
PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 1, 1972

A PHRAGMEN-LINDELOF THEOREM WITH
APPLICATIONS TO Λ («, v) FUNCTIONS

THOMAS L. KRIETE, III AND MARVIN ROSENBLUM

A well-known theorem of Paley and Wiener asserts that
if / is an entire function, its restriction to the real line
belongs to the Hubert space cF~*L2(-τ, τ) (where &~ is the
Fourier-Plancherel operator) if and only if / is square
integrable on the real axis and satisfies \f(z)\ ^ KeτlImzl for
some positive K. The "if" part of this result may be viewed
as a Phragmen-Lindelόf type theorem. The pair (eiTX, eiTX)
of inner functions can be associated with the above mention-
ed Hubert space in a natural way. By replacing this pair
by a more general pair (u, v) of inner functions it is pos-
sible to define a space ^^{u9 v) of analytic functions simi-
lar to the Paley-Wiener space. For a certain class of inner
functions (those of "type ®") it is shown that membership in
^€{u, v) is implied by an inequality analogous to the ex-
ponential inequality above.

A second application of our results is to star-invariant
subspaces of the Hardy space H2, It is well known that if
u is an inner function on the circle and / is in if2, then in
order for / to be in (uH2)1 it is necessary for / to have a
meromorphic pseudocontinuation to | z \ > 1 satisfying

, 1*1 > 1 .
1 — I 38?

If u is inner of type (£, it is proved that this necessary con-
dition is also sufficient.

Let Γ = {eίθ: 0 < θ < 2π} be the unit circle and

R = {x : — o o < # < c o }

the real line considered as point sets in the complex plane C Let D
and ZL be the interior and exterior of the unit circle and let Ω and
42_ be the open upper and open lower half-planes in C. A function
Φ is outer on D or Ω if Φ is holomorphic on D or Ω and of the
form

Φ(z) = exp \ + h(eiξ) σ{dξ), ze D ,
Jr eιξ — Z

or

Φ{z) = exp — ( 1 + t z k&)dt, z G Ω ,
πi ΪR t — z

175
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where kl9 k2 are real with kLe L\Γ), k2eL\R), and σ is nor-
malized Lebesgue measure on Γ. A function F on D or Ω is in
•ϊl+ if F is holomorphic on D or Ω and if there exists an outer
function Φ that is not identically zero and such that ΦF is a
bounded holomorphic function on D or Ω. If F is in 3l+ on D or β,
then f(eiθ) = Iim F{τeiθ) exists for almost all βΐί? e Γ, or

/(a?) = limF(£ + iy)
y l Q

exists for almost all x in R. Such / form the class ^ " + of func-
tions on .Γ and R respectively. We shall systematically use capital
letters F, G, for functions in ίJΪ+ and lower case letters /, g,
for the corresponding functions in ίΛ

/~+.
Every outer function is in ϊl+. A function U in 3l+ is inner if

\u\ = 1 a.e . Every function F in 9ΐ+ has a factorization of the
form F = UG, where U is inner and G is outer.

Suppose U and V are inner functions, say, on Ω. ^€{u, v, R) is
the set of functions f on R such that uf and vf* are in ^/~+ on R.
(/* is the complex conjugate of / ) . ^(u, v, Γ) is similarly defined.
As shown in [5] one can associate with each / in ^f(u, v, R) a
unique function F separately meromorphic in Ω and ί2_ such that

$l+, and

(1) f(x) = Iim F(x + iy) = Iim F(α; - î /)

for almost all x in JS, where F(z) = F*(z*)> zeΩ. If F is mero-
morphic in β, then an extension of F to a meromorphic function on
flUfl- satisfying (1) is said to be a meromorphic pseudocontinuation
(relative to R) of F. Similarly, to each / in ^^(u, v, Γ) one as-
sociates a unique F meromorphic in D{jD^ such that
VFe$l+, and

( 2) f{eiθ) = Iim F(rew) = Iim F(re^)
ί lr ί l

for almost all eiθ e Γ where F(z) = F*^*" 1 ), £€lλ Meromorphic
pseudocontinuation is defined relative to Γ in a manner analogous to
the R definition.

Considerations about ^//{u, v, R) may be motivated by examin-
ing the special case when U(z) = V(z) = βizr, τ ;> 0. Then

^T(%, v, R) Π

is the class of functions that are the restrictions to R of entire

functions of exponential type <£ r such that I | F(x) \2 dx < oo. Such

entire F can be characterized by this integral condition together
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with the inequality

\F(z)\2<K\yΓ\smh(2τy)\

for all z e Ω (J £?_, where K > 0. The object of this paper is to ex-
tend this type of function-theoretic characterization to more general
^£{u, v) classes. The above mentioned application to star-invariant
subspaces arises from the fact that Λf(l, v) Π L\R) = H\Ω)QvH\Ω),
where H2(Ω) is the Hardy space of the upper half-plane. In § 3 and
4 applications are given to factorization problems for nonnegative
operator-valued functions and to generalized Paley-Wiener represen-
tations.

1* A Phragmen-Lindelof Theorem* In this section we shall
derive a Phragmen-Lindelof type theorem for certain functions
holomorphic on D, and then transcribe the result to obtain a like
theorem for functions on Ω. A rather different Phragmen-Lindelof
type theorem is discussed by Helson in [2, p. 33].

Recall that a Blaschke product B on D has a representation

(3) B(z) = I L , A ( s ) , B,(z) = -&- ̂ Ξ^-, zeD,
I Zj I JL Zj Z

where Σ^iO- ~ I *s I) < °° We take zf/\ zs \ = 1 if zs = 0. The
support supp B of B is the intersection of Γ with the closure of
{̂ iJiϋi. A singular inner function S has a representation

(4) S(s).

where /< is a positive singular measure on JΓ. The support supp S
is the closed support of the measure μ.

Any inner function U on D can be factored in the form U —
cBS, where c e C, \ c \ = 1, B is a Blaschke product and S is a singu-
lar inner function. The support supp ?7 of Z7 is supp B U supp S.

A closed set N on JΓ is a Carleson set if iV has zero Lebesgue
measure and if the complement of N in Γ is a union of open arcs
Ij of lengths ey such that Σu^i εil°& εi > — °°

THEOREM 1.1. (Carleson [1]). A closed subset N of Γ is a Car-
leson set on Γ if and only if there exists an outer function G on D
that satisfies a Lipschitz condition and such that

g(eiθ) = lim G{reiθ)
rίl

vanishes on N.
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DEFINITION 1.2. An inner function U on D is of type G? if
( i ) supp U is a Carleson set, and
( ϋ ) Σi s i [dist (sy, supp U)] < °o,

where fo } ^ are the zeros of U in D repeated according to multipli-
city.

LEMMA 1.3. Let B be the Blaschke product given by (3) and
suppose B is of type Gc. If G is a Lipschitz outer function on D
such that g(eiθ) = \imr uG(reiθ) vanishes on supp B, then

( 5) Σ (1 ~ I z, I2) ί I (1 - s / O - W ) Γ *(&) < -

Proof, Since G is Lipschitz there exists K > 0 such that

for all eiθ in Γ and λ in supp 5 . Thus for λ in supp B,

(1 - I sy |
2) J i (1 - zJeiβrι9{eiB) ? σ{dθ)

- zfeiθrι (eiθ - λ) |2

Applying Parseval's equality to the Fourier series for the function
(1 — z*eiθ)~ι (eiθ — λ) shows that this last expression is equal to

Since Σ ^ i ( l ~~ I zo I2) < °° a n ( i w e a r e free t ° le"k ^ vary over
supp B this inequality implies (5).

The following theorem is our Phragmen-Lindelof result for func-
tions on D.

THEOREM 1.4. Let U be an inner function of type G? on D.
Suppose F is holomorphic in D and there exists M > 0 such that

( 6 ) I F(z) |2 ^ Jfcf(1 - \z IT1 (1 - I U(z) |2), zeD .

Then Fe%l+.

Proof. U has the factorization U = cSiS, where | c \ — 1, B is a
Blaschke product of type © and S is a singular inner function of type
Gf. We have

( 7 ) ( l - | s | « ) - i ( i - i U(z)\>)

= (1 - I « I2)"1 (1 - I £ ( * ) I2) + I B(z) |2 (1 - \z \Tι (1 - I S(z) |2)
^ (1 - \z I2)"1 (1 - I B(z) |2) + (1 - \z I2)"1 (1 - i S(z) |2), « e i ) .
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If B is given by (3), then

179

1 - I Biz) |2 = 1 - I B,(z) |2 +Σ IT
i = i

(1 - I Bn(z) |2)

I2)

I2) e D .

- S ( 1 "
Thus

(8 ) (1 - \z I2)"1 (1 -

If S is given by (4), then

(S(2)| 2 = e x p { - 2 ^ ( 1

Applying the elementary inequality (1 — e~ah)/h) ^ a if a, h ^ 0, with

h = 1 - I z |2 and a = 2 ί | eί? - s |~2 ̂ (df) yields
JΓ

( 9 ) (1 - μ I2)"1 (1 - I S(z) |2) ^ 2 ( I eiξ -r- « |"2 ^(df), 2 G ΰ .

Suppose now t h a t (6) holds and let G be a Lipschitz outer func-
tion such t h a t g(eiθ) = l i m r T l G(reiθ) vanishes on supp Z7. We have
from (6) - (9) t h a t

G(z)F(z) ~ I zj |2) I 1 - zfz |~21 G(z)

Jr

But for some K > 0

I G{z) \2^K2\ eiξ -r z |2 if eiζ e s u p p 27,

and μ is supported on supp S S supp [7. Thus for all ̂ e ΰ

I G(z)F(z) |2 ^ Λf Σ (1 - I «i Γ) 11 - ^?^

It now follows from Lemma 1.3 t h a t

sup ( I G{τeiθ)F{reiθ) |2 σ(dθ)

+ 2MK2 μ(Γ) .

< 00

so GFeH2. It is easy to multiply G by an outer function Gι and
obtain GXGF bounded, and so F is in $ft+

We shall next recast Theorem 1.4 for functions holomorphic on
Ω. Any inner function U on Ω has a factorization U — cBSVa,
where c e C, | c | = 1, B is a Blaschke product on Ω, S is a singular
function on Ω, and Fα(z) = βία% where 0 ^ α e R. Then supp 5 is
defined to be the set of limit points on R U {°°} of the zeros of B,
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and supp S is defined to be the support of the singular measure in
the representation for S analogous to (4), (Hoffman [3] p. 132-133).
We define supp Va to be empty if a = 0, and {°o} if a > 0. The
support supp U of ZT is supp B \J supp S (J supp Va.

A closed subset N of the extended real line R (J {°°} is a Carleson
set if N Π R has Lebesgue measure zero, °o e N, and the complement
of N in R U {°°} is a union of open intervals

Is = (a3, h), - °° ^ ^ < δy ̂  oo, j = 1, 2, . . .

such that Σi> A log <5y > — oo, where

g &j — aJ ί = 1 2
(1 + δ})1'8 (1 + α5)x/I

We understand in the above that oo/oo — 1.

Now let a: D—>Ω (J {°°} be the mapping defined by

a(z) = i(l + z)(l-z)-ί

if z Φ 1 and α(l) = c>o, and let β be the inverse of a. Then if

|Si + i | 2 z, + i\2

Moreover β maps (— oo, oo] onto Γ and N is a Carleson set on
R U {<*>} if and only if £(JV) (J {1} is a Carleson set on Γ. If £7 is
inner on Ω then [7° a is inner on J5 and supp (U° a) — β (Supp ?7).
Furthermore if {z^j^ is the sequence of zeros of 77, then {βfe)}^ is
the sequence of zeros of U ° a.

DEFINITION 1.5. Let U be an inner function on Ω. U is of type
d if supp U U {°°} is a Carleson set on R (j {°°} and

Σ ( m
j ^ l \ P. esu

where {̂ y}î i is the sequence of zeros of U in Ω repeated according
to multiplicity.

The following lemma follows from the above discussion.

LEMMA 1.6. Let U be inner on Ω. Then U is of type (£ if and
only if U ° a is of type & on D.

We can now recast Theorem 1.4 for the half-plane.
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THEOREM 1.7. Let F be holomorphic in Ω and suppose that U is
inner of type @ in Ω. Suppose that there exists K > 0 such that

(10) I F(z) |2 ^ KQrn z)"1 (1 + | z |2) (1 - | U(z) |2) for zeΩ.

Then Fe$l+ on Ω.

Proof. Set G — F ° a, so G is meromorphic on D and

I G(z) |2 ^ K [Im α(z)]-1 (1 + | a(z) |2) (1 - | U{a(z)) | 2 ), s e D .

We can replace 1 + | a(z) |2 by \i + a(z) |2 and the inequality still
holds but for a different constant K. Now

Imα(s) = ( l - | z | 2 ) | l - z | - 2

and

I i + α(«) |2 - 4 11 - 2 r ,
so

I G(«) \2^K'(l-\z I2)"1 (1 - I U(a(z) Γ), « G D .

But by Lemma 1.6 U © α is of type Gf, and thus Theorem 1.4 implies
that G G 9Ϊ+ on D. We then deduce that F = (? o /3 is in Sft+ on i3.

2* The classes ^ ^ (w, v, Γ) and ^ f (%, v, R). Suppose U is
inner in D. Then ί7 has a meromorphic pseudocontinuation to a
function £7 on X) (J 2)- that is given by

If supp U Φ Γ, then U on D has a single valued meromorphic con-
tinuation to ZL that coincides with U as given by (11). If F is
meromorphic on Z)_ then JP(S) = .f7*^*-1) defines F to be meromorphic
on Ό. Of course F need not be a pseudocontinuation of ί\

Analogous definitions are made for Ω. Suppose U is inner on Ω.
Then U has a meromorphic pseudocontinuation on fiufl- given by

zeΩ

If ί7 is meromorphic on β, then F(«) = F*(z*) defines F to be mero-
morphic on β_.

We say that F is 5ft0
+ o n ΰ i f F G ^ o n ΰ and JF(O) = 0. ^Vt is

defined to be the set of all / such that f(eiθ) = limr nF(reiθ) a.e.,
where FeWf on D.

Suppose U, V are inner functions on D. ^ C (u, v, Γ) is the set
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of all functions f on Γ such that ufe Λ^+ and vf*
v, Γ) can be characterized as follows: / e ^ΓQ(u, v, Γ) if and only if
there exists a function F separately meromorphic in D and £)_ and
such that

(13) f{eiθ) = lim F(reίθ) = lim F{rei0) a.e.,
r11 r il

with

(14) UFeW on D and VFeWt on D .

In case U and F are of type (£ we can deduce (14) from an in-
equality involving F, U and F.

THEOREM 2.1. Suppose U and V are of type Gc, αraϊ -P is mero-
morphic in D and has a meromorphic pseudocontίnuation to a func-
tion F on D U JD_. Further suppose there exists K > 0

(15) I F(z) |2 ^ K(l - I z I2)"1 (I Z7(«) |" 2 - | V(z) | 2), | z \ Φ 1.

Γfeβw f{ei0) = limr nF(reiθ) e ^£'Q {u, v, Γ).

Proo/. If F satisfies (15) on D then

I U(z)F(z) \2^K(l-\z IT1 (1 - I U(z)V(z) (2) ,

so UFem+ by Theorem 1.4.

If F satisfies (15) on ZL, then for all z e D,

] F(z)F(z) |2 g ίΓ| « |2 (1 - I z I2)"1 (1 - | U(z)V(z) |2)

so VFe$l+ by 1.4. But we also deduce that F(0)F(0) = 0, so
F . F e ^ . It therefore follows from the characterization of ^£Ό(u, vy

Γ) given in (13) and (14) that fe^fQ(u, v, Γ).

In case f e L2(Γ), i.e., in case \ | f\2dσ< oo, we have a stronger

result.

THEOREM 2.2. Assume that U, V are inner of type & on D and
f eL2(Γ). Then f e^/fo(u, v, Γ) if and only if there exists a func-
tion F satisfying the hypotheses of Theorem 2.1 such

f(ei0) = lim F{reiθ) a.e..

Proof. It follows from Theorem 2.1 that if F satisfies (15) then
fe ^ 0 (u, v, Γ). Conversely, suppose / e ̂  {u, v, Γ) Π L\Γ). Then

ufe Λ/~+ n L\Γ) = H2 and vf* e y^i n L2(Γ) S H2 with ( vf*dσ = 0.
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Thus uf and ΐ χ*/* are in (uvH2)1 Π H\ where χ(eiθ) = eiθ.
Now any ge (uvH2)1 Π i ϊ 2 is the boundary value function of

G(z) = \ e D .

But then it follows from the Schwarz inequality that

(16) I G(z) f ^ K ( l - \ z \ T ι ( 1 - I U(z) V(z) | 2 ) , z e D ,

where K = \ | # |2 c£σ.

By applying (16) to g — uf and g = vχ*f* we obtain

(17) I tf(s) F(z) \^K(l-\z \Tι (1 ~ I U(z)V(z) |2), ^ e D ,

and

(18) I V(z)F(z) \2^K\z\2(l-\z I2)"1 (1 - | U{z) V(z) |2), ^ ΰ ,

where K=[ \f\2dσ.

It is easily seen that (17) and (18) together is equivalent to

(15).

COROLLARY 2.3. Assume that V is inner of type (£ on D and
f eH2 on Γ. Then f e(vH2)L if and only if there exists a meromor-
phic function F on D U iλ_ such that

(19) f(eiθ) = lim F(reiθ) = lim F{reiθ) a.e.,
rίl rll

for which there exists K > 0

I F(s) |2 ^ JSΓ(1 - I z I2)"1 (1 - I V(z) I2), zeDijD-.

Proof. Note that (i i ϊ 2 ) 1 ΓΊ Jϊ 2 = ^f o (l , v, Γ), and use 2.2.

COROLLARY 2.4. Assume that U, V are inner of type & on D
and feL2(Γ). Then f e ^t(u, v, Γ) if and only if there exists a
function F meromorphic in D with pseudocontinuation F such that
(19) holds and there exists K > 0 such that

I F(z) \2^K(l-\z I2)"1 (I U(z) I"2 - I zV{z) |2), zeD .

Proof. Note that ^{u, v, Γ) = ^(u, χv, Γ).

The same kind of problem can be considered on Ω with minor
modifications in the proofs.

THEOREM 2.5. Suppose F is meromorphic on Ω and has a mero-
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morphic pseudocontinuation to a function F on Ω (j Ω- Assume that
U and V are inner functions of type E on Ω. Further suppose that
there exists K > 0 such that

I F(z) |2 ^ K{lmz)~" (1 + | z |2) (| ϋ(z) Γ - | V(z) |2), zeΩf)Ω_.

Then f(x) = lim^o F(x + iy) e

THEOREM 2.6. Assume that U, V are inner of type & on Ω and
f e LZ(R). Then fe ^f(u, v, R) if and only if there exists a function
satisfying the hypotheses of Theorem 2.5 such that

f(x) = \imF(x + iy) a.e..
yio

3* Factorization of nonnegative functions* In this section we
shall reformulate an operator factorization theorem of the type set
down in [5] in terms of inequalities of the type discussed in § 1 and
2. Throughout ^ is a complex separable Hubert space and B{^) the
space of bounded operators on ^ . We shall restrict ourselves to
considerations involving Ω rather than D in order to simplify the
exposition. Following [5] we say that a holomorphic function F on
Ω taking values in B{^) is in SRί(y) if there exists a nonzero com-
plex-valued outer function Φ such that ΦF is a bounded holomorphic
function on Ω that takes values in J5(£f). Any F in 9iί(y) has
strong boundary values a.e., that is, the limit \imyί0F(x + iy) = f(x)
exists a.e. in the strong operator topology.

We say that a holomorphic function G in 9ΐJίaf.; has a meromor-
phic pseudocontinuation G if G is meromorphic in Ω^ and the strong
limits limyT0 G(x — iy) and lim^o G(x + iy) exist and are a.e. equal.
For such G we define G by G(z) = G*(z*), zeΩ\jΩ_.

THEOREM 3.1. Let U be a complex-valued inner function on Ω
and F a meromorphic function on Ω taking values in B{^) such
that UFeyisi^)' Then F(x + iy) has strong boundary values f(x) a.e.
as y I 0. Assume that (f(x)c, c) ^ 0 a.e. for each c in ^ .

Then F has a factorization F(z) = G(z)G(z), zeΩ, where G is
in 5RJ(βr) and has a meromorphic pseudocontinuation G such that
UG e9ΐί(ςr). // there is real interval I such that /( .) is a.e. bounded
on I and U is analytically continuable across I, then G is analytical-
ly continuable across I.

Proof. This theorem is a summary of results proved in [5].

THEOREM 3.2. Theorem 3.1 may be modified as follows:
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( i ) The hypothesis "Z7Fe9lJ ( y )

w may be replaced by the stronger
hypothesis "there exists K > 0 such that

(20) || F(z) ||2 ^ K(lm z)~ι (l+\z |2) (| U(z) | - - | U(z) |2)

for all z in Ω".

S oo

(f{x)c, c} dx < oo for
- o o

all c in <g*, then G can be chosen to in addition satisfy

(21) I <G(φ, c> |2 ^ iΓc(Im z)"1 (1 + \z |2) (1 - | U(z) |2), c e i f

for some Kc > 0 (Kc depends on c) and all z e Ω (J Ω_.
Proof. The proof of 1.4 shows that (20) implies that
Assume the hypotheses of (ii). Now / = g*g, where g(x) are

the strong boundary values of G(x + iy) as y \ 0 and y \ 0. We have
\<g( )c,cy\>^\\g(-)c\\2\\c\\2 = <f( )c,c}\\c\\> f o r a l l c i n i f , so
<flr( )e, c)eL2(R) for all c in if. (21) now follows from Theorem 2.6
and the fact that (g{ )c, c) e ^ ^ ( 1 , w, i2).

As an example suppose F{ ) is an entire function taking values
in B{^) such that {F(x)c, c} ^ 0 whenever C G ^ 7 and xeR, and
there exists τ ^ 0 and ^ > 0 with

|| F(z) ||2 ^ Ky~ι (l+\z |2) sinh 2r̂ /, z = x + iyeΩ .

Then JP is factorable, F(z) = G(z)G(z), where G( ) is an entire
function taking values in B(^). This follows from Theorems 3.1
and 3.2 (i) with U(z) = eiTZ. G( ) is entire by the last statement in
Theorem 3.1. It also is deducible from Theorem 3.6 of [5].

S oo

(F{x)c, c} dx < oo, then
by (21) G satisfies

I <fi(z)c, c ) |2 2£ K c y ^ ( l + \ z | 2 ) ( 1 - e~*") ,

for all z = x + iy with y Φ 0 and C G ^ . iζ. is a constant depending
on c.

4* A Fourier type transform and the Paley-Wiener represen-
tation* As before let U and V be inner functions in Ω and denote
the space ^(u, v, R) D L2(R) by ^f2(u, v, R). This space is easily
seen to be a Hubert subspace of U{R). As noted in the introduction
^f2(eix% eixτ, R) is the restriction to the real axis of a classical Paley-
Wiener space of entire functions. That
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(where j^ is the Fourier-Plancherel operator on U(R)), is the content
of a well known theorem of Paley and Wiener,

In [4] one of the present authors generalized this theorem to
give an integral representation for any of the spaces ^2{u, v, R).
In this section we combine this result with Theorem 2.6. First we
shall set down some basic facts from [4]. For simplicity we assume
that U and V have no zeros and are normalized so that U(i) and
V(i) are positive. U then has a factorization U(z) = S(z)eiaz where
S is a singular inner function in Ω and a ^ 0. Using the usual
representation for singular inner functions we can combine the two
factors in the following convenient form:

(22) U{z) = exp ( i \ 1 + t z μ(dt)
\ JR* t — z

where μ is a finite positive measure on the extended real numbers
i2* = R U {°°} whose restriction to R is singular and with μ({°°}) —
a. In the integrand, and elsewhere below, we always take
(z oo)/oo — z for any complex z. V has a similar representation with
corresponding measure Y.

Let τ be the total variation of μ and suppose that a is an un-
valued measurable function defined on [0, τ] such that m(a~ι(E)) =
μ{E) for every subinterval E of R*. For example, we could take
a(t) = inf {xeR*: μ ((—°°, x]) ^ t}. Extend the definition of a to
[0, oo) by setting a(t) = oo if t > τ. For each t ^ 0 let

It is clear from (22) and a change of variables that Uτ — U. More-
over, Ut is an inner function for each t and U8 divides Ut if
0 ^ 8 < t.

In a like manner one can associate σ, b: [0, σ] —> R * and Vt

(analogous to τ, a and £7*) with the inner function V. Note that
Vσ = V. Ut and Vt have pseudo-continuations to ί2_ given by (12).
For any z in β (J £_ let

() - z

and

Now let iP(β) and H\ΩJ) denote the usual Hardy spaces of
functions analytic in Ω and £?__ respectively, which can also be con-
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sidered as orthogonal complements of each other in L2(R). It was
shown in [4] that the mappings W1 and W2 given by

and

(Wig) (z) = (27Γ)-1'2 Γ Hz

+(t)g(t)dt, lmz>0
Jo

(W2g) (z) = (2π)-1/2 Γ' Hr(t)g(t)dt, Imz < 0 ,
Jo

are isometries from L2(0, oo) onto H2{Ω) and H2(ΩJ) respectively.
Let JSΊ L2(-oo, 0)->L2(0, oo) be the operator (Eg)(t) = g(-t).

The W2E@ W1 can be considered as a unitary operator from

L2(-oo,O)0L2(O, oo) = L2(R)

onto H\Ω_)@H2{Ω) = L\R). This operator takes L\-s,t) onto
^ f 2(%s, vu R) for all s, ί ^ 0. If μ and 7 are supported on the single-
ton {00} or, equivalently, if a(t) = b(t) = 00 a.e., then W2E (& Wx is
the adjoint of the Fourier-Plancherel operator. Combining this with
Theorem 2.6 yields the following result.

THEOREM 4.1. Let U and V be inner functions of type (£. Let
F be analytic in Ω (j β_ and suppose that the two sided boundary
function f(x) = lim)a/M) F(x + ίy) exists a.e. and lies in L2(R). Let
s, t Ξ> 0. Then the following are equivalent.

( i )

I -F(2?) | ^ K(lm z)~ι (1 + I z |2) ([ [7s(a;) | — [ Vt(z) |2), 2;ei3ufl-.

(ii) There exist a.e. unique functions gx in L2(0, ί) απd ^2 in
L2(0, s) st6cfc ίAαί

F(z) = (2π)^ΛtHa

+(z)g1(x)dx
Jo

"T" x**^) 1 - " 2 y*t///(/2\ *v^"k> XIII Λ- -7- V/ .
Jo

Moreover, \\ f \\\ — \\ gγ\\l + || g2 \\2

2

in proof. We refer the reader to the papers.

6. H. S. Shapiro, Generalized analytic continuation, Symposia on
Theor. Phys. and Math. Vol. 8, Plenum Press, New York (1968),
151-163.

and,
7. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors
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and invariant subspaces for the backward shift operator, Ann. Inst.
Fourier, Grenoble, 22 (1970), 37-76,

for more detailed information on meromorphic continuation and (uH2)1.
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