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J. E. VAUGHAN

The purpose of this paper is to introduce a new class of
spaces, called linearly stratifiable spaces, which contains the
class of stratifiable spaces and is contained in the class of
hereditarily paracompact spaces. The notion of linearly
stratifiable spaces is related to several of the concepts most
recently studied by the late Professor Hisahiro Tamano, and
also to questions raised by A. H. Stone and E. A. Michael
concerning the normality and paracompactness of certain
product spaces.

The class of linearly stratifiable spaces is composed of special
subclasses called α-stratifiable spaces (where a is an infinite cardinal
number) of which the class of stratifiable spaces is the subclass cor-
responding to the first infinite cardinal. Many results which hold for
stratifiable spaces can be extended to linearly stratifiable spaces (see
§ 4) because the importance of the "countability" inherent in stratifiable
spaces is often due only to the well-ordering of the natural numbers
and not to their cardinality. One notable exception is that while, as
is known, the subclass of stratifiable spaces is preserved by countable
products, the other subclasses are preserved only by finite products.
In addition, the subclass of α-stratifiable spaces is preserved by box
products provided there are fewer than a factors in the product. An
analogous extension of the concept of a Nagata space is given in §6,
and some examples are given in §7.

Stratifiable spaces (originally called Λf3-spaces) and Nagata spaces
were introduced in 1961 by J. G. Ceder [6] along with several other
generalizations of metrizability. In 1966 C. J. R. Borges used an
equivalent definition of Ms-space to show that Ceder's ikf3-spaces had
many important features, and, thinking they deserved a better name,
he called them stratifiable spaces. Since then many authors have
considered this class of spaces, and recently, A. ArhangeFskii [1, pp.
139-142] and Borges [4], [5] have given surveys of results on strat-
ifiable spaces. A further generalization of metrizable spaces, called
perfectly paracompact spaces, was announced in two abstracts [14],
[15] in 1968 by H. Tamano, and he stated two interesting product
theorems for this class of spaces. His definition, however, allows
non-paracompact spaces to be perfectly paracompact (see Example 3.1),
which was not his intention. (In light of this fact and current termi-
nology, it seems better to reserve the term "perfectly paracompact"
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for the class of paracompact spaces in which every closed set is a
countable intersection of open sets. Nevertheless, in this paper we
shall use the term "perfectly paracompact" in the sense in which it
was used by Professor Tamano.) It seems reasonable (see §3) to
suppose that Tamano was interested in a concept similar to linearly
stratifiable spaces. If we substitute the words "linearly stratifiable"
for "perfectly paracompact" in the product theorems given in Tamano's
abstracts, we get the statements below, which seem to be plausible
conjectures. In fact, the author had considered the first conjecture
before becoming aware of Tamano's abstracts. The definition of the
box topology can be found in [11, p. 107].

Conjecture 1. The product of two linearly stratifiable spaces is
paracompact.

Conjecture 2. Any product of linearly stratifiable spaces with
the box topology is paracompact.

One reason that Tamano was interested in Conjecture 2 is that
it would (if true) provide an affirmative answer to A. H. Stone's
question [12, p. 54]: Is a product of real lines with the box topology
normal? In this direction, M. E. Rudin [23] has recently proved that,
under the assumption of the continuum hypothesis, the box product
of countably many locally compact, σ-compact, metric spaces is
paracompact.

In this paper, we shall show that Conjecture 1 and a form of
Conjecture 2 are true for α-stratifiable spaces. These results are given
in §5, and the definitions of these spaces are given in §2. Most of
these results were announced in [18], [19], and [20]. The fact that
Conjecture 1 holds for the subclass of stratifiable spaces follows from
results of Ceder [3, Thm. 2.2, Thm. 2.4].

2. Definitions and characterizations*

DEFINITION 2.1. An ordinal number a is called an initial ordinal
provided for every ordinal β < α, there exists an injection from β to
a, but there does not exist an injection from a to β. We assume
that cardinal numbers and initial ordinal numbers are the same. Let
ω stand for the first infinite ordinal.

DEFINITION 2.2. Let (X, J7~) be a TY-topological space and let a
be an initial ordinal, a ^ ω. The space (X, ^) is said to be strat-
ifiable over a or linearly stratifiable provided there exists a map
S: a x ^ —> ^~ (called an a-stratificatiori) which satisfies the follow-
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ing (where we denote S(β, U) by ί^).
: UβczU for all β < a and all Ue ^ .
: U {Ufi: β < a) = U for all Ue^.
i If Z7c W, then Uβ c Tf̂  for all β < a.

LSIV : If 7 < β < a, then £7r c ίT, for all Ue ^r.

DEFINITION 2.3. A TV-space X is called a-stratifiable provided a
is the smallest initial ordinal for which X is stratifiable over a. A
space which is stratifiable over ω is called stratifiable, and the map
S is called a stratification.

REMARK 2.4. In the case of a stratifiable space, our definition
above agrees with that of Borges [3, p. 1] because (as he noted) if
S is a stratification which satisfies LSl9 LSZI, and LSni, then there
is a stratification which satisfies all four conditions LSZ—LSIV. Ex-
ample 7.5 shows this is not true in general for a > ω.

DEFINITION 2.5. A collection P of pairs P = (Pl9 P2) of subsets
of a topological space (X, ^~) is said to be a linearly cushioned col-
lection of pairs with respect to a linear order ^ provided ^ is a linear
order on P such that (U {P^ P - (P^ P2) e P'})~c U {P2: P - (Px, P2) € P'}
for every subset P ' of P which is majorized (i.e., has an upper bound)
with respect to ^ .

DEFINITION 2.6. (Ceder) A collection P of pairs is called a pair-
base for (X, ^~) provided (1) for each P = (Pu P2) e P, Pt is open and
(2) for every x in X and every open set W containing x, there exists
P = (Pu P2) 6 P such that x e P1 c P2 c W.

THEOREM 2.7. / / (X, J7~) is a Trtopological space and a an
infinite initial ordinal, then the following are equivalent.

( i ) (X, j^Γ) is stratifiable over a.

(ii) (X, %^r) has a linearly cushioned pair-base P and a is cofinal
with P.

(iii) There exists a family {gβ: β < a} of functions with domain
X and range J7~ such that the following hold.

(a) x 6 gβ(x) for all β < a.
(b) For every FaX, if y e [ (J {ffβ(x) % e F}]~ for all β < a, then

yeF.
(c) If β < y < a, then gβ(x) i)gr(x) for all x.

Proof, (i)—>(ii). Let S: a x ^~'—>^~ be an α-stratification for
(X, ^~). Give ^~ any well-order and define
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P = {P{βtU) = (Uβ, U): (β, U)eax le

where a x l ex J7~ denotes the product set a x J7~ with the lexicographic
order. It is easy to verify that P is a linearly cushioned pair-base
for X.

(ii) —>(iii). Let P be a linearly cushioned pair-base for X and
{Pβ\ β < a] a subset of P such that for every PeP there exists β< a
such that P < Pβ. For each a; in I and each β < a define

0,(α) - X - [U {Pii x ί P2 and P - (Px, P2) ^ P,}]- .

Clearly (a) and (c) hold. To see that (b) holds note if y g F then
there exists P G P such that yeP1dP2d X — F. Let β < α be such
that P = (Pi, P2) ^ P^; then Pi is a neighborhood of 7/ which misses
gβ(x) for all a e F. Thus # g [ U {^(»): x € F}]".

(iii)—>(i). For each β < a and each open set Z7 define an open
set

Uβ = X- [U{gβ(x):xeX- U}]~ .

The correspondence S(β, U) = Uβ is easily seen to satisfy LS2—LSIIIf

and LSIV follows from (c). This completes the proof.
For the stratifiable case, Ceder is credited with showing (i) •-• (ii)

in [3, p. 2, footnote 1], and (i) •-» (Hi) is due to Heath [10].

REMARK 2.8. A dual characterization for linearly stratifiable
spaces can be given by stating Definition 2.2 in terms of closed sets
rather than open sets.

The next characterization justifies the terminology "linearly"
stratifiable.

PROPOSITION 2.9. Let (X, J7~) be a Trspace. X is linearly strat-
ifiable if and only if there exists a linearly ordered set A and a map
S: A x J7~"—• <57~ which satisfies LSΣ—LSIV.

Proof. Let a be the smallest ordinal which is cofinal with A;
then a is regular (i.e., there exists no strictly smaller ordinal which
is cofinal with a) and S', the restriction of S to any cofinal subset
of A, will satisfy LSZ—LSIV.

The proof of this proposition also shows that if X is an ^-strat-
ifiable space, then a is a regular initial ordinal number.

The next result, though not a characterization, is useful in ex-
amples.
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PROPOSITION 2.10. If (X, K3r) is stratifiable over a regular infinite
initial ordinal a, then every subset F of X whose cardinality is strictly
less than a is a closed discrete subspace.

Proof. Let P be a linearly cushioned pair-base for X such that
the regular initial ordinal a is coίinal with P. It suffices to show
that Fhas no accumulation points. If x0e X then for every xeF — {x0}
there exists Px e P such that x e {Px)ι and x0 g (Px)2. Then {Px: xeF}
must have an upper bound in P, because it is not cofinal. Hence

is a neighborhood of xQ which misses F — {xQ}.
From this proposition it is clear that a space stratifiable over a

regular initial ordinal can not possess any property which requires
any countable set to have an accumulation point unless the space is
stratifiable. For example, if such a space is a &-space or a separable
space it must be stratifiable. We also note that Proposition 2.10 holds
in particular for <2-stratifiable spaces.

We now recall some definitions.

DEFINITIONS. 2.11. The character of a point x in a space X is
the smallest cardinal number χ(x, X) such that x has a fundamental
system of neighborhoods of cardinality χ(x, X). The character of the
space X is the cardinal number χX = sup{χ(x, X): x e X}. The
pseudocharacter of x is the smallest cardinal number ψ(x, X) such that
x is the intersection of a collection of open sets which has cardinality
ψ(x, X). The pseudocharacter of X is the cardinal number ψX =

, X): xe X}.

COROLLARY 2.12. // X is a non-discrete, a-stratifiable space, then
£ a ^ χX.

3* Pair-base versus pair of bases* As was mentioned in the
introduction, H. Tamano has defined [14] a class of spaces which seems
to be closely related to linearly stratifiable spaces. His definition is
essentially as follows. Tamano called a space X perfectly paracompact
provided there exist two bases %S, Y for the topology of X, a map
φ: Y —> ^/ such that φ^Γ) is also a base, and a well-order on °F such
that for every bounded subcollection Y** aY* we have

(U{F: VeY*})-(z U

In short, the space has a "pair of bases", one of which is linearly
cushioned in the other. We shall show below that this concept is
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weaker than the concept of a linearly cushioned "pair-base" as defined
in §2 in that, for regular spaces, the latter notion implies paracom-
pactness (Theorem 4.11 C) while the former does not. From the
abstract [14] it is clear that Tamano was interested in a class of
paracompact spaces, and from [16] we know that he was aware of
the "pair-base" type of definition (he used it to define elastic spaces,
which are paracompact). It seems probable, therefore, that the type
of base Tamano wanted was a linearly cushioned pair-base. By Theorem
2.7 a jΓrspace having such a base is linearly stratifiable.

EXAMPLE 3.1. A perfectly paracompact space which is not normal.
The desired space is the well-known example of V. Niemytzki. Let
X = {(x, y): x and y are real numbers and y Ξ> 0}, X1 = {(x, y)eX:y = 0},
and X2 — X — Xlβ For each p = {pu p2) e X, let B(p, r) denote the
set of points of X which lie inside the circle with center p and radius
r > 0. Then {B(p, r): r > 0} is taken as a fundamental system of
neighborhoods of points p e X2. For p — (pl9 0) e Xl9 let U{p, r) =
B((pl9 r), r) U {p} and let {U{p, r): r > 0} be a fundamental system of
neighborhoods of points p e Xx. We now define a base "T for the
Niemytzki topology on X. Let ψ{ — {U(p, r): p e Xu r > 0} and 5^ =
{B(p, pjn): p = (pL, p2) e X2 and 1/n ^ p2) for n = 2, 3, . Clearly
3^ — U?=i ^ is a base for X. Next, we define a second base ^ for X.
Let ^ i - 5T U {X}, and ^ a J b + ι = {B(p, 2p2/(2k + 1)): p - (pu p2) e XJ
for k = 1, 2, . Set *%f = (J^o ^it+i Now let ^ Λ be any well-order
on 5 ;̂ for t̂  ̂  1, and define a well-order ^ on T* as follows. For
F, V e V, we say F ^ F ' iff (1) there exists a natural number n
such that F, F ' e 3*ς and V^nV, or (2) F e ^ς, 7 ' e %» and n<m.
We define a map φ:T* -*<%f by

X if F e 3T

Ϊ7ί(ί>i, 0), p2) if F = B[p, — ) and % is even

B(P, *2Δ if 7 = fifp, -2L) and n > 3 is odd .

It is clear that φ(T) is a base since ^(3^) = ^ . Finally, we shall
show that T is linearly cushioned in ^Λ Let ^ * be a bounded sub-
collection of 5^. We must show that

(U {F: VeT**})~~(z U {^(F): F e Γ * } .

If 3^* contains any member of % the inclusion is trivial. Thus we
assume that T* Π ^Γ = 0 . Since 3*"* is bounded, {̂ : T* Π 5^ ^ 0}
has a largest element JV. For each F e 3^*, we have that Fand ̂ (F)
are (essentially) the insides of circles with the same center and the
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circle for φ(V) has at least twice the radius of the circle for V. The
desired inclusion now follows from the fact that if V is in JΓ*, then
V does not reach below the line of height 1/(2N)9 and does not have
a radius of less than (1/N)2.

4* Additional results* We shall now give some important results
for linearly stratifiable spaces which easily extend from the analogous
results for stratifiable spaces.

THEOREM 4.1. Let X be stratifiable over a.
A. Every open set in X is a union of a collection ^ of closed

sets with the cardinality of ^ less than or equal to α.
B. Every subspace of X is stratifiable over a.
C. X is paracompact (hence hereditarily paracompact)*
D. Every closed continuous image of X is stratifiable over a.
E. X is completely monotonically normal (see [21] or [22]).
F. X has a network N = U {Nβ: β < a) such that each Nβ is a

discrete collection in X.

Proof. Clearly (A) and (B) follow from the definition. The proof
of (C) follows from Theorem 1 in [17]. Proofs of (D), (E), and (F)
can be given in a manner similar to the proofs of [3, Thm. 3.1, p. 5],
[22, Prop. A] and [9] respectively.

We conclude this section with two more interesting results.

THEOREM 4.2. A space is stratifiable over a iff it is dominated
by a collection of closed subsets, each of which is stratifiable over a
[3, Thm. 7.2, p. 13].

THEOREM 4.3. If X and Y are stratifiable over a and A is a
closed subset of X and f: A-+ Y a continuous function, then X\J f Y
(the adjunction space) is stratifiable over a [3, Thm. 6.2, p. 11].

5. Products* In [6, Theorem 4.5, p. 107] J. Geder proved that
a countable product of stratifiable spaces is a stratifiable space. In
this section, we shall prove that a finite product of spaces stratifiable
over the same a is again stratifiable over a. Example 7.4 shows that
if a > ω then a countable product of spaces stratifiable over a need
not be linearly stratifiable.

It follows from our product theorem (Theorem 5.2A) and Theorem
4.1C that Conjecture 1 is true in the special case that both spaces are
stratifiable over the same initial ordinal. We also prove (Theorem 5.2D)
that certain products (with the box topology [11, p. 107]) of spaces
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stratifiable over the same a is again stratifiable over a. This result
yields a special case in which Conjecture 2 is true.

LEMMA 5.1. Let a be an infinite initial ordinal number, and
let {Aλ\ XeA} be a family of linearly ordered sets such that a has
cardinality strictly greater than that of A, and a is cofinal with Aλ

for all XeA. If A is finite or if a is a regular ordinal, then A —
Π{Aλ: XeA} can be well-ordered so that for every majorized Ha A we
have Prλ(H) (i.e., the Xth projection) is majorized in Aλ for all XeA,
and a is cofinal in A. Further, if a is the smallest initial ordinal
cofinal with each Aλ, then a is the smallest initial ordinal cofinal
with A.

Proof. For convenience we assume that a is a subset of each
Aλ. Let A be ordered as its cardinal number a(A). Define Tμ,β =
{α = (aλ) eA:aμ^ β} for all β < a and μ < a(A). Let Rβ = Π {Tμ>β: μ <
a(Λ)} for all β < a, and let Dβ = Rβ - U {Rr' 7 < a and 7 < β} for
all β < a. Then {Dβ: β < a} is a partition of A because if a = (aλ) e A,
then for each aλ there exists βλ < a such that aλ ^ βλ. Now {βλ: X <
a{A)} has an upper bound in a because either a{A) is finite, or a is
regular and a{A) < a. Call the smallest upper bound βf, then a —
[aλ)eDβf. Let ^β be any well-order on Dβ and define a well-order
on A as follows. For x and y in A, we say x ^ y iff either

(1) there exists β < a such that x and 7/ are in Dβ and & 5^ y, or
(2) there exists β < Ύ < a such that xeDβ and yeDγ.
If i ϊ is a majorized subset of A, then there exists β < a such

that 6 = (bλ) and bλ = β for all λ e J , and 6 is an upper bound for H.
Hence β is an upper bound for Prλ(H) in Aλ for all X. The remain-
ing assertions follow easily from the definition of ^ .

THEOREM 5.2. Let a be an initial ordinal number a^ω. Let
Xi be stratifiable over a for each i < α>. Then the following hold:

A. Π{Xi\ i ^ n) is stratifiable over a for all n < ω.
B. If each Xi is a-stratifiable, then Π{Xi'. i ^ n} is astratifiable

for each n < co.
C. (Ceder) If each X{ is stratifiable, then Π{Xii i < a)} is strat-

ifiable.
D. If each Xλ is stratifiable over the regular initial ordinal a

for all XeA and a is strictly larger than the cardinality of A, then
Π{Xλ: XeA} with the box topology is stratifiable over a.

Proof. By Theorem 2.7, each X€ has a linearly cushioned pair-base
Pi such that a is cofinal with P*. For each n < ω and each Q =
(P1, , Pn) e U{Pi- i ^ n} define Π?=i Pi = {% = (s<): ̂  € P} for ΐ ^ w},
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and similarly define Π?=i PL Set BQl = JJU Pί, BQ2 = ΠίU PL and
Bn = {BQ = (BQ1, BQ2): Q e Π {P ' ^ ^ ^}) a n d o r d e r t h e i n d e x s e t o f #*
as in Lemma 5.1 so that a is cofinal with Bn. Clearly Bn is a pair-
base for Π {Xi' ί ^ }̂> a n ( i if w e consider ($*) e Π {-X» ί < &>}> then
β = U {J?Λ: n < ω) is a pair-base for Π{^M : i < ω}- We now show that
each Bn is a linearly cushioned collection of pairs in X — Π ί - ^ i ^ n)
Suppose H is a majorized subset of Π?=i P< a n d ^ ί U {J?ρ2 " Qe i ϊ} .
Let JVi = X* - (U {Pii P = (Pi, Pa) e Pr̂ JBΓ) and ^ g P2})~. Then Ni is
an open neighborhood of xt in X4 because Pr^H) is a majorized sub-
set of Pi. Finally, Π?=i ^ i s a neighborhood of a; in X which misses
U {BQ1: Q e H). Thus (U {BQl: Q e H})~ c U {BQ2: Q e H), and this com-
pletes the proof of (A). The proof of (B) follows from (A) and Pro-
position 4,1B. To see that (C) holds, assume that each linearly
cushioned pair-base P< of X4 has a countable cofinal subset (this is
equivalent to Pi being a ^-cushioned pair-base). The preceding argu-
ment shows that each Bn is linearly cushioned with a countable cofinal
subset, and is, therefore, a σ-cushioned collection. Thus B — U {Bn:
n < ώ) is a σ-cushioned pair-base for J\_{Xi. i < o)}. The proof of (D)
is similar to the proof of (B) by use of Lemma 5.1.

Example 7.2 shows that if Xx and X2 are stratifiable over different
aλ and a2 respectively, then Xx x X2 need not be linearly stratifiable.

In [13] E. Michael asked several questions concerning product
spaces. In particular, he asked whether or not there is a space X
such that Xn (the product of X with itself n times) is hereditarily
paracompact for all finite cardinals n, but Xω is not normal. We
raise a related question: If X is stratifiable over a > o), is Xω normal?
For such a space X, it would follow from Theorem 5.2A and Theorem
4.1C, that X% is hereditarily paracompact for all finite n. Thus a
negative answer to the preceding question would provide a negative
answer to Michael's question.

6* α-Nagata spaces* The concept of a Nagata space was intro-
duced by Ceder in [6, p. 109]. In this section we shall extend this
concept and give some basic results. One important difference between
Nagata spaces and the generalization presented here should be men-
tioned. Ceder proved that the Nagata spaces are exactly the first
countable stratifiable spaces [6, Theorem 3.1, p. 109]. The α-Nagata
spaces, however, form a smaller class of spaces than the <2-stratifiable
spaces of character a. The difference is that the α-Nagata spaces have,
for each point, a fundamental system of neighborhoods which is well-
ordered with respect to reverse inclusion (see iV777 below), while an a-
stratifiable space of character a need not have such neighborhood
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systems (see Example 7.3).

DEFINITION 6.1. A TΊ-space X is called a Nagata space over a
(where a is an initial ordinal and a ^ ω) provided for every xe X there
exist collections of neighborhoods of x, {Uβ(x): β<ά) and {Sβ(x): β < a},
such that

iVj : for each x e X, {Uβ(x): β < a) is a fundamental system of
neighborhoods of x,

Nn : for every x9yeX,Sβ(x)Π Sβ(y) Φ 0 implies x e Uβ(y)
NITI: if β < Ί < a then Sβ(x) z> Sr(x) for all x.
The set of ordered pairs

{({Uβ(x): β < a}, [Sβ(x): β < a}): xeX}

is called an a-Nagata structure for X provided for each x in X,
{Uβ(x): β < a} and {Sβ(x): β < a} are systems of neighborhoods of x
which satisfy NIf NIΣ, and NIΠ of 6.1.

DEFINITION 6.2. A Ti-space is called an a-Nagata space provided a
is the smallest initial ordinal for which Xhas an α-Nagata structure.
A space which is an ω-Nagata space is simply called a Nagata space,
and its ω-Nagata structure is called a Nagata structure. This last
definition agrees with the one given by Ceder [6, p. 109] because in
Ceder's definition we may assume without loss of generality that
Sn(x) 3 Sn+1(x) for all n < ω and x in X.

We now give some characterizations of Nagata spaces over a
which extend the analogous results due to Ceder [6, Theorem 3.1,
p. 109] and Heath [8, Theorem 5, p. 94].

THEOREM 6.3. Let (X, j?~) be a T^space, and let a be an infinite
initial ordinal number. The following are equivalent.

( i ) X is a Nagata space over a.
(ii) X is stratifiable over a and for each x in X there exists a

fundamental system of neighborhoods of x {Wβ(x): β < a) such that
β < 7 < a implies Wβ{x) ZD Wr(x).

(iii) There exists a family {gβ: β < a) of functions with domain
X and range j^Γ such that the following hold:

(a) {gβ{%Y- β < oί] is a fundamental system of open neighborhoods
of x for every x in X,

(b) for every neighborhood U of x there exists β < a such that
gβ(%) Π gβ(y) Φ 0 implies that yeU,

(c) ifβ<Ύ< a, then gβ(x) ID gr(%) for all x in X.

Proof. Let X have an α-Nagata structure



LINEARLY STRATIFIABLE SPACES 263

{({Uβ(x): β < a], {Sβ(x): β < a}): xeX),

and define gβ(x) to be the interior of Sβ(x) for all x in X and all
β < a. It is easy to check that (a), (b) and (c) of (iii) hold. This
proves (i) —> (iii). To see that (iii) —> (ii), we note that each a; in I
clearly has the desired fundamental system of neighborhoods. We
need only show that X is stratifiable over a, and to do this we will
show that Theorem 2.7 (iii) holds. Let {gβ: β < a) be the family of
functions given by hypothesis. Clearly 2.7 (iii) (a) and (c) hold. To
see that (b) is also true, assume y$F. Then there exists β < a such
t h a t gβ(y) Π gβ(x) Φ 0 i m p l i e s x $ F. H e n c e ye[\J {gβ(x): x £ F}]~.

The proof that (ii) implies (i) is a slight elaboration of Ceder's
proof of Theorem 3.1 in [6, p. 109].

COROLLARY 6.4. The closed continuous image X of a Nagata space
over a is a Nagata space over a iff for each point x e X there exists
a fundamental system of neighborhoods {Wβ(x): β < a] such that β <
7 < cc implies Wβ(x) z> Wr{x).

LEMMA 6.5. Let a he a regular initial ordinal. If X is a Nagata
space over a, then for every x in X either x is isolated or ψ(x, X) =
χ(x, X) = a.

Proof. If a — ω the result is clear. If a > ω, then the result
follows from Theorem 6.3 (ii) and the observation that the intersec-
tion of fewer than a neighborhoods of a point x will still be a neigh-
borhood of x.

We can now give an analogue to Ceder's result that the class of
Nagata spaces is the same as the class of first countable stratifiable
spaces.

THEOREM 6.6. A Trspace X is an a-Nagata space iff it is a-
stratifiable and there exists for each x in X a fundamental system of
neighborhoods {Wβ(x):β < a} such that_ β < 7 < oc implies Wβ(x) 3 WΊ{x).

Proof. If X is an α-Nagata space, then by Theorem 6.3, we know
X is stratifiable over a and has the desired fundamental system of
neighborhoods. We need only show that X is not stratifiable over 7
for ω <̂  7 < a. This is clear if a = co, and follows from Lemma 6.5
for a > ω since a space stratifiable over 7 has pseudocharacter <̂  7.
The proof of the other half of the theorem is clear.

One can easily check that every subspace of a space which is
Nagata over a is itself Nagata over α, and that a finite product of
spaces Nagata over a is Nagata over a.
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The reader will probably recall that the well-known extension
theorem of Dugundji [7] was generalized from metric spaces to Nagata
spaces by Ceder [6, Theorem 3.2, p. 110] and from Nagata spaces to
stratifiable spaces by Borges [3, Theorem 4.3, p. 7]. We do not know,
however, if Dugundji's theorem can be generalized to all α:-Nagata
spaces.

7* Examples* In this section we denote the first uncountable
ordinal by Ω.

EXAMPLE 7.1. An 42-Nagata space (hence an β-stratifiable space)
which is not stratifiable. Let X = [0, Ω] and give X the smallest
topology larger than the order topology for which every point is isolated
except Ω. Let & = {Va = (a, Ω): a < Ω) U {Wa = {a}: a < Ω) and order
& so that every Va precedes every Wa and a < β < Ω implies Va < Vβ

and Wa< Wβ. Then & is a "linearly closure preserving base" for
X, and {(B, B): Be ^} forms a linearly cushioned pair-base. Xis not
stratifiable because the point Ω is not a Gδ.

EXAMPLE 7.2. A stratifiable space Y and an β-stratifiable space
X such that X x Y is not linearly stratifiable. Let X be the space
of Example 7.1. Let Y = [0, ω] with the order topology. Then Y is
a stratifiable space (in fact, Y is a compact metric space). It is known
that if the point (Ω, ω) is removed from this space, the resulting
subspace is not normal. This can be seen by using the techniques of
Exercise F on page 132 of [11]. Thus X x Y is not hereditarily normal
and by Theorem 4.1.C it is not linearly stratifiable.

EXAMPLE 7.3. An β-stratifiable space of character Ω which is
not an β-Nagata space. Let X be the space described in 7.1. Let
Y = X, but give Y a topology stronger than the topology on X as
follows: Let Lo be the set of limit ordinals in [0, Ω) and define induc-
tively, for each n < ω, Ln as the set of ordinals which have a member
of LΛ_! as immediate predecessor. (This idea was used by C. Aull
[2, p. 50] for a different example.) Define W(a, n) — U {(α, Ω) Π Lk:
k^n}\J {Ω} and W~ - {W(a, n): a < Ω and n < ω}. Then W~ is taken
as a fundamental system of neighborhoods of Ω and all the other
points in Y are isolated. Note that Ω is a Gδ in Y. As in 7.1 we
see that Y is stratifiable over Ω. (Also, one can easily show that
Y is stratifiable.) By Theorem 5.2 X x Y is stratifiable over Ω,
and since X x Y has subspaces which are not stratifiable, we know
X x Y is β-stratifiable. Clearly, X x Y has character Ω, and has
some points which are not isolated, but have pseudocharacter ω (i.e.,
Gβ-points). It follows from Lemma 6.5 that X x Y is not β-Nagata,
and X x Y is not a Nagata space over a for any a ^ ω.
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EXAMPLE 7.4. A countable product of β-stratifiable spaces need
not be linearly stratifiable. Let Xt be the space in 7.1 for each i < ω.
Since each Xt has isolated points, X = ΐ[{Xϊ. i < ω) has convergent
sequences, and also non-stratifiable subspaces. Hence, X is not linearly
stratifiable by Proposition 2.10.

EXAMPLE 7.5. Every regular space (X, J7~) has a "stratification
map" S: a x ^Γ —> J7~ which satisfies LS£, LSn and LSjn of 2.2. Take
a to be the cardinal number of t^~, let ^~ — {Tβ: β < a}, and define

f Tβ if Tβ c U

( 0 otherwise .

It is easy to see that S satisfies LSl9 LSIl9 LSJJJ. Now if this map
S also satisfied LSIV9 then X would be paracompact by Theorem 4.1 C
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