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ON NILPOTENCY AND RESIDUAL FINITENESS IN
SEMIGROUPS

GERARD LALLEMENT

It is proved that the class cέ? of regular nilpotent semi-
groups coincides with the class of semilattices of nilpotent
groups. Consequently, finitely generated semigroups in the
class ^ are residually finite. The same results are true for
semisimple 2-nilpotent semigroups.

1* Introduction* For semigroups defined in terms of generators
and relations, the word problem is known to be recursively unsolvable
in general (Post, [15]) but finitely presented semigroups which are
residually finite do have a solvable word problem (McKinsey [13],
T. Evans [3]). Although considerable work has been done to find
large classes of residually finite groups (see e.g the expository
paper of W. Magnus [9]) only a few papers deal with residual finite-
ness in semigroups. Among the known results and apart from the
solvability of the word problem, let us mention that any finitely
generated residually finite semigroup is hopfian [4] and has a residually
finite semigroup of endomorphisms [5]. Concerning classes of residually
finite semigroups, one of the most significant results is due to A I.
Malcev who proved that finitely generated abelian semigroups are
residually finite [12] (see also [1]). In trying to extend Malcev's
result, one might recall an early result in group theory: Polycyclic,
and in particular finitely generated nilpotent groups are residually
finite (Hirsch [6]). A. I. Malcev [11], B. H. Neumann and Tekla
Taylor [14] have shown that nilpotency of class c could be defined in
group theory by the use of a law Lc not involving inverses. We
shall recall the definition of Lc in the next section 'and adopt it as a
definition of nilpotent semigroups. We then ask the following question:

Are finitely generated nilpotent semigroups residually finite? We
show, (Corollary 3.1), that the answer is yes for finitely generated
nilpotent regular (in the Von Neumann's sense) semigroups. Attempts
to remove the regularity restriction in particular cases, (see Corollary
4.2) and examples, (see 4.5) lead us to consider that a positive answer
to the question is not unreasonable. I am indebted to R. P. Hunter
for drawing my attention to this problem.

2* Nilpotent semigroups* As in [14], we define the variety of
nilpotent semigroups of class c inductively as follows: Let qu q2, , qc

be words in the variables x, y, zlf z2, , such that q^x, y) = xy and
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qi+1(x, y, zl9 z2, •••«<) = qi(x, y,zlf , z^z^y, x, zl9 , z ^ ) .

Let Lc be the law

Lc: qc(x, y,zl9 , ̂ _0 = gc(#, a?, ̂ , , zc^) .

A semigroup S is called nilpotent of class c (or c-nilpotent) if it satisfies
Lc for every x,yeS, zl9 z2y ze^ e S1 where S1 is the monoid obtained
by adjoining the identity 1 to S. Note that we have slightly modified
the definition of [14], allowing the variables z to belong to S1 (An
equivalent version of Theorem 1 in [14] is: A semigroup can be
embedded in a c-nilpotent group if and only if it is cancellative and
c-nilpotent).

The next proposition provides some natural examples of nilpotent
semigroups.

PROPOSITION 2.1. Let R be a commutative ring. Let S be any
semigroup of n by n (n > 1) triangular matrices over R, each matrix
in S having equal entries in the main diagonal. Then S is nilpotent
of class nΊ.

The proof depends on a simple property of the words qc serving
in the definition of Lc. If w = w(uu u2, , un) is a word in the letters
ul9 u2, , un, we shall say that wr = w'{uu u2, , un) is extracted
from w if wf is obtained from w by erasing letters in w.

Note that w' is extracted from w if and only if wr is a monomial
in the expansion of w(l + uu 1 + %2, , 1 + un) in the semigroup ring
over the free monoid on uuu2, * ,un. In view of this remark the
following result is clear:

LEMMA 2.2. For any word w{x, y, zlf z2, , zc_x) of length I ^ c
that can be extracted from qc(x, y, zl9 z2, , zc^) it is also possible to
extract w(y, x, zl9 z29 , zc^).

Proof of Proposition 2.1. Since nilpotency is preserved by forma-
tion of subsemigroups, it is enough to show that the multiplicative
semigroup of the ring Rn of all n by n triangular matrices with equal
diagonal entries is (n — l)-nilpotent. If XeRn we can write X =
xl + T(X) where I is the identity matrix and where T(X) is obtained
from X by replacing the entries x in the diagonal of X by zeros.
Recalling that a product of n upper triangular n x n matrices is 0,
a product of m matrices X{ = xj + T(Xi) in Rn can be written

Our conventions concerning the summation are, that for a fixed Z, we
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form all possible sums of products of I matrices T(Xik) multiplied by
elements of R. For I — 0 the corresponding term in the sum is
xλx2 xml. In particular

gn^(Xί9 X2, , Xn) = Σ ί.-i(«i, 05t,..., T(Xh),

By Lemma 2.2 and the commutativity of B the sum on the right
side of the preceding equality is symmetric in X1 and X21 which shows
that Rn is (n — l)-nilpotent.

The fact that groups of triangular matrices over a field, with
equal nonzero entries in the main diagonal are nilpotent (see [8],
Exercise II, p 298) is a consequence of Proposition 2.1, together with
Corollary 1 of [14].

Recall that a semigroup S is regular if for every a e S there
exists xe S such that axa — a. A semilattice of groups is a semigroup
which is a union of groups and has commuting idempotents. The
structure of semilattices of groups modulo groups and group homomor-
phisms is described in [2] (Theorem 4.11, p. 128). Concerning unde-
fined notions in the proof of the next proposition we adopt the termi-
nology of [2].

PROPOSITION 2.3. For a semigroup S the following are equivalent
(1) S is regular and c-nilpotent;
(2) S is a semilattice of c-nilpotent groups.

Proof. (1) => (2). Assume S is regular and c-nilpotent. Then each
principal factor of S is regular, 0-simple or simple ([2], Lemma 2.39) and
c-nilpotent, since nilpotency is preserved by homomorphic image. By
Theorem 2.54 of [2], each principal factor of S is completely 0-simple
or S contains a copy of the bicyclic monoid B presented by:

(B) < α, b; ab = 1 > .

But a monoid admitting the presentation (B) and c-nilpotent satisfies

gβ(6α,&,l, . . . , l ) = gβ(6,6α,l, . . . , 1 ) .

By induction on c and using ab = 1 we can write this equality in the
form

r = δ2 C + 1α .

It follows a2Cb2C = a2Cb2C+1a or ba — 1. Thus the only nilpotent monoid
admitting the presentation (B) is the infinite cyclic group. This rules
out the possibility S containing a copy of the bicyclic monoid. On
the other hand, a completely 0-simple semigroup which is c-nilpotent
is a group with zero. To see this, assume that the Rees matrix
semigroup D — M°(G; I, Λ, P) is c-nilpotent. If the sandwich matrix
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P has nonzero entries pλj and pμi, then replacing in Lc, x by (α; ΐ, λ),
2/ by (δ;i, μ) (α, b e G), and ^, z2, , 2C_! by elements of D such that
both members of Lc are not zero, we obtain i = j and X = μ. The
matrix P having at least one nonzero entry in each row and column,
it follows that I and Λ both have cardinality 1, i.e., D is a group
with zero. From Theorem 4.6 of [2] we deduce that S is a semilattice
of groups.

(2) =» (1). A semilattice of groups is an inductive system
{Ga, Φaβ, Ω) of groups Ga and group homomorphisms φaβ: Gβ -• Gα

indexed by elements of the semilattice Ω. If x e Ga, V e G ,̂ ̂  e Ga.,

Qc(%, y,zly •--, zc_γ) = qc[φϊa(χ), φrβ{y), 9>rαife), , Vra^fa-d]

where 7 = α/9̂ i ac_19 Thus, if the law Lc holds for any group
Ga, αefl, it holds for S. Consequently S is c-nilpotent.

REMARKS. (1) The fact that all the groups occurring in a semi-
lattice of groups S are c-nilpotent (for a fixed c) is essential to ensure
the nilpotency of S. For example, if S is a chain of groups Gi indexed
by the integers ordered by 1 > 2 > ••• > ί > i + 1 > ••• with trivial
connecting homomorphisms and with each Gi of class strictly i, then
S is not nilpotent.

(2) From the proof of Proposition 2.3, we can deduce that in a
nilpotent semigroup a given ^-class is either a nilpotent group or
contains no idempotents.

3* Residual fϊniteness* A semigroup S is residually finite if for
every pair a, b e S, a Φ b there is a homomorphism φ:S—* <p(S), with φ(S)
finite such that φ(a) Φ <p(b). Free nilpotent semigroups are embed-
dable in free nilpotent groups. Thus they are residually finite since
the latter are. By a result of Malcev, finitely generated semigroups
of matrices over a field of characteristic 0 are residually finite [10].
It follows that the finitely generated semigroups in Proposition 2.1
are residually finite, provided R is a field of characteristic 0. If R
is an arbitrary ring we do not know if the result is still true. With
the regularity condition we have the following consequence of Proposi-
tion 2.3.

COROLLARY 3.1. If a semigroup S is finitely generated, nilpotent,
and regular then S is residually finite.

Proof. By Proposition 2.3, S is a semilattice of nilpotent groups.
Let Ge be a maximal subgroup of S with identity e. The mapping
θe: S-+G°e defined by θe(x) = xe if xe e Ge and θe(x) = 0 if xe $ Ge is a
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homomorphism of S onto G°e (or Ge if Ge is the minimal ideal of S).
Consequently, Ge is finitely generated. Let aeGe,beGf be two
distinct elements of S. If / Φ e, assume for example f Se (f^e
means ef = fe = f). The homomorphism θe maps S onto G°e and
θe(a) = α, #e(6) = 0. If ψ denotes the cannonical homomorphism from
G°e to {0,1} we have ψθe(ά) = 1 and ψβe(b) = 0. In case / = β, 0e(α) =
α and θe(b) = δ. Since (?e is finitely generated and nilpotent there is
a homomorphism φ of Ge into a finite group such that φ(a) Φ <p(b).
Extending ψ to G°e in a natural way, we see that ψθe maps S onto a
finite group and separates a and 6.

Note that the structural semilattice of S is finite, but we have
not used this property in the proof. Indeed, we have the following
weakened form of Corollary 3.1: If S is nilpotent regular and has all
its maximal subgroups finitely generated, then S is residually finite.

4* Remarks on 2-nilρotent semigroups* A semigroup is called
semisimple if each of its principal factor is simple or 0-simple. The
next proposition allows us to replace regularity in Proposition 3.1 by
semisimplicity in the case of 2-nilpotent semigroups.

PROPOSITION 4.1. If S is a 0-simple 2-nilpotent semigroup, then S
is a group with zero.

Proof. We shall show that S contains an idempotent. Then a
similar argument as in the proof of Proposition 3.1, excluding the
possibility of S containing the bicyclic monoid and also the possibility of
S being properly completely 0-simple, will give us the desired conclu-
sion. Let x,yeS,x,yΦθ. Since S is 0-simple there exists u,veS
such that x = uyv ([2], Lemma 2.28). Let us show that for every
z,teS there are elements a, βeS such that z = uatβv. There are
elements r, r', s, s' e S such that z = rxs and y = r'zs'. It follows
z — ruyvs = rur'zs'vs = {rurf)zz{sfvs)z. But in a 2-nilpotent semigroup
(abf = δα3δ2 = aΨa. Thus

z = urfr*(ur'Yz(srv)2szsfv = uatβv

for some a, β e S. Appling the property to u and v themselves, we
can write u = uaxvβγv and v — ua2uβ2v. The first equality implies

u — } β 1 λ β 1

— vua1βγa1uvaιuβ%

toβxv .

(Pairs to which we have applied L2 have been underlined.) Replacing
u in v = ua2uβ2v by the expression v v just obtained, we get v =
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vv'v for some v' e S, establishing the existence of an idempotent vvf

in S.

COROLLARY 4.2. Semisimple 2-nilpotent semigroups are semi-
lattices of 2-nilpotent groups and finitely generated semisimple 2-
nilpotent semigroups are residually finite.

Further attempts to remove the regularity condition from the state-
ment of Corollary 3.1 encounter a major difficulty which lies essentially
in the manipulation of nonregular ^^-classes. To prove residual finite-
ness in the commutative case, a pleasant feature is that all the Green's
relations coincide, which makes it possible to treat simultaneously
regular and irregular ^-classes [7]. In spite of the fact that a
regular ί=?/-class of a nilpotent semigroup is a group, coincidences of
the Green's relations are only accidental. In particular £%f Φ Jί? as
shown in Example 4.5.

In order to simplify the computations in Example 4.5 we indicate
canonical forms of words in the free 2-nilpotent semigroup with two
generators x, y (Proposition 4.4). By the relative length of a word w
in the letters x, y, , we mean the number of occurrences of distinct
letters x9 y, , in w, disregarding successive occurrences of the same
letter. For example x5yzx2yxQy has relative length 6.

LEMMA 4.3. In the free 2-nilpotent semigroup with 2 generators,
any word can be written as a word of relative length at most 5.

Proof. It is sufficient to show that the relative length of w =
xymxnypxqy where m, n, p, q Ξ> 1 can be reduced. This is done by induc-
tion on the total degree dx(w) of w in the letter xy using the 2-
nilpotent law. Note that the induction process shows that any word
starting with x can be reduced to a word of relative length at most
5 starting with x. If a word of length 5 starts with y and cannot
be transformed into a word starting with x, then it can be reduced
to length at most 4, as follows:

yaxβyrxδyε = yaxx^

REMARK. The property of the lemma does not hold for 2-nilpotent
semigroups with more than 2 generators. In 3 generators x, y, z
consider e.g. xyzx2y2z2 xnynzn.

PROPOSITION 4.4. In the free 2-nilpotent semigroup with 2 gener-
ators x, y, any word w has a unique expression of the form xayrxa> or
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xayβxyβ'xa' where [resp. a!] is the largest possible power of x with
which w starts [resp. ends] and [resp. βf] is the smallest possible power
of y in the first [resp. last] occurrences of y's in w.

Proof. Among all expressions of w as a word of relative length
5, let xaymxnypxq be an expression in which the power a of the first
x is maximal (a Ξ> 0). If n ^ 2, m ^ 1, p ^ 1,

w = xaymxnypxq = xaym~1(yx)xn-2(xy)yp~1xq

Thus w = ^α2/w~1w1 with wx of relative length at most 5. Pursuing
the process w can be written as xayβw0 with w0 of length at most 5,
starting with x and β minimal. By the minimality of β, wQ cannot
contain more than one occurrence of xyy thus w0 = xyβ'xa' and w =
xayβxyβ'xa\ From the obtained form for w, α' is also maximal and β'
minimal.

It is worth noting that Lemma 4.3 and Proposition 4.4 provide an
effective algorithm for solving the word problem in the free 2-nilpotent
semigroup with two generators.

EXAMPLE 4.5. Let S be the 2-nilpotent semigroup with zero,
presented by

< x, y; x = yxy, x2 = 0 > .

The presentation of S together with the 2-nilpotency law imply
xymx = 0 for every m ;> 0. By Proposition 4.5, elements of S have
the canonical forms yp, ymx, xyn (p > 0, m, n ^ 0). The reader may
check that all the Green's relations, except ^ coincide with the
equality. All the ^^classes are singleton except one of them / =
{x, ymx, xyn

9 m, n > 0}. Thus & Φ ̂  To show that S is residually
finite, there is no difficulty in separating elements lying in distinct
^^classes with the use of Rees congruences. To separate distinct
elements in J", it is enough to add a relation of the form y = yk to
the presentation of S.
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