \equiv Y\left(\frac{j}{n}, \frac{k}{n}\right)-Y\left(\frac{j-1}{n}, \frac{k}{n}\right)-Y\left(\frac{j}{n}, \frac{k-1}{n}\right)+Y\left(\frac{j-1}{n}, \frac{k-1}{n}\right)
$$

where n is a positive integer. Conditions (1), (2), and (3) of Lemma 4.5 are

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sum_{k=1}^{n} P\left[\left|\Delta_{j k}\right|>\varepsilon\right]=0 \tag{1}\\
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P\left[\left|Y\left(1, \frac{k}{n}\right)-Y\left(1, \frac{k-1}{n}\right)\right|>\varepsilon\right]=0 \tag{2}\\
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} P\left[\left|Y\left(\frac{j}{n}, 1\right)-Y\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right]=0 \tag{3}
\end{gather*}
$$

where $\varepsilon>0$ is chosen in an arbitrary manner. We will use the following inequality which is valid for $\lambda>0$.

$$
\int_{\lambda}^{\infty} e^{-t^{2} / 2} d t \leqq \frac{1}{\lambda} \int_{\lambda}^{\infty} t e^{-t^{2} / 2} d t=\frac{1}{\lambda} e^{-\lambda^{2} / 2}
$$

For $\varepsilon>0$ since $\Delta_{j_{k}}$ is normally distributed,

$$
\begin{aligned}
P\left[\left|\Delta_{j_{k}}\right|>\varepsilon\right] & =\frac{2}{\sqrt{2 \pi v_{j k}}} \int_{\varepsilon}^{\infty} e^{-\left(t^{2} / 2 \nu_{j_{k}}\right)} d t \\
& =\frac{2}{\sqrt{2 \pi}} \int_{2}^{\infty} e^{-t^{2} / 2} d t
\end{aligned}
$$

or

$$
P\left[\left|\Delta_{j_{k}}\right|>\varepsilon\right] \leqq \frac{2}{\lambda \sqrt{2 \pi}} \exp \left\{-\frac{\lambda^{2}}{2}\right\}=\frac{2}{\varepsilon} \sqrt{\frac{v_{j_{k}}}{2 \pi}} \exp \left\{-\frac{\varepsilon^{2}}{2 v_{j k}}\right\}
$$

where

$$
v_{j_{k}} \equiv v\left(\frac{j}{n}, \frac{k}{n}\right)-v\left(\frac{j-1}{n}, \frac{k}{n}\right)-v\left(\frac{j}{n}, \frac{k-1}{n}\right)+v\left(\frac{j-1}{n}, \frac{k-1}{n}\right)
$$

and $\lambda=\varepsilon\left(v_{j_{k}}\right)^{-(1 / 2)}$. Since $v(s, t)$ is uniformly continuous over D, we can choose N independently of j and k such that $n \geqq N$ implies $v_{j k} / z^{2}<$ $1 / M_{\dot{\delta}}^{2}$ where $M_{\dot{\delta}}$ is determined as follows. Since $(1 / x) \exp \left\{-\left(x^{2} / 2\right)\right\}=$ $o\left(x^{-2}\right)$ as $x \rightarrow \infty$, we have for every positive integer δ, a number $M_{\bar{\alpha}}$ such that $x>M_{\grave{o}}$ implies $x \exp \left\{-\left(x^{2} / 2\right)\right\}<1 / \delta$, that is, for $x>M_{\dot{o}}$,

$$
\frac{1}{x} \exp \left\{-\frac{x^{2}}{2}\right\}<\frac{1}{\delta x^{2}}
$$

Now $v_{j k} / \varepsilon^{2}<1 / M_{\delta}^{2}$ entails $\varepsilon / \sqrt{v_{j k}}>M_{\dot{\delta}}$ and with $x=\varepsilon / \sqrt{v_{j k}}$ we get

$$
\frac{\sqrt{v_{j_{k}}}}{\varepsilon} \exp \left\{-\frac{\varepsilon^{2}}{2 v_{j_{k}}}\right\} \leqq \frac{1}{\delta} \frac{v_{j_{k}}}{\varepsilon^{2}}
$$

Then for $n \geqq N$

$$
P\left[\left|\Delta_{j k}\right|>\varepsilon\right] \leqq \frac{2}{\sqrt{2 \pi}} \cdot \frac{v_{j k}}{\varepsilon^{2}} .
$$

But $v(1,1)-v(1,0)-v(0,1)+v(0,0)=v(1,1)=\sum_{k=1}^{n} \sum_{\jmath=1}^{n} v_{j k}$, and so

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} P\left[\left|\Delta_{j k}\right|<\varepsilon\right] \leqq \frac{2}{\sqrt{2 \pi}} \cdot \frac{1}{\delta \varepsilon^{2}} v(1,1) .
$$

Since we may take δ arbitrarily large, choosing N sufficiently large for each δ,

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sum_{k=1}^{n} P\left[\left|\Delta_{i k}\right|>\varepsilon\right]=0
$$

and (1) holds for $Y(s, t)$. A similar argument proves (2) and (3). Since $Y(s, 0)=Y(0, t)=0$ for all (s, t) in $D, Y(1, k / n)-Y(1,(k-1) / n)$ is normally distributed with mean zero and variance $v(1, k / n)-$ $v(1,(k-1) / n)$, and $Y(j / n, 1)-Y((j-1) / n, 1)$ is normally distributed with mean 0 and variance $v(j / n, 1)-v((j-1) / n, 1)$. Thus

$$
\begin{aligned}
P\left[\left|Y\left(1, \frac{k}{n}\right)-Y\left(1, \frac{k-1}{n}\right)\right|>\varepsilon\right] & =\frac{2}{\sqrt{2 \pi v_{k}}} \int_{\varepsilon}^{\infty} \exp \left\{-t^{2} / 2 v_{k}\right\} d t \\
& \leqq \frac{2 \sqrt{v_{k}}}{\sqrt{2 \pi \varepsilon}} \exp \left\{-\varepsilon^{2} / 2 v_{k}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
P\left[\left\lvert\, Y\left(\frac{j}{n}, \left.1-Y\left(\frac{j-1}{n}, 1\right) \right\rvert\,>\varepsilon\right]\right.\right. & =\frac{2}{\sqrt{2 \pi \nu_{j}}} \int_{\varepsilon}^{\infty} \exp \left\{-t^{2} / 2 v\right\} d t \\
& \leqq \frac{2 \sqrt{v_{j}}}{\sqrt{2 \pi \varepsilon}} \exp \left\{-\varepsilon^{2} / 2 v_{j}\right\}
\end{aligned}
$$

where $v_{j} \equiv v\left(j / n, 1-v((j-1) / n, 1)\right.$ and $v_{k} \equiv v(1, k / n)-v(1,(k-1) / n)$. Again we may choose $\delta, M_{\dot{\delta}}, N^{\prime}$, and $N^{\prime \prime}$ so that when $n \geqq N^{\prime}$ or $n \geqq$ $N^{\prime \prime}$, the respective inequalities

$$
\frac{v_{j}}{\varepsilon^{2}}<\frac{1}{M_{\dot{\delta}}^{2}} \quad \text { or } \quad \frac{v_{k}}{\varepsilon^{2}}<\frac{1}{M_{\dot{\delta}}^{2}}
$$

hold. Since $v(1,1)=\sum_{j=1}^{n} v_{j}=\sum_{k=1}^{n} v_{k}$,

$$
\sum_{k=1}^{n} P\left[\left|X\left(1, \frac{k}{n}\right)-X\left(1, \frac{k-1}{n}\right)\right|>\varepsilon\right] \leqq \frac{2}{\sqrt{2 \pi \delta \varepsilon^{2}}} v(1,1)
$$

and

$$
\sum_{j=1}^{n} P\left[\left|X\left(\frac{j}{n}, 1\right)-X\left(\frac{j-1}{n}, 1\right)\right|>\varepsilon\right] \leqq \frac{2}{\sqrt{2 \pi \delta \varepsilon^{2}}} v(1,1)
$$

when $n>N^{\prime \prime}$ or $n>N^{\prime}$ respectively. Thus there is a process $Y_{0}(s, t)$ equivalent to $Y(s, t)$ such that almost every sample function of Y_{0} is continuous over D. Setting $X(s, t)=Y_{0}(s, t)+m(s, t)$ we obtain a biadditive process satisfying (i), (ii), and (iii).

References

1. H. G. Tucker, A Graduate Course in Probability, Academic Press, New York and London (1967).
2. J. Yeh, Wiener measure in the space of functions of two variables, Trans. Amer. Math. Soc., 95 (1960), 433-450.
3. - Unpublished Lecture Notes.

Received April 29, 1971. The author wishes to thank Professor J. Yeh for suggesting this problem. This paper forms part of the author's dissertation and the research for it was sponsored in part by the National Science Foundation (Grant No. GP-13288) and in part by the Air Force (Grant No. 1321-67).

University of California,
Santa Barbara, California

