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CONTINUITY OF SAMPLE FUNCTIONS OF

BIADDITIVE PROCESSES

W. N. HUDSON

Let {X(s, t): O^s, t ̂ 1} be a stochastic process which has inde-
pendent increments (second differences). Necessary and suffi-
cient conditions are established to ensure the existence of a
version with the property that almost every sample function
is continuous. A corollary to these results is the existence of
a class of measures on Wiener-Yeh space. The conditions are
analogous to the usual case of additive processes Z(t) indexed
by one time parameter.

X(s, t) will be said to have independent "increments" (second differ-
ences) if whenever 0 <£ s0 < sx < < sm <̂  1 and 0 <£ t0 < tx < < tn^ 1
the random variables X(si9 t3) — X{s^u t3) — X(si9 έ -O + X(s^l9 tά^)
i = 1, , m, j = 1, , n are independent. If X(s, t) has independent
increments and X(0, t) = X(s, 0) = 0, then X(s, t) will be called biaddi-
tive. Let m(s, t) = E[X(s, t)] and v(s, t) = var [X(s, t)]. The following
result is proved below:

There is a version of a biadditive process X(s, t) with the pro-
perty that almost every sample function is continuous if and only if
X(s, t) is Gaussian, m(s, t) and v(s, t) are continuous, and v(s, t) is the
distribution function of a Lebesgue-Stieltjes measure on [0, 1] x [0, 1].

A special case of this result occurs when m(s, t) = 0 and v(s, t) =
st. This process is realized when the space C2 of continuous functions
of two variables on [0, 1] x [0, 1] is assigned the Wiener-Yeh measure
and X(s, t) is defined by X(s, t){f) = f(s, t) where feC2. Theorem 2
will imply the existence of a class of Wiener-Yeh measures on C2 cor-
responding to the choices of a pair of continuous functions m(s, t) and
v(s, t).

The conditions on m(s, t) and v(s, t) are analogous to the well-
known conditions for the usual case of a stochastic process indexed
by one time parameter. The case for a process indexed by π-time
parameters is similar. The proof here is probabilistic in nature, unlike
the analytic proof given by Yeh in [2] for the special case above.

2* Statement of main results*

THEOREM 1. Let X(s,t) be a biadditive process having the pro-
perty that almost every sample function is continuous. Then X(s, t)
is Gaussian and the increments of X(s, t) are Gaussian. Furthermore
the functions m(s, t) — EX(s, t) and v(s, t) = var (X(s, t)) are continuous
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344 W. N. HUDSON

and determine the distribution of the process.

The following corollary is easy and its proof will be omitted.

COROLLARY. Let X(s, t) be as in Theorem 1. If the increments
of X(s, t) are stationary, that is, if the distribution of X(s + hl9 t+ h2) —
X(s, t + h2) — X(s + hl9 t) + X(s, t) depends only on hγ and h2, then
there are constants c1 and c2 such that

m(s, ί) = EX(s, t) = c,st

v(x, t) = var (X(s, t)) = c2st.

THEOREM 2. Let m(s, t) and v(s, t) be continuous functions on
[0, 1] x [0, 1] such that m{s, 0) = 0 = m(0, t) and v(s, 0) = 0 = v(0, t)
for 0 5j s, t ^ 1. Suppose that v(s, t) satisfies the condition

(A) V(8", t") - v{s", V) - v{s', t") + v(s', t') ^ 0

whenever

0 ^ s' ^ s" ^ 1 and 0 ^ tf < t" ^ 1 .

Then there is a biadditive Gaussian process X(s, t), 0 ^ s, t ^ 1, such
that

(i) EX(s, t) = m(s, t) and var (X(s, t)) = v(s, t) and
(ii) almost every sample function of X(s, t) is continuous on

[0, 1] x [0, 1].

The distribution of X(s, t) is determined by m(s, t) and v{s, t).

3* Proof of Theorem 1. We prove first that X(s, t) is Gaussian.

LEMMA 3.1. // almost every sample function of X(s, t) is con-
tinuous on [0, 1] x [0, 1], then X(s, t) and its increments are normally
distributed.

Proof. We show that the version of the central limit theorem in
reference [1] (Theorem 2, p. 197) applies. Let (s, t) be a fixed point
in [0, 1] x [0, 1] and define s{ = s(i/ri), t{ = t(i/n), and

ΔiS{n) = X(si9 td) - X(si9 t^) - X(8i-19 tj) + X(8i-l9 tj-d .

Let ε > 0 be given and let An = [m2LXit3'=lt2,...tn\Λi3 (ri)\ *z έ\. Then

almost every sample function of X(s, t) is uniformly continuous on
[0, 1] x [0, 1], and consequently

P{lim sup An} = 0 .
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Hence lim sup^oo P(An) = 0.
Now X(s, t) is the sum of independent random variables, that is,

The Aij(n) form an infinitesimal system because

max P[\ Aiό{n) | ^ e] ^ P[ max | Aiό{n) | ^ ε]

and since

lim sup P(An) = 0 ,

lim max P[\Ai3(ri) | ^ ε] = 0 .

It follows that X(s, t) is normally distributed.
To show that the increments of X(s, t) are normally distributed,

let s0 and t0 be fixed and for s ^ s0, t ^ t0 consider the process

Y(S, t) = X(8, t) - X(80, t) - X(S, to) + X(8Q, t0) .

It is biadditive and has continuous sample functions a.s. The above
argument shows that Y(s, t) is Gaussian and hence the increments of
X(s, t) are Gaussian.

To complete the proof of Theorem 1 we need to check that m(s, t)
and v{s, t) are continuous and determine the distribution of the pro-
cess. Since X(s, t) is biadditive, we have for s' < s" and t' < t"

var (X(8'\ t")) = var (X(s", t") - X(s', t") - X(s", s') + X(s\ t'))

+ var {X{s\ t") - X(s', t')) + var (X(sf\ V)

-X{s\tf)) + var (X(8\ t'))

var (X(s\ t") - X{s\ t')) + var (X(s', t')) = var (X(s\ t"))

var (X(8", V) - X(s\ t')) + var (X(s\ t')) = var (X(8", t')) .

From these equations using v(s, t) — var (X(s, t)) we obtain

var (X(8", t") - X(8", V) - X(s', t") + X{s\ t'))

= V{S", t") - V{8\ Π - V(8", t') + V(S\ V) .

Since a similar relation holds for m(s, t) = EX(s, t), the fact that the
increments are Gaussian and X(s, t) is biadditive implies that the
distribution of X(s, t) is determined by m(s, t) and v{s, t).

Since almost every sample function is continuous,

lim X(s + hut+ h2) = X(s, t) .
hh
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Let φ(hl9 h2, n) denote the characteristic function of X(s + hut + h).
Then

φ(hί9 h2, u) = exp lium(s + hlf t + h2) — — v(s + hl9 t + h2) >

and hence

v(s,t) = - 2 log 19(0, 0 , l ) |

= - 2 lim log\φ(h19 Λ2, 1)
hl,h2-+0

= lim v(s + ΛJL, ί + A2)

so w(s, t) is continuous. To show m(s, t) is continuous, we use
Chebychef's inequality.

l i m P[\ X ( s + h l f t + h2) - X ( s , t) - m ( s + h l 9 t + h2) + m ( s , t ) \ ^ ε ]
/t1,A2-*°

Φ + Kt + h2) - v(s, t) = 0

so that

hut + h2) - X(s, t) - m(s + hl9 t + h2) + m(s, t) > 0 .

Since X(s + hlf t + h2) —* X{s, t), it follows that m(s, t) is continuous.

4* Lemmas for Theorem 2. In §3, we have shown that any
biadditive stochastic process with almost all its sample functions con-
tinuous is Gaussian with continuous mean and variance functions.
The next task is to show that given a pair of continuous functions
m(s, t) and v(s, t) where v{s, t) is a normalized distribution function
for a Lebesgue-Stieltjes measure on [0, 1] x [0, 1], there is a biadditive
process X(s, t) such that EX(s, t) = m(s, t) and var (X(s, f)) = v(s, t).
For this proof a few preparatory results are needed. In the following
Lemma, * denotes convolution.;

LEMMA 4.1. Suppose there is a system of probability distributions
{Φ(aly bL, a2, b2) \ 0 ^ aL < a2 ^ 1, 0 ^ δ : < b2 ^ 1} such that for any a > 0
and β > 0

1 ) Φ(a19 bί9 a2 + a, b2) = Φ(aιy b19 α 2 , 6 2 )*Φ(α 2 , 6X, a2 + α , 62)

2 ) Φ(a19 &„ α 2 , 62 + /9) = Φ(α 1 ? δ 1 ? α 2 , 6 2 )*Φ(α 1 , δ 2, α 2 , 62 + /9) .

is a biadditive process X(s9 t) such that the increment

X(a2, b2) - X(a19 b2) - X(α2, b,) + X(al9 bx)
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has the probability distribution Φ(a19 bίf a2, b2) for 0 ^ aγ < a2 ^ 1 and
0 ^ b < b2 ̂  1.

Proof. The proof uses the Daniell-Kolmogorov extension theorem
in the usual manner and is therefore omitted- Conditions (1) and (2)
guarantee the consistency of the system.

LEMMA 4.2. (Ottaviani's Inequality). Let {X19 X2, , Xn) be inde-
pendent random variables and let Sk Ξ= Σ l i ί If for some ε > 0,

P[\Sn-Sk\>ε]^± for k = 0, 1, 2, . . . n ,

Δ

where So = 0, then

P[ max \Sk\ >2ε]^2P[\Sn\ > e] .
k=lt2-' n

Proof. The proof may be found in reference [3]. It is very
similar to the following lemma which will be proved in full.

LEMMA 4.3. (An extended version of Ottaviani's Inequality). Let
s0 < sL < sm and t0 < tx< t2 < < tn. Define

ΔiS = X(si9 tj) - X(8i-ί9 tj) - X(si9 tj^) + X(s^, t^)

where X(s, t) is a biadditive process on D = [0,1] x [0, 1]. Let Rt =

Έi=ι Σ?=I+I
 Δm and QM = ΣΓ=*+i^tz If for all k = 1, 2, , m and

1 = 0,1, ••, n

and

then

P[ max \SU\> 2ε"l ^ 2P[\Smn\ > ε] .

Proof. Let Au be defined for i = 1, 2, , m, and i = 1, 2, , n

by

Aij = [\Skl\^2ε for Z<i and &^m, \Skj\^2ε for A<ΐ, |S ί y |>2ε]

Au = [ | S n | > 2 e ] .

Let T = {{i, j): 1 = 1, 2, , m and i = 1, 2, , n}. It is clear that
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and the Ai3'
9& are disjoint. Now let

Then,

AklΠBktc:[\Smn\ >e]

and so,

UU(AklnBkl)a[\Smn\>ε].
1 = 1 k=l

Since X(s, t) is biadditive, Akl and i?fcZ are independent events, and
Rt and QAi are independent random variables. It follows that

P(Bkl) = P [ | * , | < ±}P[\QH\ < -§•] £ V | Vj = I

Hence,

| > 2sΊ = i- Σ ± P(A{j) ^±± P(Ai3- f] Bi})
J 2 »=i i=i »=i j=i

= P( ΰ u A « n B W )

-ίpΓ max
2 L

LEMMA 4.4. Lei X(s, ί) 6e a biadditive process on a probability
space {Ω, S3, P) with (s, t) e D = [0, 1] x [0, 1]. Let m(s, t) == EX(s, t)
and v(s, t) = var (X(s, t)) be continuous on D. Then for any point
(s0, ô) € D and for any sequence of points {(sn, tn)} c D such that

lim (sn, tn) = (s0, t0)
n—*oo

imX(sn, tn) = X(s0,

Proof. Let ε > 0 be chosen arbitrarily except for the condition
ε < 1 — τ/1/2 < 1/2. Chebychef's Inequality and the uniform conti-
nuity of m(s, t) and v(s, t) imply that there is a d > 0 such that for
(s\ f) and (s, ί) G [s0 - δ, s0 + δ] x [to -δ,to + δ]

( i ) P[\X(S, t) - x(8', f)I ^ - | ] < - 1 .

Now let S be a countable dense set in D and let S»i, S2, S3f and
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denote the sets

S, = S Π ([so, So + 3] x [ί0, t0 + 8])

52 = Sf] ([«„, s0 + δ] x [ίo - 8, ί j)

53 = S n ([so - 8, s0] x [ί0, ίo + 8])

S, = SO ([so - 8, s0] x [ί0 - 8, ί0])

The first part of the proof will show that

( 2 ) P [ sup IX(s, t) - X(s0, ί0) I > Qε] ^ 6e .

The same kind of argument can be used to show that for i = 2, 3,
and 4

( 3 ) P\ sup \X(8, t) - X(s0, to)\ > 6ε] £ 6ε
L(s,t)eSi J

and so only the case for Sx will be done here.
Let the elements of Sλ be numbered in an arbitrary manner so

t h a t S, = {(si9 U): i = 1, 2, •}. Then

p\ sup \X(8, t) - X(80, to)\ > 6εl
/ Λ \ L(s,ί)e5r1 J

= lim P\ max | X(8i, U) - X(s0, ί0) | > 6ε] .

Thus it suffices to show that

( 5 ) P Γ max | X(si9 U) - X(s0, ί0) | > 6εl ^ 6ε

in order to prove (2). Now clearly

p\ max I X(8i9 U) - X(s09 t0) \ > 6ε]

^ P\ max I X(8i9 t%) - X(sQ, U) - X(si9 tQ) + X(s0, tQ) \ > 2ε]
( 6 ) Lί=i,-»,» J

+ p\ max I X(si9 t0) - X(sQ9 U) \ > 2εl

max I X(s09 U) — X(sQ, t0) \ > 2ε .

Consider the first n points (s19 ίx), , (sw, ίΛ) [in Si Let σu •• , σ n

and Γi, , τΛ be rearrangements of s19 , sΛ and t19 , tn respectively
so t h a t So ̂  (71 ̂  σ2 ^, f ^ σn ^ s0 + δ and t0 ^ ^ ^ τ 2 ^ , , ^ r Λ ^
4 + δ Since X(s, t) is biadditive,
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X(σt, ry) - X(σt, t0) - X(s0, τ3) + X(s0, Q

= Σ Σ {X(σm, τ,) - X{σm_y, τt) - X{σm, τ,_J + X(σm_u τ^)
l

X(σt, t0) - X(80, Q =
m—ι

X(SQ, tj) - X(SO, to) = ΣJ {X(SO, Tι) - X(SO, Tι-i)}
1=1

are sums of independent random variables. Now if (s\ tr) and (s", t")
are any two points in [s0 — δ, s0 + δ] x [tQ + δ, t0 + δ], then using (1)
we may verify that the hypotheses of the Ottaviani inequalities,
Lemmas 4.2 and 4.3, are satisfied. Thus

( 7) PΓ max I X(σi9 t0) - X(s0, Q \ > 2ε] £ 2P[\ X(σn, Q - X(s0, t0) \ > ε]

( 8 ) PΓ max I X(s0, τ3) - X(s0, Q | > 2ε] ^ 2P[| X(s0, τn) - X(s0, Q \ > ε]

and

PΓ max I X(σi9 τ3) - X(s0, τ3) - X(σi9 t0) + X(sQ, t0) \ > 2ε~j

(9) ϋ ΐ .v.;: J
^ 2P[\X(σn, τn) - χ(s0, τn) - X(σn, t0) + X(s0, t0) | > ε] .

From the choice of δ we see that the right sides of inequalities (7),
(8), and (9) are each not greater than 2ε. Since the σ/s are s/s and
r/s are ί/s, we have

(10) P\ max | X(si9 t0) - X(s0, t0) \ > 2ε\ ^ 2ε

(11) p\ max | X(s0, t}) - X(s0, t0) | > 2ε] ^ 2ε

and

(12) p\ max \X(si9 U) - X(s0, tt) - X(si9 ί0) + X(s09 t0) | > 2ε] ^ 2 ε .

Substituting (10), (11), and (12) into (6) we get (5), i.e.

p\ max I X(si9 t%) - X(sQ9 t0) | > 6ε] ^ 6ε .

Then

p\ sup \X(s, t) - X(80, tQ) I > 6ε] ^ 6ε .
L(8,t)eS1 A

Since the proof of (2) is similar, it is omitted.
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Now let V = Sλ U S2 U S3 U S4. Then

p\ sup I X(s, t) - X(80, tQ) I > 6ε]
L(s,ί)eF J(13)

and hence

(14)

^ Σ i f sup I X(s, t) - X(s0, to) I > 6εl

f sup I X(s, ί) - X(s0, ί0) | > 6εl ^ 24ε .

L(s,ί)e7 J
Taking limits as δ J, 0, we obtain

(15) pΓlim sup |X(s, ί) - X(s0, ί0) [ > 6ε] £ 24ε .
bio F ' J

Now let ε I o a n d take complements to get

(16) PΓlim sup | X(s, t) - X(s09 ft,) | = ol = 1 .
Lno v J

If an arbitrary sequence (sn, tn) with lim^^^ (sw, tn) = (s0, ί0) is given,
we extend the point set {sn, tn) to a countable dense set S in Z). Then

Γlim X(sn9 tn) = X(80, t0)] Z) Γlim sup | X(s, t) - X(8o, U) \ = o l

and by (16)

PΓlim X(»n, tn) = X(s0, <o)l = 1 .

LEMMA 4.5. Le£ X(s, ί) be a bίadditίve process on a probability
space (Ω, S3, P) with (s, t) e D = [0, 1] x [0, 1]. Suppose that v(s, t) =
var (X(s, t)) is continuous over D. Furthermore, suppose that for any
ε > 0 ,

( 1 )

(2)

and

( 3 )

im ±±P\
^o» 3=1 t = i L

lim
% / V n n J

+
k - 1 3 - 1

n n

n
1 =>ε =0

»-»«»j=ί n

is α process Y(s, t) equivalent to X(s, t) such that almost
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every sample function of Y{s, t) is continuous on D.

Proof. Let S be the set of all rational numbers in [0, 1] and let
D' = S x S. Define Ω9 by Ωf — {ωe Ω: X(s, t) is uniformly continuous
on Dr). In the first part of the proof, we show that P{Ω') = 1.

Let Zn be defined on (β, S3, P) by

: (β", t") 6 D', (sr, t') e D' and

\s" - sΊ < JL It" - tf

n' n

Then X(s, t) is uniformly continuous on Df if and only if l i m ^ ^ ^ = 0.
Hence,

(4) P(Ω') = p[limZΛ = o Ί .

Let Sj = S Π [(i — l)/w, i/^] i = 1, , n, and fix n. We number
the elements of Sj in an arbitrary manner for each j — 1, , n. Let
j and k be now fixed and let sl9 , sm_! and tl9 , ίm_! denote the
first m — 1 elements of Sj and >Sfc respectively. Let σίf , σm_1 and
î> •> τm-i be the arrangements of {ŝ  , sm_i} and {ίx, , ίm_J respec-

tively in ascending order so that σt < σ2 < < σm_x and r : < τ2 < <
τm_ l β Choose σQ = (j — ΐ)/n9 σm = i/^, τ0 = (k — ΐ)/n, and rm = k/n, and
define S i m Ξ {τ0, τ 1 ? •••, τm}. We will use t h e notation:

A{8, t, 8', V) = X(S', t') - X(8, t') - X(S\ t) + X(8, t) .

Since X{s, t) is biadditive, the three collections of random variables
below are systems of independent random variables:

{Δ(σμ_u τr_ίf σμ, τT): μ, 7 = 1, , m}

7 = l , , m and j = 1, « ,

^ , ~ , σμ, — \:μ = l, ,m and Λ = 1, •••,

Let ε > 0 be chosen arbitrarily. Since v(s, t) and m(s, ί) are continuous
on D, they are uniformly continuous and if n is sufficiently large and
if 0 < s" - s' < 1/n or 0 < t" - tf < 1/n, then from Chebychef's in-
equality it follows that

( 5) P[\ A{s\ t\ β", n I > - | ] ^ 1 - Vy

Let Y"nfi,fc Ξ sups,χsfc I X(s, ί) - X((j - l)/n, (fe - l)/n)) |. Then from the
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triangle inequality we get

Yn = max YnJtk

( 6 )

^ max sup
3,k,ι, ,n SjXSjg

+ max sup
3,k=i, - ,n se Sj

i - l f e -
-,B,t

+ max sup
j,k=ι, ,n t e Sjg

n ' n /

- 1 k - 1

n n

Consequently,

^ P max sup
L.3 ,k=i, ,n SjXS]c

j - 1 f c - 1 >β,ί)|>2e]

( 7 ) Γ max sup xfs, ̂ 1) - χ(
\_j,lc=i, ,n seSj \ % / \

f j - 1 k - 1 > 2 e

+ p\ max sup x(3- -, t) - xU -,
l-3>k=i, ~,n teSjc \ ft, / V ft, Ύϊl

For (σμ, τr) e Sjm x Skm, we see that

- 1 k- 1I \ r μ

a sum of independent random variables. Now (5) implies that the
hypotheses of the extended Ottaviani's Inequality (Lemma 4.3) are
satisfied and consequently

A max j-1 k-l

n n

Letting m —> &°, it follows that

n

pΓsup

and hence

( 9 )

n n , β>
>2εl ^ 2PΓ z / ( ^ , *=1, L, A) > e l

J L V % n n n> J

A max sup
Li,fc=i, ,» SjXSfc

n n Γ~

^2ΣΣ P
J = l fc = l L

i - l f c -
Iv IV

J ± lϋ

> 2 ε ]

n

Now if σμ e Sim, since X(σμ, 0) = X(0, (fc — ΐ)/n) = 0, we have

k-ΐ\ v(j - 1 fc- Γ\ A t 1 . / 9 - 1 ^ g \
) ~ X{- , ) = Σ Σ A <7p-i, , σp, -2-j ,

/ V ^ % / p=i ς=i \ ft, ft/
n
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as before, a sum of independent random variables. Again, (5) allows
us to use the extended Ottaviani's Inequality to obtain

PΪ max max x(s,
n n

2 ε l

Letting m —> oo, we get

P\ max sup
L f c = l , ,Λ seS;

X β,
k- 1 i - 1 A; - 1 > 2 ε

and

(10)

max sup x ίs, *ni) -
\ 71 J 71

2 e l
J

f % Γ
= p 1 U max sup > 2 ε

3=1

x(i, l) -
n

, l >.].
Similarly for τr e Sk,

n / t *-, r . ) ,
n /

a sum of independent random variables, and so by (5) we may again
apply the extended Ottaviani's Inequality and take limits as m—>co.
We get

(11)

P max sup
n

fe- 1
n

Inserting (9), (10), and (11) into (7) and letting n
from the hypotheses (1), (2), and (3) that

we see

(12) lim P[Yn > βε] = 0 .

The inequality Zn ^ 4 Yn can be checked by succesive applications
of the triangle inequality. (If \s' - s"\<l/n and \t' - t"\<l/n,
(s'> t') e [(j - l)/n,j/n] x [(k - ΐ)/n,k/n] implies that (s", ί") e [(j - 2)/n,
(j + l)/n] x [(k — 2)ln,\{k+ l)n] and it suffices to check each possi-
bility.) It follows that
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P[Z. > 24e] £ P [ Y . > 6e].

Since 0 ̂  Zn and Zn+1 ^ ZΛ for all n,

lim P[Zn > 24ε] = pΓlim Zn > 24εΊ = 0

by (12). Letting ε J. 0, we obtain

pΓlim Zn > ol = 0 ,
L_W-»co J

and since Zn ^ 0, we get

P(Ω') = pΓlim Zn = ol = 1,

which finishes the first part of the proof.
Now if x(s, t) is any real-valued function uniformly continuous on

a set D, it has a unique continuous extension to the closure of D.
Let Y(s, t, ω) be defined for ω e Ωr by Y(s, t, ω) = X(s, t, ω) if (s, t) e D'.

If (s, t) & Df, choose a sequence of points (sn, tn) in D' such that
lim^^^ (sn, tn) = (s, ί) and define Y(s, t, ω) = lim^α, F(sn, ίΛ, ω) for ω e
Ω\ Since for ω e Ωf Y(s, t, ω) is uniformly continuous on D' which
is dense in D, Y(s, t, ω) is well-defined for ω e Ω\ If ω g β', let
Y(s, t, ω) = 0. Then for (s, ί) e Ό\

and if (s, t) e D but (s, t) $ D',

PΪY(S, t) = lim X(8nf tn)Λ ̂  P{Ω') =

for some sequence {(sn9 tn)} in Dr such that lim^*, (sn, tn) — (s, ί). But
by Lemma 2.6,

PΪX(S, t) = lim X(8β, tS\ = 1

and hence for any (s, ί) 6 Z>,

P[Γ(β,ί) = X(β,ί)] = l .

That is, Y(s, t) is a process which is equivalent to I(s, ί). It follows
from the definition of Y(s, t), that its sample functions are continuous
on Ω'9 a set of probability one.

5* Proof of Theorem 2 t

Proof. Let Φ{a, b, c, d) denote the normal probability distribution
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with mean zero and variance v(c, d) — v(a, d) — v{c, b) + v(a, b) where
0 ^ a < c f^ 1 and 0 ^ 6 < d ^ 1. Then since the convolution of normal
distributions is a normal distribution whose mean and variance are
the respective sums of the means and variances of the original distri-
butions, for any a > 0 we have

Φ(α, 6, c + a, d) = Φ(a, b, c, d)*Φ(c, b, c + α, d)

Φ(α, 6, c, d + α) = Φ(α, 6, c, d)*Φ(a, d, c, d + a)

where "*" denotes the operation of convolution.

By Lemma 4.1, there is a biadditive process Y(s, t) such that for
s' < s" and t' < t", Γ(β", ί") - Y(s', t") - Γ(s", f) + Y(s', t') is normally
distributed with mean zero and variance v(s", t") — v(s', t") — v{s", t') +
v(sf, f). If Y(s, t) satisfies conditions (1), (2), and (3) of Lemma 4.5
there is a process Y0(s, t) equivalent to Y(s, t) such that almost every
sample function of Y0(s, t) is continuous over D. Define X(s, t) =
Y0(s, t) + m(s, t). Then X(s, t) satisfies (i) and (ii) and is biadditive
since Y0(s, t) is. Furthermore almost every sample function of X(s, t)
is continuous over D.

Let Δjk denote the random variable

Δjk s γίl, A) _ Yίί^l, A) _ γ(±,

n—*oo j — i k = l

, ) ,
n n / \ n n

where n is a positive integer. Conditions (1), (2), and (3) of Lemma
4.5 are

(1) l imΣΣJ°[My*l>e] = 0
j k

(2) Σ | ( , ) ( ,

( 3 ) lim ±ψ\ γ(L9 ί) - γ(i^±, l) I > el = 0

where ε > 0 is chosen in an arbitrary manner. We will use the fol-
lowing inequality which is valid for λ > 0.

)λ X)λ λ

For e > 0 since Aύk is normally distributed,

T/27Γ
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or

P[\Δ
ih\ e] ^

I 2 J e vjk

where

Vjk Ξ J±, A) - JLzl, A) _ J±, ^
n n n n

and λ = ε{vjk)~m). Since v(s, ί) is uniformly continuous over D, we
can choose N independently of j and k such that n^N implies vjk/ε2 <
I/Mi where Mδ is determined as follows. Since (1/x) exp { — (x2/2)} =
o(α;~2) as & —* ©o, we have for every positive integer 3, a number Λfδ
such that x > ikfδ implies xexip { — (x2/2)} < 1/5, that is, for x > Λfa,

2

Now Vjjε2 < I/Mi entails ε/VvJk > Mδ and with x = ε/Vvjk we get

• e x p i — \ < — .

I 2ViJ ~ δ ε2

2

Then for n> N

But v(l, 1) - v(l, 0) - v{0, 1) + v(0, 0) = v(l, 1) = Σ?=i Σ ^ i ^ ^ and so

Since we may take S arbitrarily large, choosing N sufficiently large
for each δ,

and (1) holds for Y(s, ί). A similar argument proves (2) and (3).
Since F(β, 0) = F(0, ί) = 0 for all (s, ί) in D, F(l, Λ/w) - F(l, (A; - 1)M)
is normally distributed with mean zero and variance v(l, k/n) —
v(l, (k — l)/n), and Y(j/n, 1) — Y((j — ϊ)/n, 1) is normally distributed
with mean 0 and variance v(j/n, 1) — v((j — l)/n, 1). Thus

> ε = f 0 8
exp{~f/2vk}dt



358

and

W. N. HUDSON

γ (ί x -

where vά = v(j/n, 1 — v((j — ϊ)/n, 1) and vk = v(l, k/n) — v(l, (k — ϊ)/n).
Again we may choose δ, Mδ, N', and N" so that when n >̂ JV' or n ^
iV", the respective inequalities

or ^ < J L
ε2 Ml

hold. Since v(l, 1) = Σ?=Λ = Σ:=iV*,

2 f«(l, 1)

and

when n > ΛΓ" or n > N' respectively. Thus there is a process Y0(s, t)
equivalent to Y(s, t) such that almost every sample function of Yo is
continuous over D. Setting X(s, t) — YQ(s9 t) + m(s, t) we obtain a
biadditive process satisfying (i), (ii), and (iii).
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