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THE REDUCING IDEAL IS A RADICAL

T W. PALMER

For any *-algebra % the reducing ideal %R of % is the
intersection of the kernels of all the ^representations of 9t.
Although the reducing ideal has been called the *-radical, and
obviously satisfies (%/%R)R = {0}, it has not previously been
shown to satisfy another of the fundamental properties of
an abstract radical except in the case of hermitian Banach
*-algebras where it equals the Jacobson radical. In this paper
we prove two extension theorems for ^-representations. The
more important one states that any essential ^represen-
tation of a *-ideal of a Z7*-algebra (a fortiori, of a Banach
*-algebra) has a unique extension to a ^-representation of
the whole algebra. These theorems show in particular that
(21Λ)Λ = 2ΐi2 if 9ί is either a commutative *-algebra or a ί7*-
algebra. The somewhat stronger statements which are actu-
ally proved, together with previously known properties of the
reducing ideal, show that the reducing ideal defines a radical
subcategory of each of the following three semi-abelian
categories:

(1 ) Commutative ^-algebras and *homomorphisms.

(2) Banach *-algebras and continuous *-homomorphisms.

( 3 ) Banach *-algebras and contractive *-homomorphisms.

The concept of the reducing ideal was introduced by Gelfand and
Naimark in their classic paper [2, p. 463]. It has subsequently
been studied by Kelley and Vaught [5, p. 51] and the present author
[7, p. 63] and [8, p. 930] The concept is discussed in [10, pp. 210,
226] and [6, p. 259]. In [11, 1479] Yood gave a definition of the
^-radical which agrees with our definition for Banach *-algebras but
differs for certain other types of *-algebras.

Our main extension theorem (3.1, below) was previously known for
J3*-algebras [1, Proposition 2.10.4]. It has a number of applications
besides the one discussed here. For example it immediately implies
the conclusion of [4, Theorem 23] with hypotheses weaker than those
of [4, Theorem 22].

In § 1 we give necessary background information. The case of
commutative *-algebras is considered in § 2 and of £7*-algebras in § 3.
The category theory results are described in §4 where we use the
terminology of M. Gray [3] for the general theory of radicals.

In general we follow the terminology of Riekart's book [10].
Further details and related results will be found in the author's
forthcoming monograph [9].
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1* Definitions and preliminary results* We review some basic
definitions and results for the convenience of the reader and in order
to fix notation. Throughout this paper all algebras and linear spaces
will have the complex field C as scalar field unless the real field is
explicitly specified. No other scalar field is considered. The complex
conjugate of XeC will be denoted by λ*.

An involution on an algebra Sί is a conjugate linear, anti-multi-
plicative, involutive map of SI onto itself. A *-algebra is an algebra
together with a fixed involution which will always be denoted by (*).
A subset of a *-algebra is called a *-subset iff it closed under the
involution. A map between *-algebras is called a *-map iff it preserves
their involutions (i.e. φ(a*) = φ(a)*). A ^representation T of a *-
algebra is a *-homomorphism (i.e. an algebra homomorphism which is
also a *-map) into the *-algebra [&τ] of all bounded linear operators
on some Hubert space φ Γ . The meaning of each more specific term
with a *-prefix (e.g. *-subalgebra, ^isomorphism) follows from these
definitions. In particular a Banach *-algebra is simply a *-algebra with
a norm relative to which it is a Banach algebra. No relationship
between the involution and norm is postulated.

We review briefly the standard Gelfand-Naimark construction of
^representations from positive linear functionals since later proofs
depend intimately on this material (cf. [2], [6], [9] or [10]). A linear
functional ω on a *-algebra St is called positive iff

(1.1) ω{a*a) ^ 0 VαeSt.

For any positive linear functional ω denote the left ideal

(1.2) {a e St: ω(α*α) = 0} = {a e St: ω(δ*α) = 0, V6 e St}

by Stω. Let

(1.3) %ω = 2t/Stω .

For each a e St let aω be the image a + %ω of a in %ω. Then for all

α ω , bω e %ω

(1.4) (αω, bω) = ω(δ*α)

is well defined and gives %ω the structure of a pre-Hilbert space (i.e.
a possibly incomplete inner-product space). The left regular repre-
sentation of SI on itself induces a *-homomorphism fω of Sί into the
*-algebra of all (not necessarily bounded) linear operators on %ω which
have ad joints on Sίω. The positive linear functional a) is called admis-
sible iff the range of Tω consists of bounded operators so that fω

induces a ^representation Tω of St on the Hubert space completion
Sϊω~ of %ω.
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An admissible positive linear functional ω is called representable
iff there is some ^representation T and some topologically cyclic vector
xe$τ for T such that

(1.5) ω(a) = (Tax,x) VαeSt.

The set of representable positive linear functionals on a *-algera 2£
will be denoted by jβ(2t). For each nonzero ω in jβ(St)

(1.6) I ω I = sup \ω{a)2lω{a*a): a e St ~ 3Q

is finite. For the zero linear functional, which always belongs to
l?(St), we set | 0 | ===== 0, For each ω e J?(St) there is a unique vector xω

in Stω~ such that

(1.7) T:xω = aω Vα e St.

[9, Theorem 1.4,8] This vector is a topologically cyclic vector for
Tω which also satisfies

(1.8) || xω ||2 = I ω | and ω(α) = ( 7 > ω , α?«) Vα e St.

For a *-algebra SI let

(1.9) ^(Sί) = {ωe 12(21): | ω \ ̂  1} .

A linear functional ω on St is called a sίαέe iff ω e iϋ(St) and | ω \ = 1.
A linear functional α> e J?(St) is called pure iff ω = ωt + ω2 with
6)!, ω2 e jβ(St) implies that (£>! and ω2 are (nonnegative real) multiples
of ω. Let P(Sί) denote the set of pure states of St. Then P(St) U {0}
is the set of extreme points of the convex set iϊ^Sί).

If St is a Banach *-algebra it is well known that JS^St) is compact
in the St-topology. Thus i^St) is the closed convex hull of P(Sί) U {0}
by the Krein-Milman theorem. If St is an arbitrary *-algebra (e.g.
{complex polynomials} with conjugation of coefficients as the involution)
then i?χ(20 need not be compact.

LEMMA 1.1. If St is any *-algebra, jβ^St) is the closed convex hull
of P(St) U {0}.

Proof. For any ω e i2x(St) let

@ω - {ω'ei^St): || Γβ

ω'|| ^ | | Γ β

β | | for all αeSt} .

A slight adaptation of a well known proof [10, p. 222] shows that @ω is
compact and convex [9, Proposition 1.5.6]. Similarly one can adapt
another well known proof [10, p 225] to show that the set of extreme
points of Θω is {0} U (@ω Π P(Sί)) [9, Proposition 1.6.6]. Thus @ω =
cδ ({0} U (@β Π P(St))). Therefore
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cδ ({0} U P(2t))

S cδ ({0} U P(2ί)) S RM

LEMMA 1.2. Lei St be a *-algebra and let ω e jB(2t). 7%e following
are equivalent.

( a ) ω is pure.
(b) Γω is topologically irreducible.
(c) 2%e seί (Tω)' of operators in [2tω~] wΛΐcΛ commute with T%

for each a e 21 is the set of complex multiples of the identity.

Proof. [10, p. 211 and 223], [9, Theorems 1.6.1 and 1.6.5].

DEFINITION 1.3. For any *-algebra 21 the reducing ideal of 21 is
denoted by 2tΛ and defined by

2tΛ = Π {Ker (T): T is a "-representation of 21}.

If $ is a *-ideal of a *-algebra 2t then $ is a two-sided ideal and
is a *-algebra in an obvious sense.

PROPOSITION 1.4. Le£ % be a *-algebra. Then the reducing ideal
2ίi2 of ^ί is a *-ideal which equals:

Π {Ker (T): T is a topologically irreducible *-representation of 21}

= fl {Ker (Tω): ω e JB(2t)} - fϊ {Ker (Γω): ω e P(2t)}

- Π {«.: ω e i2(2t)} - Π {«.: ω e P(2t)}

= {α e St: ω(α) = 0, vω e 22(80} = fa e St: ω(α) = , vω e P(2t)} .

Furthermore (St/StΛ)Λ = {0}. If % is a Banach *-algebra then %R is
closed so that 21/21̂  is a Banach *-algebra.

Proof. Use Lemma 1.1 to adapt the proof of [10, Theorem 4.4.10].
For details and further results see [9, Theorem 1.7.2 and 1.7.5].

Lemma 1.1 and this proposition do not seem to have been noted
previously in this degree of generality. However they were essentially
known.

We now turn to the theory of £7*-algebras. For additional in-
formation see [7], [8], or [9].

If St is a *-algebra without an identity let 2I1 denote the *-algebra
with identity which has C 0 St as underlying linear space and in
which the multiplication and involution are defined by ( λ 0 α ) ( μ 0 b) =
Xμ 0 (λδ + μa + αδ) and (λ 0 α)* = λ* 0 α* for all λ, μ e C and all
α, b e St. We regard 2t as embedded in 2I1 by the map a —* 0 0 a. If
2t already has an identity let 2I1 = 2t. In either case we write λ + a
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for λ l + a where 1 is the identity of SI1. Then, for instance, the
spectrum of an element in 21 is the same with relation to 21 or SI1.
Furthermore the Jacobson radical of 21 and 2I1 agree and the reducing
ideal of 21 and 20 agree.

DEFINITION 1.5. A *-algebra 21 is called a i7*-algebra iff SI is

contained in the linear span of the set 21^ of unitary elements in SI1.

If 21 is a £7*-algebra and αeSI then

Σ Xji a = Σ XjUj where neN, λ, 6 C, and uo e %u> .

3=1 j=ί )

LEMMA 1.6. Let 21 be a U*-algebra. Then v% is an algebra
pseudo-norm, {i.e. vn(Xa) = \X\vn(a), v%{a + b)^vn(a) + v«(6), v^(ab)^
v*(a)v*(b) for all a, be a).

Proof. Obvious.

For any *-algebra 21 let

(1.10) %qU = {ve St: v*v = vv* = v + v*}

be the set of quasi-unitary elements in St. For any subset @ of 21
let @̂  be the linear span of @ Π 2IgC7.

LEMMA 1.7. Let % be a *-algebra. Then %u is a *-subalgebra of
21 which is a U*-algebra. Furthermore 3F contains every *-subalgebra
of 21 which is a U*-algebra. In particular % is a U*-algebra iff
% = 2Γ In this case

{ n n n ~\

Σ \ ' a — Σ \'Vj, 0 = Σ \ ^here neN,XjeC and v3- e Stgl7 \.
3=1 3=1 3=1 J

Finally if $ is a one- or two-sided ideal in 21 then %su is a *-ideal in
St.

Proof. Straightforward or see [8] or [9].

LEMMA 1.8. Let 21 be a U*-algebra and let 33 be a *-algebra.
Let φ: 21 —• 95 be a *-homomorphism. Then φ(%) is a U*-algebra and
vφw(φ(a)) ^ vn(a) for all αe2t. Furthermore if 95 is the algebra of
all (not necessarily bounded) linear operators with adjoints on a pre-
Hilbert space, then <p(2I) is contained in the set of bounded operators
and \\φ{a) \\ <; v%(a) for all αeSt.

Proof. This follows directly from Lemma 1.7 or see [7], [8] or
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[9].

By slight abuse of language we call a *-homomorphism into the
type of *-algebra described in the last sentence of Lemma 1.8 a
^-representation on a pre-Hilbert space. When the range of such a
map consists of bounded operators we call it a normed ^representa-
tion on a pre-Hilbert space. (Of course any ^representation of any
*-algebra (by definition, on a Hubert space) is automatically normed
[10, p. 205] or [9, Corollary 1.2.4].)

COROLLARY 1.9. Every ""-representation of a U*-algebra on a
pre-Hilbert space is normed. Every positive linear functional on a
U*-algebra is admissible. A positive linear functional on a U*-algebra
SI is representable iff it is the restriction of some positive linear
functional on SI1.

Proof. For the last sentence see [10, p. 218] or [9, Theorem 1.4.8].

DEFINITION 1.10. Let SI be a *-algebra For any αeSI let

7%(a) = sup{|j Ta\\: T is a ^representation of SI on a Hubert space} .

It is not hard to show [9, Theorem 2.1.2] that τ«(α) = sup{|| Ta\\:
T is a topologically irreducible ^representation of SI on a Hubert
space} = sup {ω(α*α)1/2: ω e i^SI) = sup {ω(α*α)1/2: ω e P(St)}. In a per-
fectly general *-algebra τ«(α) =• °o is possible. However if Ί* is finite
valued then it is the largest algebra pseudonorm on SI which satisfies
the £*-condition: Ύ*(a*a) = ΎM2 for all a e SI. We call 7a the Gelfand-
Naimark pseudo-norm on St. Note that %R = {αeSI: τ«(α) = 0}.

COROLLARY 1.11. // 2t is a U*-algebra then

7«(α) ^ ya(α)

for all αeSI.

Proof. Obvious from Lemma 1.8.

THEOREM 1.12. Let SI be a Banach *-algebra. Then SI is a £7*-
algebra and τ a = va.

Proof. [7, Theorem 4] or [9, Theorem 3.1.12].

2* Commutative *-algebras* We are now in a position to treat
this case easily. Several of our results are essentially known but are
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usually stated in less generality.

THEOREM 2.1. Let SI be a commutative *-algebra. Then P(%) is
the set of ""-homomorphisms of SI onto C.

Proof. Suppose ft) is a pure state. Then (Tω)r — CI by Lemma
1.2 where I is the identity operator in [SIω~]. Since SI is com-
mutative 2γ S (T£Y. Since ft) Φ 0, Tω Φ 0 so T% = CI. Let T; =
<p(α)I for all αG St. Then φ is a *-homomorphism of 21 onto C and
ω(a) = (Tϊxω, xω) = (φ(a)xω, xω) = ^(α) | ω | = 9>(α) for all α e SI. Thus
co = φ is a *-homomorphism of SI onto C.

Conversely suppose ω is a *-homomorphism of SI onto C. Then
ω(α*α) = ω(α*)ω(α) = | ω(α) |2 for all a e 21 so that ft) is a state. The
map αω—>ft)(α) for all ae21 is a linear isometry of 2Iω onto C. Thus
§Iω = §lω~ is linearly isometric to C so that Tω Φ 0 is irreducible.
Therefore ft) is a pure state by Lemma 1.2.

COROLLARY 2.2. Let % be a commutative *-algebra. For each
a G SI ίeί ά: P(St) -+ C 6e defined by a(ω) = ω(a) for all ω e P(%). Let
P(SI) carry the weakest topology which makes each a continuous. Let
Coo(P(SI)) be the set of continuous but not necessarily bounded complex
valued functions on P(SI). Then P(3I) is Tychonoff space and

(2.1) f):SI >

is a *-homomorphism with kernel %B.

Proof. Immediate from Theorem 2.1 and Proposition 1.4.

THEOREM 2.3. Let % be a commutative ""-algebra. Let 35 be a
""-ideal of SI and let Qf be a ""-ideal of 33. For each ft) e P($) there is
an ώe P(SI) such that ω is the restriction of ώ.

Proof. Theorem 2.1 shows that ft) is a ^-homomorphism of $
onto C. Let e e S satisfy ω(e) = 1. We may assume e = e* since ft)
is a *-map. For any αeSI, eae^d so Λ e S Define ώ(α) = ω(e2a) for
all α G SI. Then ώ is clearly linear and if a, 6 e SI then ώ(ab) =
co(e

2α) = ω(e)2ω(ae2b) = ω(e2ae2b) = ft)(e2α)ft)(e2δ) = ώ(α)ώ(6), and ω(α*) =
ft)(e2α*δ) = ft)(e2α)* = ώ(α)*. Thus ω is a *-homomorphism of SI onto C
and thus by Theorem 2.1 ώeP(2t). If α e ^ then ώ(a) = ft)(e2α) =
o)(e)2ω(a) — ft)(α). Thus ώ satisfies the theorem.

COROLLARY 2.4. Z,e£ SI δe α commutative *-algebra. Let $ be a
""-ideal of%R {e.g. a ""-ideal of % included in SQ. Then ^R = $. J^
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particular (2tΛ)s = 2tΛ.

Proof. If ^B Φ ^ then there is some nonzero pure state on $
by Proposition 1.4. Thus Theorem 2.3 shows that there is a pure
state on 21 which does not vanish on $. This contradicts Proposition
1.4.

3* !7*-algebras* Although our primary interest is in Banach
*-algebras it seems difficult to give the following proof in that setting
without using the (more general) structure of ί7*-algebras.

THEOREM 3.1. Let % be a U*-algebras. Let ^ be a *-ideal of
21. Let T be a ""-representation of $. Then there is a *-representa-
tion T of % on \$QT\ which extends T. If T is essential then T is
unique, and the set of topologically cyclic vectors for T equals the set of
topologically cyclic vectors for T. Thus when T is essential it is
topologically cyclic or topologically irreducible iff T has the corres-
ponding property.

Proof. If T is not essential it is the direct sum of a zero sub-
*-representation T° on φ0 and an essential sub-*-representation Tι on
£>!. We can extend T° as a zero *-representation f°: 2ί —>[£>0] Thus
if we can extend T1 to Γ1: 21 — [&] then T° © T1 extends T. There-
fore we need only consider the case of essential ^-representations.

Suppose T is essential and let X be the subset of φ, T%$QT =
{Tbx: be$, xe (QT). Then X is dense in $τ. Let T:2I—>[ξ>r] by any
^-representation which extends T. Let a e 21 and x e X. Then x —
Tby for b e 3f and 7/ e ©Γ. Thus

fβa? - f α Γ 6 ^ = TaTby = Taby - Tuby .

Since T7 is normed (Corollary 1.9) and X is dense this shows that there
is at most one extension T: St —+ [φΓ] of T.

Suppose z is a topologically cyclic vector for T. Let X = T%z.
Then X is dense again. For a e 21 and x e X define Ti# = Γαί)^
where x — Tbz with & e $5. We must first show that this is well
defined. Suppose x = Tdz with d e $ also. Let a — Σϊ=i λΛvw where
λw 6 C, ̂  6 2Igt,, and Σϊ=i λ» = 0. Then Γβ&2 - Γβd2 - Σί=i ^m(TVnι-bz -
TVnd_dz). However for each n

11 T v T 9 II2 — II T ? II 2

cί)*(v;Vπ_ϊ,u_ί;^)(έ_Cί) + T(b_d)*{b_d))z, z)

Thus Γαj2 = T α ^ and f ι

ax is well defined for each x e 3c. For α e ^
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and x = Tbze X, fι

ax = Tabz = TaTbz = Γβa;. It is easy to check that f1

is a "-representation of §1 on the pre-Hilbert space 36. Corollary 1.9
shows that T1 is normed and hence can be extended (in the sense of
extensions of "-representations) to a unique .."-representation T:%—>
[ξ>Γ] which extends T: $ —• [$τ]. Clearly z is a topologically cyclic
vector for T since Tnz Ξ2 Γθz. This concludes the proof of the theorem
when T is topologically cyclic.

Suppose T is essential but not necessarily topologically cyclic.
Then T = ®aeAT

a is the internal direct sum of a family {Ta:aeA}
of topologically cyclic sub-*-representations on Γ-invariant subspaces
{&a: a e A}. For each a e A we have shown how to construct a *-
representation Ta: 21 -> [φ«] which extends T": $ - > [£>J. The direct
sum φ α e ^ Γβ: §ϊ—> [φΓ] is defined since τ« ^ ^ by Corollary 1.11. It
extends Γ: $5 —> [&τ]. We have already shown that only one such
extension is possible. Thus any essential ^-representation of $ has
a unique extension to %.

Suppose z is a topologically cyclic vector for T and T is essential
then TaTbz = Tβ6s for all αeSί and 6 G ^ so that T^z~ is a closed
T-invariant subspace of $τ containing z by [10, p. 206] or [9, 1.2.10].
The topological cyclicity of z for T shows that T%z~ = φ Γ so that z
is a topologically cyclic vector for T.

When T is essential we have shown that the set of topologically
cyclic vectors for f equals the set of topologically cyclic vectors
for T. Since a ^-representation is topologically cyclic iff its set of
topologically cyclic vectors is nonempty and is topologically irreducible
iff every nonzero vector is topologically cyclic this establishes the
last sentence of the theorem.

COROLLARY 3.2. If % is a U*-algebra and $ is a *-ideal of %
included in %R then ^$R = $ . In particular (%R)R = 2tΛ.

Proof. If ^ Φ $ there is a nonzero ^representation T of $ .
Then Theorem 3.1 shows that there is a ^-representation T of % which
does not vanish on $ £ 9CΛ. This contradicts the definition of 2tΛ.

COROLLARY 3.3. If % is a U*-algebra and $ is any ""-ideal of
{%R)U then » Λ - 3f. In particular {{%R)U)R -

Proof. The last sentence of Lemma 1.7 and Corollary 3.2 together
show that {{%R)U)R = (31*)". Thus these sets clearly equal {{{%R)U)R)U.
Thus this corollary follows from Corollary 3.2 applied to ( 2 1 ^ in place
of St.

COROLLARY 3.4. If % is a Banach ""-algebra and $ is a ""-ideal
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of Sttf then $B = $ . In particular (%R)B — %R.

Proof. Theorem 1.12 and Proposition 1.4 together show that 21
§nd UR are £/*-algebras so that 21^ — (jSΰLs)

u Thus this corollary follows
from Corollary 3.3.

4* Remarks on categorical consequences* In this section we
wish to indicate the consequences of our results in the language of
categories. In reference [3] we find a strong notion of radical sub-
category which we will use. In fact what is called a radical in [3]
is sometimes called a hereditary radical (cf. p. 125 of N. J. Divinsky,
Rings and Radicals, University of Toronto Press, 1965) From one
viewpoint our results may be considered as a quite different example
of this theory.

We will show first that each of the three categories listed in the
introduction is both semi-abelian and co-semi-abelian. The trivial
*-algebra {0} is a zero-object in each of these categories and also in
each of the other categories which we will consider. We examine
the categorically defined kernels, cokernels, images, and co-images in
these categories.

In all three of the categories listed in the introduction the kernel
of / e Horn (21, S3) is simply (the subobject represented by the injection
into 2ί of) the set theoretic kernel Ker (/) of / .

Consider the following categories.
(4) Ϊ7* -algebras and *-homomorphisms.
(5) Banach *-algebras and *-homomorphisms.

Since the image of any Z7*-algebra is a U*-algebra it is easy to see
that the kernel of / e Horn (21, S3) in category (4) is (the subobject
represented by the injection into 2ί of) (ker (f))u where again Ker (/)
is the set theoretic kernel of/. In category (5) morphisms do not
always have kernels, since there is not in general any maximal sub-
object of Ker (/) on which a Banach *-algebra norm can be defined.
Notice that when such a maximal subobject does exist it must be
included in (Ker {f))u.

In the category
(6) *-algebras and *-homomorphisms

the set theoretic kernel "is" the categorical kernel.
In categories (1), (4) and (6) the cokernel of fe Horn (21, 33) is

represented by

S3 > 33/(*-ideal generated by /(2ί)) .

In categories (2) and (3) the cokernel of / e Horn (21, S3) is represented

by

S3 • (S3/(closed *-ideal generated by /(2t))) .
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Morphisms in category (5) do not always have cokernels, since there
is not always a smallest *-ideal containing /(SI) such that the quotient
may be embedded in a Banach *-algebra.

In categories (1), (2), (3), (4), (6) the image of fe Horn (Si, S3) is
represented by the map

Sί/Ker (/) > S3

induced by /. Morphisms in category (5) do not always have images.
The co-image of / e Horn (SI, S3) in categories (1), (2), (3), (4), and

(6) is represented by the natural morphism

SI > SI/Ker (/) .

Morphisms in category (5) do not always have co-images.

DEFINITION 4.1. A category with a zero object is called semi-
abelian if:

( a ) Every morphism may be factored into a representative of
its co-image followed by a representative of its image, and

(b) Every morphism has a cokernel.
A category with a zero object is called co-semi-abelian iff it satisfies
(a) and

(c) Every morphism has a kernel.

PROPOSITION 4.2. Categories (1), (2), (3), (4), and (6) are each
both semi-abelian and co-semi-abelian.

Proof, This follows from the remarks above.

DEFINITION 4.3. Let ^ be a semi-abelian category. A radical
subcategory of ^ is a full subcategory <% such that

( a ) If St e ^ , / G Horn (SI, S3) and i e Horn ($, S3) represents the
image of / then ϊ~$ e &.

(b) If SI 6 ^ , / G Horn (SI, S3) and k e Horn ($, SI) represents the
kernel of / then ί£ e &.

(c) For each SI G ̂  there is a unique subobject %& or SI which
satisfies

(Ci) 2t^ is a kernel.
(c2) 51^ is represented by a monomorphism with an object of

& as domain.
(c3) SÎ p includes any subob ject of SI which is a kernel and is

also represented by a monomorphism with an object of & as domain.
( d ) If u e Horn (SI, S3) is a representative of the cokernel of a

representative v e Horn (φ, SI) of St̂ > then the subob ject S3^ is the
zero-subobject of S3.
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THEOREM 4.4. In each of the categories (1), (2), and (3) the full
subcategory defined by the class of objects % such that 21 = 21^ is a
radical subcategory.

Proof. Proposition 1.4 and Corollary 2.4 and 3.4, together with
the identification of the kernels, cokernels, images and co-images in
these categories, establish this result.

This theorem justifies the term *-radical as a name for the
reducing ideal in these three categories.

In the semi-abelian category (4) of [7*-algebras we do not know
whether the reducing ideal is always a t7*-algebra, i.e.

(4.1) %R = (%Ry .

In fact we do not know whether every closed *-ideal is always a
U*-algebra. If %B is always a ?7*-algebra then Theorem 4.4 is true
for category (4) also. Otherwise one might consider the full sub-
category & defined by the class of objects % such that Si = ($ίB)

u.
This subcategory satisfies (a), (b), and (c) of Definition 4.3 with
3U = (SCΛ)17- However it will not satisfy (d) unless

(4.2) mi{W)Ry = {0}.

It is possible that condition (4.2) is true for all £7*-algebras. If it
is not true for all Z7*-algebras perhaps there is a full subcategory
of category (4) in which either condition (4.1) or (4.2) holds. This
subcategory might have a radical subcategory associated with the
reducing ideal. Notice that categories (2) and (3) are nonfull sub-
categories of category (4) in which (4.1) holds.

It seems unlikely that the semi-abelian category (6) has a radical
subcategory defined by the reducing ideal. However a counterexample
is probably quite weird. (Note added in proof: I have found a
counterexample which is not particularly weird.)
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