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A PROBABILISTIC METHOD FOR THE RATE OF CON-
VERGENCE TO THE DIRICHLET PROBLEM

DAVID F FRASER

The expectation EP(Φ) approximates the solution u(z) =
EW(Φ) of the Dirichlet problem for a plane domain D with
boundary conditions φ on the boundary γ of D9 where W is
Wiener measure, P is the measure generated by a random walk
which approximates Brownian motion beginning at z, and Φ is
the functional on paths which equals the value of ψ at the point
where the path first meets γ. This paper develops a specific rate
of convergence. If γ is C2, and Pn is generated by random walks
beginning at z, with independent increments in the coordinate
directions at intervals 1/n, with mean zero, variance 1/Vn,
and absolute third moment bounded by M, then | Epn(Φ) —
EW{Φ)\ ^ (CMV/piz.r^n-^Klogn)9/8, where V is the total
variation of φ on γ> p(zf γ) is the distance from z to γ9 and
C is a constant depending only on γ.

Assume D is a Jordan region. If zt = xt + iyt is Brownian
motion in R2 beginning at zoy (cf. e.g., [5, p. 262]), and τ —
inf {t: zt e 7} is the first time z hits the boundary 7 of D, then Φ is

the functional given by Φ(z.) = φ(zτ). Let Ew(Φ(z.)) - U(2.)dTF be

the expectation of Φ with respect to Wiener measure W on C([0, 00),

0). (See [8, pp. 218-19] for a definition of Brownian motion on the

interval [0, 1] and the corresponding Wiener measure.)
Let g{, gl, g\, g\, , g\, g\, be a sequence of indendent random

variables with mean zero, variance 1, and absolute third moment
bounded uniformly by M < 00, and let

Let ξ(t) be the continuous random broken line which has vertices
(tk, ζk) and is linear between vertices. Let Pn be the measure on
C([0, oo), φ) generated by this line, i.e., Pn(S) = P(ξ(t) e S).

Now by the Central Limit Theorem Pn{ξa{t) ^ λ) -* W(zf ^ λ),
a — 1, 2, where ξa(t), za

t are the real and imaginary parts of ξ(t), zt

respectively, (cf. e.g., [1, pp. 186-7]). More exactly one has the
Barry-Esseen Theorem [3, p. 521]: For nt an integer

(1.1) sup, I P(ξa(t) ^ λ) - N(X/Vtj\ ^ ?hί/Vnt
4

where N(x) is the normal distribution. A useful generalization of the
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Central Limit Theorem is that convergence also takes place for the
expectation of any functional on C[0, 1) which is continuous with
respect to uniform convergence on [0, 1] and satisfies mild growth con-
ditions, e.g. Φ(x) = \ x(t)2dt, supo^i xt, etc. Rates of convergence

Jo

have been calculated for some specific one-dimensional functionals Φ,
(e.g., [10], [11]). For an arbitrary functional Φ satisfying a uniform
Holder condition one can get rates of convergence using Levy distance
in C[0, t] ([9], see also §2 of this paper). Explicit rates of convergence
are of interest for various practical problems and computer applications.

Although Φ(z) = φ(zτ) is not continuous with respect to uniform
convergence, it is continuous a.s. with respect to Wiener measure, so
convergence takes place. In this paper we obtain a rate of convergence.

THEOREM. There exists a universal constant C* = C*(y) such that

(1.2) I Epn(Φ) - EW(Φ) I ̂ C * F ^ ) j M V 1 / 1 6 ( l o g n)m

iΦo, 7)
where V(φ) is the total variation of φ on 7, M is the bound on absolute
third moments defined above, zQ is the initial point of the paths z.,
and p(z0, 7) = infs | zQ — y(s) \ is the distance from z0 to 7.

2 Levy distance* We define measures Pi1, Wt on C([0, ί], 0) by

P (fif) = P^nr'S), Wt(S) = W(π-ιS) ,

where π: C([0, 00), β) _• C([0, t], 0) is the projection π(f) = / | [ M ] . The
Levy distance L between the measures P* and Wt is given by

(2.1) L(P?, Wt) = max (elf ε2) ,

where

ε, = inf {e: P?(S) ^ Wt(S^) + ε for all closed sets S} ,

ε2 = inf {e:Wt(S) ^ PfiS''*) + e for all closed sets S} ,

and

SM = {y: ix G S 3 sup | y(s) - x(s) \ < ε}

is an ε-neighborhood of S with respect to the sup-norm on [0, t].
The following proposition is a direct generalization of a result

of Prokhorov ([9]) to two dimensions as is its proof.

PROPOSITION 1. There exists an absolute constant C such that

(2.2) L{P?, Wd ^ CMli4n-ll8(logn)15f8 .
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COROLLARY.

If t = k/n, k an integer, then L(Pt

n, Wt) S CVΊk~m{\og &)15/d for
some constant C.

3* Boundedness of harmonic density* Fix a point 70 on 7, and
a direction along 7, parametrize 7 by arclength in the chosen direction
from 70 L^t I denote the length of 7, and take the argument s of
7 = 7(s) modulo I.

Since 7 is C2, there exists R > 0 such that any circle of radius
R will meet 7 in at most two points. It follows that for any two
points 7(α) and y(a + δ) on 7 where 0 < <5 < J? that 7([α, α + <5]) will
lie in the intersection of the closed disks bounded by the two
circles of radius R through y(a) and y(a + δ). The case we have to
eliminate is where 7 is tangent to one of the circles at y(a) and i(a +
δ), but does not cross the circle, i.e., there are neighborhoods in 7 of
7(α) and y(a + δ) which do not meet the closed disk bounded by the
circle except at y(a) or y(a + δ). But in this case we observe that
a small rotation of the circle about one of the points τ(α) or y(a + δ)
will result in three points of intersection, contradicting our assumption
about 7. Furthermore, it follows from the Jordan curve theorem that
the center of one of the two circles will be in D, the other center
will be outside Ό.

We are now ready to prove the following result.

PROPOSITION 2.

W(zv e 7([α, a + δ])) £ Bd/p(zOy 7)

where B is an absolute constant depending only on 7.

Proof. We may assume δ < R and also δ sufficiently small that

2(R - (R> - S74)1'2) < p(zQ, 7)/2 ,

since by addition if the proposition holds for small d, it holds for δ
in general.

Let C be the circle of radius R through j(a) and j(a + δ), with
center not in D. Then

P*fa e 7([α, a + 8])) ^ PZQ(zτ{C) e δ*)

where τ(C) = inf {t: zt e C}, and δ* = D Π C. Now invert the plane
with respect to the circle C, sending zQ into I(zQ). Now I(zt) is Brownian
motion with a time change. (P. Levy [7, p. 254], see also [5, pp.
279-80] for another proof of this.) However, where I{zt) first hits C
is independent of any time change; "Les proprietes intrinseques de
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la courbe C sont invariantes par nne representation conforme."
Now

so PZQ(zτ(C) e «•) = P.0((I(*)W> 6 «*) where r'(C) - inf {*: (!(*)). e C}.
But the harmonic density on a circle is given by the Poisson

kernel (cf. e.g., [4, p. 361 if.]); it is bounded,

where | δ * | is the length of δ*. Now

Λ - ^(I(«b), C) = ΛVGΦo, C) + R)

so

, C) - (p(z0, C)
, 0)

where J is the diameter of D.
Now look at p(z0, C):

ρ(Zo, C) ^ p(z0, 7) - 2(R - (R2

where s = \y(a + 3) — y(a)\ ^ S. But 3 was sufficiently small that

2(R - (i22 - δ2/4)^2) < p(z0, 7)/2 ,

and since s ^ 5,

2(JB - (R2 - s2/4)1/2) ^ 2(12 - (R2 - δ2/4)1/2) .

Hence

/Φo, C) > ^ , 7)/2, also IS* I ̂  - | s ^ ^ δ

and it follows that

W(zτ e 7([α, α + 3])) £ A- ^3^{AjR + l)/p(z0, 7) - M/^fe, 7) .
ΔΊZ Δ

4* Some inequalities* We shall need the following.

LEMMA.

W(τ > t) ^ A e X p ( - ττ2ί/8zl2)
(4.1) ^

P w (r > ί) ^ A exp ( - π2ί/8J2) + AM{nt)~ιl\\og ntf12,
7Γ
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where A is the diameter of D and A is an absolute constant.

Proof.

W(τ > t) ^ P r (maxo<;s<;f \z9 - zo\ < A)

^ Pr (maxos.£i I Re (zs - zo)\ < A/VT) = T(A/VT)
A

rg —exp (— π2t/8A2) ,
π

where Γ(λ) = Pr (maxo^sgl \x9\ < λ). The last inequality comes from
the fact that the infinite series expansion for T(λ) [11] is alternating,
with decreasing terms.

Pn(τ > t) ^ P r max (| ζk — zQ \ < A)

^ Pr (max | Re (ζfc - zo)/VT\ < AjVT) .

Now the theorem of Rosencrantz [10] applies [11] and we have

Pr (max | Re (ζt - ZO)/Λ/T\ < A jVT)

^ A-M(logntyl2(ntym + T{AjVT)

where A is an absolute constant. But we saw above that

T{AjVT) ^ —exp (- πH/8A2) ,

7t

SO

Pn{τ > t) ̂  — exp (- π2t/8A2) + AM{nt)~m{\og ntψ2.

Now we need more notation. Let Kλ — 7([0, λ]), let (zτ e Kχ)9>τ c
C([0,oo)9C) be defined by y e (zτ e Kλ)

2>τ iff 3z such that zτeKλ

and (for τ = τ(z)) supo^s^r[2/8 — zs\ < e. Let δ = l/ε, and let JSΓ/ =
7([0, λ + δ]) U 7(ί - δ, I]), where i is the length of 7.

PROPOSITION 3.

w((zT e κλy>τ n fe $ ϋr/)) ^ Gτ/T

where G is a constant depending only on 7.

Proof. Let r(3e) = inf {ί: ρ(zt, Kx) <ε} where ρ(zt, Kλ) is the dis-
tance from zt to iΓ .̂ Then
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^ W(τ(de) <τ,zΛ Kδ

λ) + W(τ(dε) > τ, zΛ Kδ

λ, τ(de) < τ(sε))

= Ew{χτm<τPZτφε){zΛKl)

+ χ[r(θ.»r,.r«i]P.Γ(τ(36) < τ{sε)))

by the strong Markov property [1, p. 268], where τ(se) — inf{£: p(zt,
D) > s}. We estimate PZτφε)(zτ $ Kδ

λ):
Let 7(α) be a point in iQ of distance ε from 2Γ(9ε), let T be the

tangent to 7 at τ(α). Let S* (i — 1, 2) be lines perpendicular to T
through the points 7(α — δ) and y(a + <5). The distance d{ from zΓ(9ε)

to each of the lines Si will be less than δ + ε (less than <5 unless
7(α) is an endpoint of if̂ ; let d = min (dl9 d2). Let T' be parallel to
T, at a distance ε s u p | 7 " | on the opposite side of T from £Γ(9e). I
now claim 7([α - 5,α + S]) ί lT ' = 0 if 25 < l/sup |7" | Choose
coordinates such that y(a) = 0, Y(a) > 0. Then by Taylor's Theorem,
for each h there exists Θ such that

Im7(α + hδ) = Im7(α) + ImY(α).M + Im7"(α + θkδ) hΦf2

Hence for | Λ | ̂  1, | Im 7(α + Λ8) | ̂  sup| δ" | <52/2 < ε. sup 17" | and 7([α - δ,
α + δ]) does not meet T'.

Let τ> be the first time (after τ(dε)) that 2t hits the line T'f τs

the first time (after τ(dε)) that zt hits S2 U S2, and c = p(zτ(dε), T) ^
ε (sup 17" I + 1). Note that ττ, and τs are independent, since the
components of Brownian motion in the direction of St and T are
independent. We can write

PZτ{δε)(zΓ φ Kl) < P.T(iβ)(τT' > τs) + O(δ)

= [~Pzπ*ε)(
τs < t)dtPZτΘε)(ττ, £t)+ O(δ) .

Jo

Now

P, r ( θ t )(rΓ, ^ t) = P(sup α;8 ^ c) - P(sup ^ s ̂  c/VT)

/VΓ

(cf e.g , [1, p. 287] and [8, p. 227]).
Hence

P (T , "> z ) —

S ("P(8up |aj.| > d)(clV~2π)t-sne-°2tudt
Jo ossst

S 2pP(sup xs
Jo O^s^l
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which by a straightforward computation, is bounded by 2(d2/c2 + l)-1/2.
But I claim d ~ δ: choose coordinate such that 7(α) = 0, Y(a) —

1. Using Taylor's Theorem we get δ ̂  d ^ 8 - (sup |τ"|/2)δ2 - ε,
so d ~ δ. And d= VT, c ^ ε(sup \y"\ + 1), so

2(d2/c2 + I)"1 '2 ^ G.ε/δ = G,VT

for some constant Gv
Now the same argument can be applied to estimate PZτ(de) <

τ(sε)) (i.e., the probability that a Brownian path will move a distance
d ~ d = VT in the direction tangent to the curve before it moves
a distance c = O(ε) in the direction normal to the curve).
Hence PZτ(τ(de) < τ(sε)) ̂  G2l/ ε for some constant G2 and our pro-
position follows.

5* Proof of the theorem. We are now ready to prove our
theorem.

\Epn{Φ) - EW(Φ)\

(5.1) - I Epn(Φχτύt) - Ew(Φχ^t) + Epn{Φχτ>t) - Ew{Φχτ>t) \

^ Epn(Φχ^t) - Ew(Φχτ^t) + sup r \Φ\(Pn(τ > t) + W(τ > t)) .

Looking at the first term,

ί V ( 7 ( λ ) ) ( P κ ( z r 6 j ( d \ ) , τ £ t ) - W{zτ e -γ(d\), τ ^ t))
JO

[τ > t) + W(τ > t)) + Γ1 ί^fe e ^ T ^ t)
Jo

We estimate the integrand:
The event (zT e Kx, τ ^ t) is determined by the behavior of the

path up to time t, so

P fo eKhτ£t)- W(zΓ eK1,τ£t) = Pΐ{zτ e Kx, τ ^ t)

We can use the corollary of Proposition 1 to get

PT{zτ eKx,τ£t)£ Wt((zT eK^τ^ ί)Slt) + e
g Wt(zT eKx,τ^t)+ Wt{{zτ eKx,τ^ t)^

- (zteK!,τ£t)) + Wt(zTeK! -Kltτ£t)+e,

where ε = ε(n, t) = CM 1/4ίr1/8ίs/8(log »ί)15/8

Now y 6 (zτ e ίΓA, r ^ ί)ε>ί means 32 such that τ <^ t, zT e Kx,
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sup0 S s S ί I y, — za I < s. As this condition does not depend on ye for s > t,

Wt((zτ eKx,τ^ tγ * - (zt e Ks

x, τ ^ t))

£ W{{zτ eKx,τ^ ty τ - (zΓ e Ks

x, τ ^ t))

^ W{(zτ e KX)Y * - (zt e K})) + W(τ > t) .

Applying Propositions 2 and 3, we then have

P"(zT eKhτ£t)- W(zT eKx,τ^ t)

^{G + 2B/p(z0, 7 ) ) v T + W(τ > t) .

We apply the above argument to the complement 7 — Kλ of Kx in 7.

P\zTe 7 - Khτ£t)~ W(zTey -Kλ,τ< t)
<(G + 2B/p(z0> i))VT + W(τ > ί) .

It follows that

I Pn{zτ e Kx, τ £ t) - W(zT e Kh z ^ ί) | g (G + 2B/p(z0, 7)) VT

+ W(τ >t) + Pn(τ > t) .

We can now estimate the integral

(5.3) Γ | P \ z τ e K x , τ ^ t ) - W(zΓeKx,τ^t)\-\dφ(X)|
Jo

^ ((G + 2B/p(z!>, 7))l/T + W(τ > t) + P"(τ > t))V{ψ)

where V{φ) is the total variation of φ on 7.
Combining the results of (5.1), (5.2), and (5.3), (we have)

\Epn(Φ) - EW{Φ)\ ^ 0(7(O))(P (r>ί) + W(τ > t)

+ V(φ)(G + 2B/p(zΰ, 7))VT + W(τ > t) + P (r > ί))

+ sup, |# |(P (τ > t) + TF(r > t))

^F(ίi)(G + 2/S/^o, 7))VT + (V(φ) + 2supr |jJ|)-(P"(r > ί)

+ W(τ > t)) .

This estimate is minimized by choosing t so as to balance the
factors VT and (P"(τ > ί) + TF(r > t)). So setting

ί = minIs: s ^ —(///π)2log», s w. an integerl ,

we get

P"(τ >t)+ W(τ > t)
O /I \l/8

^ i w -i/i + ^ . Mn^'H L{Δ\πf log w) (log nt)ιlz

π \2 I
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and

= V VM 1/V-1/16ί3/lβ(log nt)mi

^ VC Mllsn~llίfsA2(log nyls

where A1} Az are absolute constants. Hence

\Epn(Φ) - EW{Φ)\ g V(φ)M GΔ + 2 J V C "
ίΦo, 7)

+ (V(φ) + 2supr

infr \Φ\)M(GA + 2BV~C A, w

But integration is linear, so we may assume φ(p) = 0 for some p in
7, as we are taking the difference of expectations.

Letting C* = Z{(GA + 2B)V~CΆ2 + ΔA,) we have

\EFn(Φ) - Ewψ)\ ^
Pi**, 7)

COROLLARY. If 0 is any subset of 7 consisting of a finite number
k of intervals, then

I P«(zτ e 0) - WH(zτ 6 0) I ^
o, 7)
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