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STRONG LIE IDEALS

ALBERT J. KARAM

R is 2-torsion free semiprime with 2R = R. A Lie ideal,
U, of R-strong if auac U for all ac R,ucU. One shows
that U contains a nonzero two-sided ideal of K. If R has an
involution, =, (with skew-symmetric elements K ) a Lie ideal,
U, of K is K-strong if kuke U for all ke K, ucU. It is
shown that if R is simple with characteristic not 2 and
either the center, Z, is zero or the dimension of R over the
center is greater than 4, then U= K. If R is a topological
annihilator ring with continuous invelution and if U is clesed
K-strong Lie ideal, U= C n K where C is a closed two-sided
ideal of R. A Lie ideal, U, of K is HK-strong if u*c U for
all we U. A result similar to the above result for K-strong
Lie ideals can be shown. Let R be a simple ring with in-
volution such that Z = (0) or the dimensionr of R over Z is
greater than 4. Let ¢ be a nonzero additive map from R
into a ring A such that the subring of A generated by
{#(x): xc€ R} is a noncommutative, 2-torsion free prime ring.
Suppose ¢(xy — y*z*) = d(@)d(y) — ¢(y*)p(2*) for all z,yeR.
As an application of the above theory, ¢ is shown to be an
associative isomorphism.

1. Introduction. R will denote a semiprime ring such that
2R = R and if 2r = 0, then » = 0. We call the latter property 2-
torsion free. Z will denote the center of R. If R has an involution,
%, defined on it, S and K will be the set of symmetric and skew-
symmetric elements respectively. The Lie and Jordan products are
[, y] = 2y — y» and zoy = wy + yx for any x,ye R. If X, YS R,
[X, Y] will denate the additive subgroup generated by the set
{[z,y]:x€ X and ye Y}. An additive subgroup, U, of R is a Lie
ideal of R if [U, R]< U. If R has an involution, we can similarly
define a Lie ideal of K.

This paper is concerned with the study of different classes of Lie
ideals of both R and K. A Lie ideal, U, of R is said to be R-strong
if auaec U forallae R,uec U. If U isa Lie ideal of K, U is K-(HK-)
strong if kuke U (u*e U) for all ke K, u e U.

In the classical theory of the Lie structure of an associative ring,
the main theorem [6; Th. 1.8] states: if R is simple and U is a Lie
ideal of R, either US Z or [R, R]< U. We attempt to develop some
criteria for differentiating between Lie ideals of R containing [R, R]
and R itself. Similar criteria are developed for Lie ideals of K. We
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will have occasion to use the following results of Herstein [6; pp
1,5,10, and 28]:
(i) R has no one-sided ideals which are nil of bounded index;
(ii) If a€ R is such that [a, [a, z]] = 0 for all € R, then ac Z;
(iii) Let R be simple with involution and characteristic not 2.
If Z = (0) or the dimension of R over Z is greater than 4, then R =
S = K where S and K are the subrings of R generated by S and K
respectively.

If X& R, Z(X)={aecR: Xa=(0)} and L (X)={acR:aX =
(0)}. The next two lemmas are analogs of a results of Baxter [3;
p. 2].

LemmA 1.1. If U is a Lie ideal of R such that w* = 0 for all
we U, then U = (0).

Proof. Let ueU,acR. As [u,aleU,[u,al® = 0. Therefore,
wauwow = ufu, a]* = 0 and wR is nil of bounded index. By the previously
mentioned results, wR = (0). But R is semiprime, so & (R) = (0).
Thus » = 0.

LEMMA 1.2. Let R have an involution, *. If U is a Lie ideal
of K such that w* = 0 for all we U, then U = (0).

Proof. Let w,ve U, then 0 = (u + v)* — u* — v* = uv + vu. As
[u,v]e U,2uve U. Since 2R = R, [uv, K] S U. Thus, for each ke K,
uofuv, k] = 0, and so, even more v{uo[uwv, k]} = 0. Since % and v anti-
commute, expansion of this expression yields uvkuv =0. Now suvse K
for any s€S. So uwv(suvs)uv = 0. Therefore, given a € R, a = s + k
where s€ S and k€ K, then (uv)a(uv)a(uv) = 0. We conclude that uvR
is nil of bounded index. This guarantees uwv =0 for all w,ve U.
Now, —uku = ulu, k] = 0. Repeating the previous arguments for se
S and ke K, we conclude that u = 0.

2. R-strong Lie ideals. In this section U will denote an R-
strong Lie ideal. If a,be R and w,ve U, one can easily show that
the following are in U: aub + bua, abu + uba, and uau. We associate
with U the set B, = {be R:acbe U for all ae R}. This set is a Lie
ideal of R and w*e B, for all we U. The latter can be seen by
observing that if we set b = w above, we obtain au®* + w’ac U. Thus,
via Lemma 1.1, U = (0) implies B, # (0).

LEMMA 2.1.
(i) By ts an R-strong Lie ideal
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(i) wau*e B, NU for all ue U,xz€ R.

Proof.

(i) We know that B, is a Lie ideal of R. For arbitrary =z, y ¢
R and be By, [xob, y] and [x, bloy are in U. Thus, by adding and
subtracting these terms, we have that xby — ybx and bxy — yxb are in
U. Now,

2(yby) + (yby)x = {(xy)by — yb(zy)}
+ {yb(yx) — (y2)dy} + {y(bx + xb)y} .

Since each term on the right is in U, x(yby) + (yby)x e U and By,
is R-strong.

(i) As w’e By, wau’€ By. Moreover, w*xu® = u(uxu)u € U. There-
fore, wau*e B, N U.

THEOREM 2.2. C = B, N U is a nonzero two-sided ideal.

Proof. Note that C is an R-strong Lie ideal. Also C = (0) since
if this were so, for each we U, u’R would be a nil right ideal of
bounded index. Let beC and 2,ye R;zb + bxe U. Also

(xb + bx)y + y(xdb + bx) = {xw(by — yb) — (by — yb)x}
+ {(y2)b + b(yw)}
+ {b(zy) + (yx)b} .

As each term on the right isin U, (xob)oy€ U. Thus, xcbeC. Now
20b = xob + [z, 0] C. Since 2R = R, Rb< C. Similarly, bR < C.
Thus C is a nonzero two-sided ideal of R.

We note that C is the same as the set L, = {ue U:uaec U for
all a € R} which was used by Zuev [10] in his study of the Lie struc-
ture of R.

COROLLARY 2.3. If R is simple and U =+ (0), U = R.

This corollary allows us to study the R-strong structure of the
ring as it relates to minimal idempotents of R. If e is a minimal
idempotent, e¢Ue is an eRe-strong Lie ideal. Since eRe is a division
ring either ¢Ue = (0) or ¢Ue = ¢Re. We use this fact to prove the
next theorem.

THEOREM 2.4. Let H be the homogeneous component of the socle
which contains e. Then either HSU or HS < (U) N Z(U).
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Proof. Recall that H is a simple ring. The theorem then follows
by considering H N U.

COROLLARY 2.5. If R is completely reducible, U is the direct sum
of the homogeneous components of the socle which it contains.

This result is similar to that of Kaplansky [7].

Assume that R has the additional properties that 38 = R and R
is 3-torsion free. Let W be any Lie ideal of R such that w*e W for
all ue W. Let u,ve W. We have a = 2(v*u+vuv+ur’) = (u+v)°+
w—v)?—2ue W, R =|v,|[v,u]l]e Wand v = [+*, u] € W. From these
we have: 3(v’u + uv)=a+R8e€ W, 6vuv=a—28c W,6v'u =a+3ve W,
and 6ur* = o — 3ve W. We now have enough to show a result similar
to Theorem 2.2.

THEOREM 2.6. Let W bz a Lie ideal of R such that w*e W for
all we W. Then either W contains a nonzero two-sided ideal or w*e Z
for all ue W.

Proof. Leta,be Rand uwe W. Since 2a|[a, u]=[a, [a, u]]+][a* u] €
W and 2R = R, afa, w] € W. Linearization of this expression yields
alb, u] + bla, u] € W. TUpon multiplication by 6 and replacement of b
by v*, we obtain 6{a[v*, u] +v*[a, u]} € W. As 6v[a,u]e W, 6a[v*, uje W
and this implies a[v?, u] € W. It immediately follows that R[+’, u]R <
W of R[v*, u]R + (0), we are finished.

Assume R[v*, u]R = (0) for all u, ve W, then [+*, ] R is a nilpotent
ideal, hence [+*, u] = 0 for all u,ve W. As [¢v*,a] = [v, va + av]e W,
[+ [v*, a]] = 0. Thus, by remarks in §1, v*e Z.

The obvious corollary holds in the case where R is simple.

3. K-strong Lie ideals. Let R have an involution, =, and let
U be a K-strong Lie ideal. For w,ve€ U and k,l€ K, the following
are in U: kul + luk, klu + wlk, and wku. We associate with U the
set B(U) = {be R: ba — a*b*c U for all ae R}. This is the analog for
Lie ideals of the set which Baxter [3] uses in his study of the Jordan
structure of S. When there is no confusion, we write B(U) = B.

LEMMA 3.1.
(i) B is a right ideal
(ii) KBS B

(ili) w*e B for all ue U
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Proof. The proofs of (i) and (ii) are straightforward. We prove
(iii). As uwe U, va — a*(w)* = w’a — a*u’. Then

w'a — a*u? = {[u, ua+a*ul} + {u(ec — a*)u} .
The first { } is in U since ua + a*uc K. The second { } is in U
since (¢« — a*)€ K and U is K-strong.

Now from Lemma 1.2, we know that if U = (0), B # (0).
For ue U, ke K,ae R and b, ¢c € B, direct computation leads to the
following facts: ac*be B, ¢*be B, bkb* e BN U, and wkuec BN U.

THEOREM 3.2. Let R be a simple ring with characteristic not 2.
If Z = (0) or the dimension of R over Z is greater than 4, then U =
K.

The proof of this essentially the same as the proof of Theorem 7
[3; p. T]. As a corollary, we include a slight extension of a theorem
of Baxter [1; p. T4].

COROLLARY 3.3. Let R be as in the theorem. SoK, the additive
subgroup of R generated by the set {sok:s€ S and ke K} is a K-strong
Lie ideal and hence S-K = K.

The following results on <~ (B) and <2 (U) will be particularly
useful in the next section.

THEOREM 3.4. .&2(B) is a self-adjoint two-sided ideal.
Proof. The proof is similar to the proof of Theorem 2 [4; p. 563].

Knowing that .&7(B) is a two-sided ideal, we can easily show that
F(B)NB=(0) and & (B)yNnU = (0).

THEOREM 3.5. <(UN B) = < (U).

Proof. It suffices to show <~ (UN B) < <~ (U). Let be UN B,
keK, and xe <2(UNB). As bk—kbe UN B, kb = —x(bk — kb) = 0.
Thus, A (UN B K< . (UN B).

Let ue U, then v*ce UN B so zu® = 0. Since v’k + ku*e UN B,
auku = x(wk + kudu = 0. Let ae€ R;ua* + auc K, therefore 0 =
sul(ua* + auw)u = zulau’. If we replace a by ax, we have (zu’a)® = 0.
That is, 2u’R is a nil ideal of bounded index and so xzu® = 0 for any
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# € U. Upon linearization we obtain

(3.5.1) xuv = —zvu for wu,veU.
Since zuvu = —xvu®* = 0 and vkve U, we have
(3.5.2) su(vkv)u = 0.

Let we U and seS;zuv(ws + sw)vu = 0. Replacement of = by
2w, expansion of the expression, and repeated use of (3.5.1) yields,
0 = —awvuswvu. By repeated use of (3.5.1) and finally (3.5.2), we
have swvukwvy = 0. Given ac R, since a = s + k for some s€ .S and
ke K, we can write xwvuawvu = 0. Replace a by ax to obtain

cswou(ax)wouw = 0 .

Then zwvuR is a nilpotent ideal so zwvu = 0. As uk — kue U.
(3.5.3) 0 = swv(uk — ku) = —zwvku .

Let seS; awv(ws + sw)v = 0. Moreover, since swvwsv = 0, we have
zwvswv = 0. From (3.5.8), swvkwv = 0. As before, this implies

(3.5.4) xwv =0.

Immediately, 0 = zsw(vk — kv) = —awkv. In particular zwkw = 0.
Since swse€ K, sw(sws)w = 0. Also, 0 = zw(swk — kws)w = swswkw.
Again, letting @ = s + k£ for a ¢ R, we have zwawaw = 0. Via the
same techniques, 2w = 0 or x € & (U). Hence, X (UN B) & .~ (U).

4. Topological annihilator rings. In this section R will denote
a semiprime topological annihilator ring with continuous involution
such that 2R = R and if {2x,} is a net convergent to 0¢ R, then {,}
is also a net convergent to 0. U will be a closed K-strong Lie ideal.

The definition of an annihilator ring says that <(R) = Z#(R) =
(0) and if A(L) is a closed right (left) ideal not equal to R, then
Z(A) # (0) F L)+ (0). So if B= B(U), H= &~ (B)@ B is dense
in R. It is easy to show that if U is closed, B is closed. If X &
R, Cl(X) will denote to topolopical closure of X.

The following results have proofs which are similar to those given
by Baxter in [3; p. 4].

THEOREM 4.1.
(i) B is a two-sided ideal
(ii) {Z (B} = £ (BY)
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(iii) B = B*
ivy U&EB.

For any «,yecR, we adopt the following notation: (z,y), =
2y — y*2* and (z, %), = 2y + y*&*. Using the results of the last
theorem, we prove

THEOREM 4.2. U = CN K where C is a closed two-sided ideal.

Proof. Let V be the additive subgroup of S generated by the
set {(u,a);:ue U and ac R}. If we show (U + V) to be a right ideal,
since it is self-adjoint, it must be a two-sided ideal.

Since US B, (u,a), = ua + a*uc U forallae B. Let ce R, then

auc + c*ua* = ((a, )z, ¢); + (4, (—a*ec)), eV
and
auc — c*ua* = ((a, w)z, ¢); + (4, (—a*ec)); e V.

Since 2R = R, for any 2d € R, w(2d) = (u, d), + (u,d);€ U+ V. Thus,
URS U+ V. Also,

(u, );(2d) = (u, ad), + {a*u(—d) + (—d)*ua} + (u, ad),
+ {d*ua — a*ud}e U+ V

and VRS U+ V. Thus (U+ V)RS U + V, or the desired conclu-
sion that (U + V) is a two-sided ideal.

Let C=Cl(U+ V). USCNK. Let xeCnN K. There exists
a net {u, + v,} such that u, + v,— 2 where u,€ U and v,€V. As
2K, Ue + V)* = — Uy + v,— 2* = —2. Thus u, — v, — 2. By sub-
tracing these expressions we obtain 2u,—2x. Therefore u,—2. Since
%, € U and U is closed, xe U. Hence, CN K = U.

5. HK-strong Lie ideals. In this section U is an HK-strong
Lie ideal. R will have those properties as described in §1. We
further assume that S8R = R and R is 3-torsion free. HK-strong Lie
ideals were defined by Herstein [5]. Baxter [2; p. 893] showed that
if R is simple with either Z = (0) or the dimension of R over Z
greater than 16 with UZ Z, then U = K. This can be refined by
using entirely different techniques.

As before, we associate with U the set B(U). Bis a right ideal
and KB< B. However, we are no longer guaranteed that u’*e B for

all we U. Hence the possibility that B = (0) does arise.

LEMMA 5.1. Let u,v,we U and ke K.
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(i) 6vuve U

(ii) 6wvw + wvu) e U

(iil) wv(wk — kw) + (wk — kw)vuec U
(iv) wv — vu’e B.

Proof. (i) and (ii) follow in a manner similar to the remarks
preceding Theorem 2.6. (iii) holds because 2R = R and 3R = R.
Finally (iv) can be verified in the same manner as [6; p. 33].

If B= (0), wv—ou® = 0 forall u, ve U. Let seS. Since [u? s] =
[w, us + su] € U, [u* [u* s]] = 0. Also, if ke K, [u*, [u, k]] = 0, there-
fore [u?, [u?, k]] = [«, wolu, k]] = 0. We know that this implies

[w?, [w?, a]] = 0

for all ae R. Thus, from the first section, u*¢ Z.
We now refine Baxter’s theorem.

THEOREM 5.2. Let R be simple and of characteristic not 2 or 3.
If Z = (0) or the dimension of R over Z is greater than 4, then either
U=K or U*cZ for all ue U.

Proof. If B+ (0), by the remarks preceding Lemmas 1.1 and 5.1
we have the alternative result.

We relate the notations of K- and HK-strong Lie ideals by calling
attention to the fact that if U is HK-strong, BN U is K-strong.
Clearly BN U is a Lie ideal. If ke K and we BN U, then [k, [k, u]] =
ku + uk® — 2kuk. Now, ku + uk*e BNU by the definition of B.
Therefore, kuke BN U since 2R = R.

Herstein [6; p. 28] has shown that K® is a Lie ideal of R. It is
not difficult to show that if U is an HK-strong Lie ideal such that
BNU=(0), then any x € BN S commutes with every element in K>
We need this fact to prove

THEOREM 5.3. Let R be a topological anninilator ring with pro-
perties as described in the previous section. Assume also that 3R = R
and if {3z} is a net convergent to 0e R, {x,} is a net converging to
0. If U is a closed HK-strong Lie ideal, then either w*e Z for all
ue U, U contains the intersection of K with a closed two-sided ideal,
or vy — vule & (K) for all uw,ve U.

Proof. 1f B= (0),w’cZ. Assume B=(0) and BN U # (0).
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Since BN U is K-strong, Theorem 4.2 guarantees the existence of C,
a closed two-sided ideal, such that CN K = BN U< U.

Let BNU = (0). As K*® is a Lie ideal of R, t = u*v — vu’e K*N
(BN S). Also, by the remarks preceding the theorem, [¢, [¢,a]] =0
for all a € BR. Therefore, tec Z. Let ke K;th+kt=th—k*t*e BNU=
(0). Therefore, tk = 0 or t = w*v — vu’e . (K).

7. Application. We now parallel some of the results obtained
by Small [9] and Riedlinger [8] concerning an additive mapping whose
multiplicative property is defined relative to an involution. Let R be
a simple ring with involution, *, and characteristic not 2 such that
Z = (0) or the dimension of R over Z is greater than 4. Notice that
under these conditions R cannot be commutative. Let ¢ be a nozero
additive mapping from R into an associative ring A. Assume R =
6(R), the subring of A generated by {4(r): » € R}, is a noncommutative
prime ring such that 2R’ = R’ and R’ is 2-torsion free. Let ¢ enjoy
the further property that ¢(xy — y*2*) = ¢(x)é(y) — #(y*)s{x*) for all
z,ye R. We would like to show that ¢ is an associative isomorphism.
We will have occasion to use the following theorem by Baxter [1; p.
73] which was slightly modified by Herstein [6; p. 29]: If R is such
that 2R = R and K = R, then S = K-K, the additive subgroup of R

generated by the set {kol: k, e K}.

The next lemma is the key to much of what follows.

LEemmA 6.1. Kero N K = (0) .

Proof. We show Kero N K to be a K-strong Lie ideal. Letle
Kerg N K and ke K. Since ¢([k, I]) = [¢(k), (I)] = 0, Kerg N K is a
Lie ideal of K. Thus [k, [k, l]]eKer¢ N K or ¢([k, [k, 1]]) = (0). We
may expand this and obtain

s(lk, [k, U]) = 6L — 2klk + U = g(kl + 1K) — 26(klk) = 0 .

Now, oKl + k) = ¢(k)¢(l) + ¢(1)p(k*) = 0. Therefore ¢(klk) = 0 or
Ker ¢ N K is a K-strong Lie ideal.

By Theorem 3.2 either Kerg N K = (0) or Kerg N K = K. Assume
the latter. Fors,teSand k,lc K, [(k), ¢(1)] = 0 and [4(k), ¢(s)] = 0.
As [s, t] € K, 0=¢([s, t]) =[¢(s), 6(t)]. Because any x € R can be written
as ¢ = s + k, we have [¢(x), ¢(y)] = 0 for all z, ye R. Therefore, R’
is commutative, a contradiction. Thus Ker ¢ N K = (0).

Let =,y € R, then
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((xy — y*z*)a* — a(ey — y*a*)*) = {$(@)d(y) — S(¥*)d(x*)}p(2*)
—s@){s(y*)g(x*) — s(x)p(v)} .
If y = s, we can write,
#((xy — y*a*)a* — a(y*as* — ay)) = s(@’s — s2*’) = g(@)g(s) — H(s)p(x*")
and

{8(@)p(y) — s(y*)s(@*)}b(x*) — S@)s(¥*)d(x*) — ¢(x)d(¥)}
= ($(x))°6(s) — #(s)(s(2™))" .
This can be rewritten as
(6.1.1) {8(@") — (3@)}g(s) = s(s){(a*) — (8(x*))*}
for all x€ R and seS.

LEMMA 6.2. For any se€S and
ke K, {¢(s) — (8(8))"} and {p(K") — (¢(k))"}

are in Z', the center of R'.

Proof. Set w equal to either {¢(s®) — (¢(s))’} or {#(K®) — (¢(k))*}.
From (6.1.1), ¢(s)u = ug(s). Consider 2¢(¢t, ---t,) where £, €S. We
write

20tk oo+ ) = bty o ooty + ty o oo Gt)
+ ¢(tlt2 s tn - tn e tztx)
= ¢(t1t2 coel, + 8,0 t2t1)
+ {¢(t1)¢(t2 e t,,,) - ¢(t,,, e t2)¢(t1)} .
By induction, % commutes with ¢(f,---¢,) and é(, --- t,). Since
bty eeety + by ooe 4t, €S, u commutes with (L, «++ ¢, + T, +-+ Gt).
Thus, [u,¢(tt, -+~ t,)] = 0. That is, w commutes with ¢(S). But
under our hypothesis, S = R. Hence, » commutes with ¢(R) and,
indeed, with ¢(R) = R’. Thus ue Z'.

COROLLARY 6.3.
(6.3.1) {6(x*) — (p(x))*}e Z" for all xzeR.

Proof. If © =s+ k, since ¢(sk + ks) — {¢(s)¢(k) + ¢(k)¢(s)} = 0,
{p(2") — (6(2)"} = {8(s") — (8(s))"} + {8(K") — (8(K))*} € 2.

Let z,ye R. If we linearize (6.3.1), we obtain
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d(xy + yx) — {$()(y) + d(¥)p(2)} € Z' .

In particular, for s,teS, ¢(st + ts) — {¢(s)s(t) + #(t)p(s)} € Z’. Also,
B(st — ts) — {#(s)8(t) — ¢(t)6(s)} = 0. Addition of these terms leads us
to ¢(st) — ¢(s)é(t) € Z’. Similarly, we can show that ¢(kl) — ¢(k)s(l) €
Z' for k,lc K.

For notational convenience, let ¢(xy) — ¢(x)é(y) = «* for any =,y €
R. Thus the above says that s, k'€ Z’. The definition of ¢ tells us
that s* = —k°. Also, we have k' = [*. Since these terms are in Z’,
é(8)k" — l*¢(s) = 0. Upon expansion and rearrangement of terms, we
obtain

(6.4.1) {g(skl — ks)} — {p(s)s(k)p(l) — 8(Ds(k)$(s)} = 0 .

We can write ¢(sk — ks) = ¢(sk)p(l) — #(1)¢(ks). Replacement of this
in (6.4.1) and rearrangement of terms yields

$*6() — sk = 0
or
(6.4.2) st¢(l) = s(k* = —p(l)s* .

Let m € K, by the above, there exists 2’ € Z’ such that ¢(ml+Im)=
s(m)e(l) + ¢(D)g(m) + 2z’. As a result of (6.4.2) and this relation we
have that s*¢(ml + Im) = ¢(ml + Im)s* or s* commutes with ¢(K-K).
The preliminary remarks guarantee for us that Ke K=S. 8o, using an
argument exactly like that in Lemma 6.2, we can show

(6.4.3) steZ .
LEMMA 6.4. xve Z’ for all x,y€ R.

The proof follows directly from (6.4.3) and the remarks immedi-
ately after Corollary 6.3.

COROLLARY 6.5. If Z' = (0), ¢ is an associative isomorphism.
Proof. As Z' = (0), ¢(xy) — #(x)¢(y) = 0. Thus ¢ is an associa-
tive homomorphism and ¢(R) = ¢(R). Moreover, since R is simple, ¢

is an associative isomorphism.

Let 2/(# 0)e Z’. Since &7 (2") = {r'e R: 7'z’ = 0} is a two-sided
ideal in a prime ring, .7 (z') = (0).

LEMMA 6.6. k° =s"=0 for all se8, keK.

Proof. From (6.4.2) s*¢(l)= —¢(l)s* for I ¢ K. By Lemma 6.4, s* ¢



168 A. J. KARAM

7', therefore s*¢(l) = 0. Suppose s* == 0. By the remarks preceding
the lemma, we have ¢(I) = 0, that is, K < Ker ¢. Therefore, Ker ¢ N
K = K, a contradiction. We conclude that 0 = s* = —k°.

COROLLARY 6.7. ¢(xy — yx) = ¢(x)6{y) — 6(y)s(x) for x,yc R.

We have shown that when Z’ = (0), then ¢ is an associative iso-
morphism. Therefore, the following theorem is proved except when
Z' =+ (0).

THEOREM 6.8. ¢ s an associative isomorphism.

Proof. From Lemma 6.6, (s** — 4(s)s* = 0. Expansion and rear-
rangement of terms leads to (s%)* — #(s)s* = (s)** — s°¢(k) = 0. From
Lemma 6.4, (s)** e Z’ so s°¢(k)e Z’. Let le¢ K. There exist 2, and z;
in Z’ such that s'¢(k) = 2 and s'¢(l) = z;. As s°e Z’, we can write
0 = [z}, 2] = (s)*[¢(k), 6(D)] for all se S and k,lc K.

If (s°)* = 0 for some se S, then by the remarks preceding Lemma
6.6, [¢(k), o(1)] = 0 for all k,le K. As ¢([k,1]) = [¢(k), 6(1)] = 0, we
conclude that [K, K] = Ker¢ N K = (0). This implies K = R is com-
mutative, a contradiction. So (s°)* = 0 for all se€S. Since the center
of a prime ring is an integral domain, s* = 0. Upon linearization of
this expression, we obtain ¢(st + ts) — {#(s)¢(t) + 6(t)s(s)} = 0 for all
t,seS.

For k,le K, k'€ Z'. Thus there exists z;€ Z’ such that k' — z; =
0. Since ¥ eS8, (k)" =0 and so (k*)' — ¢(k){k' — #} = 0. Expansion
and rearrangement of terms leads to k%" — k*¢(l) + z;6(k) = 0. In view
of Lemma 6.4, there is an element z, € Z’ such that k* = z{. There-
fore we can always find zi, 2i, € Z’ such that k*s(l) = zi¢(k) + 2, where
k is an arbitrary fixed element in K and ! is allowed to vary in K.
Note that k*c Z’. For mec K, there are z, and 2z, in Z’ such that
k*¢(m) = zg(k) + ;. Thus 0 = (E)[4(), ¢(m)] = [k*¢(D), K*6(m)]. Via
the same argument as above, we can show k* = 0. Linearization of
this expression leads to o(kl + k) — {¢(k)¢(l) + ¢(D)¢(k)} = 0. Now,
using this fact and the fact that both ¢(sk) — 4(s)¢(k) = 0 and
o(st + ts) — {a(s)d(t) + ¢(t)¢(s)} = 0, we have that

d(xy + y») = 9(x)g(y) + 9(y)(x)
for all », ye R. From Corollary 6.7, we know
g(xy — yr) = s(@)3(y) — 4(y)o() .

Addition of these two expressions yields ¢(xy) = ¢(x)é(y) or that ¢ is
an associative homomorphism. Therefore, ¢(R) = ¢(R) and Ker ¢ = (0)
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since R is simple. Hence ¢ is an associative isomorphism.
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