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A SEPARABLY CLOSED RING WITH NONZERO
TORSION PIC

ANDY R. MAGID

We give an example of a ring and a rank one projective
module over that ring such that the square of the module is
free but the module does not become free over any separable
extension of the ring.

Every ideal class in the ring of integers in a number field can
be split by an unramified extension. Over a commutative ring which
is an algebra over the rationale every torsion element of Pic of the
ring is split by a separable extension [3]. These examples suggest
the question: is the torsion part of Pic of a separably closed ring
trivial? We will exhibit a ring which shows the answer is negative.
The ring arises as a slight modification of an example of Swan [5].

For any commutative ring k, kx denotes the group of units of k,
Cl (k) denotes the divisor class group if k is a domain, and Qu(k)
denotes the group of quadratic extensions of k. We use Z for the
integers and Q for the rationale.

DEFINITION. For any commutative ring k, let kiS1) = k[XQ, Xλ]/
(XI + X! - 1) Let U be the image of X* in k{Sι). k(Sι) is graded
mod 2; let k{Pι) be the even graded piece and L(k) the odd.

LEMMA 1. L(k) is a projective k(Pι)-module of rank 1 whose
tensor square is free.

Proof. It suffices to check the first assertion for k = Z. By the
argument in [5, p. 271] L(Z) is projective of rank 1. The multiplica-
tion in k{Sι) defines a homomorphism

whose image contains tl + t\ = 1 and is thus an isomorphism.
We will show that L(Z) cannot be split by a separable extension

of Z{Pι). We begin by collecting some facts about the rings involved.

LEMMA 2. (a) QtyiP1) = Q(i)[v, v1] where v = (ί0 + it,)2

(b) Q{Pγ = Q*
(c) Z/2Z(Pι) is a polynomial ring (in one variable) over Z/2Z
(d) L(Z/2Z) is freely generated by t0 + tλ

Proof. Let K = Q(i). Then KiS1) = K[u, u~ι] where u = t0 + it,.
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K[v, v"1] is contained in K{Pι) and K[u, u~ι] is separable of rank two
over both rings. Thus K[v, v~ι] = K(Pι); this gives (a). Let g be
the automorphism of K(Pι) defined by g{i) — — i (so g(v) = v~ι). Then
the ring of ^-invariants is QiP1). Since K(Py = Kx{v}, the only
invariant units are in Qx, whence (b). For (c), we observe that Z/
2Z[X0, a] where α2 = 1 is isomorphic to ZβZiβ1) when Xo is sent to
t0 and a to t0 + tx. This isomorphism is graded and under it, Zj2Z(Pι)
corresponds to Z/2Z[X0, a]. For (d), let/* = U(t0 + ί j . Then ffo +
ίO = ti9 so ί0 + ίL generates L(Z/2Z).

We remark that (c) implies that Z/2Z(PY = {1} and (b) implies
that Z(PY = {± 1}.

PROPOSITION 3. ZiP1) is a normal domain with Pic {Z{P1)) = {1,

Proof. We begin by establishing analogous assertions for QiP1).
Let K, v, g be as in the proof of Lemma 2 and let G = {1, g). Then
K{Pι) is a Galois extension of QiP1) with group G. Let [7 = X{Pγ.
Since by Lemma 2 (a) ifίP1) is a UFD, Q{Pι) is normal and there is
an isomorphism Cl (QiP1)) -> 2Γ(G, Z7) [4, p. 55]. To compute the
latter group, we use the exact sequence of G-modules

1 >V >U >KX >1

where V is the subgroup generated by v. Since by Lemma 2 (b) UG —
Qx = (KX)G and since H\G9 K

x) = 1 by Hubert's Theorem 90, the
cohomology sequence of the above sequence shows that H^G, U) and
H^G, V) are isomorphic. Since V is G-isomorphic with Z with g
acting by multiplication by — 1, we see that H^G, V) (and hence
Cl iQiP1))) is of order two. Now let S be the multiplicative set in
ZiP1) generated by the integer primes. The integer primes remain
prime in ZiP1) (for the odd primes this is trivial and for two it
follows from Lemma 2 (c)). Since S-'ZiP1) = QiP1) it follows from
[4, p. 21] that ZiP1) is a normal domain with Cl (^(P1)) = Cl iQiP1)).
By [5, Thm. 4, p. 271] LiZ) cannot be generated by a single element.
It follows that {1, LiZ)} = Pic (^(P1)) = Cl iZiP1)).

Next, we show that every connected Galois extension of ZiP1) is
abelian.

LEMMA 4. Let K be an algebraically closed field of characteristic
zero. Then every connected Galois extension of K[X, X~λ] is cyclic.

Proof. We may assume K is the complex numbers. Let T be
a connected Galois extension of K[X, X"1] and let E be the quotient
field of T. Let M and P be the Riemann surfaces of E and



A SEPARABLY CLOSED RING WITH NONZERO TORSION PIC 713

respectively (P is just the Riemann sphere, of course). The inclusion
of K(X) in E displays M as a local branched covering of P ramified
only above 0 and oo. The branching order formula [3, Cor. 3, p. 225]
shows that M has genus zero and only one branch point over each
of 0 and °o. It follows that the covering map is the nth power map,
where n = [T: K[X, X~1]] and hence that T = K[X, X~ι]( VX). Then
the Galois group of T is cyclic of order n.

PROPOSITION 5. Every connected Galois extension of Z(Pι) is
cyclic.

Proof. Let K be the algebraic closure of Q and R the ring of
all algebraic integers. Let T be a connected Galois extension of
Z{Pι) with group G. Then T®ZR is a Galois extension of R{Pι),
and hence is a product of copies of a connected Galois extension To

of R{P'). The Galois group H of TQ is a subgroup of G. T0®RK
is a connected Galois extension of ^(S1) = K[v, v~ι] and hence by
Lemma 4 if is cyclic. Choose a homomorphism (necessarily an injection)
of T into To. Then TH is a separable ^(P^-subalgebra of Γf = R{Pι)
Thus TH is contained in S(Pι) where S is the ring of integers in
some finite extension of Q. Since S(PX) is ^P^-projective and TH

is ^(PO-separable, TH is a Γ^-summand of S(PX). Let / denote the
evaluation Z{Sι) —> Z (and also its restriction to Z{P1)) at the point
(1, 0). Then TH ®fZ is a separable Z-subalgebra of S{Pι) (g)fZ = S.
It follows that TH®fZ= Z and hence Z(Pι) = TH.

THEOREM 6. L(Z) cannot be split by a separable extension of Z(Pι).

Proof. It will suffice to prove the theorem for connected Galois
extensions; let T be such an extension with group G. If T splits
L(Z) then by Lemma 3 P i c ^ P 1 ) ) = Hι{G, Tx). It follows that G
has even order. Since by Proposition 5 G is cyclic, it will suffice to
show that Z{Pι) has no connected quadratic extensions. Since for
any normal domain k with quotient field L the map Qu(k) —> Qu(L)
is injective, Qu{Z{P1)) is contained in Qu{Q{P1)). To compute this
latter group, we use the exact sequence of [1, p. 129] valid for any
ring k containing 1/2:

1 • kxl{KxY > Qu(k) > 2-Pic (k) > 1

where the first map sends a to k[X]/(X2 — α), the second sends T to
Tfk and the fourth group in the sequence is the two-torsion part of
Pic. Let T be a quadratic extension of Z(Pι) and let I = T/Z(Pι).
Let To = T®z Q and let Io = TojQ{Pι). If I = 1 and thus also Io =
1, the above exact sequence shows that To — Q(v/^Γ)(P1) for some a
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in Q, since by Lemma 2 (b) Q(Pγ - Q*. Let / : ZfP1)-> Z and Λ:
QίP1)-—Q be induced by evaluation at (1,0). Then T®fZξ$zQ^
To ®Λ Q, since the first is QxQ and the second Q(l/Ίz), α is in Q and
To and therefore T must be the trivial extension. To treat the case
/ = L(Z) we use the following exact sequence, which is part of a
sequence due to Small [6]: for any ring k ,

Qu(k) > Pic ( 2 ) (&) >U'{k)

where the middle group is those two-torsion elements of Pic (k) which
become free over kβk and the end group is (k/4k)x modulo the sub-
group generated by the squares and the image of kx\ the first map
sends T to Tjk and the second sends / to the class of g(m, m) where
g: I®kI-^I is an isomorphism and m is in I with the image of m
becoming a basis for I/2I. By Lemma 2 and the remarks following
we see that U'(Z{P')) = Z/4Z(Py/{± 1}, and by Lemma 2d and Pro-
position 3 we see that P i c ^ P 1 ) ) = {1, L{Z)}. To compute the image
of L(Z) in U'{Z{P1)) we choose for g the multiplication map (Lemma
X) and for m the element tQ + t, (Lemma 2 (d)). Then g(m, m) = 1 +
2tot, has non-trίvίal image in Z(4Z(Pι). Thus the case IJ L(Z) does
not occur.

We conclude with some remarks: one can define k{Pn) and k(Sn)
in a similar manner for n larger than 1. The arguments given here
can be extended to cover these rings, except for Lemma 4. Presumably
the analogue of Theorem 6 remains valid, however.
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