
PACIFIC JOURNAL OF MATHFMATICS
Vol. 43. No. 1, 1972

STRONG LIE IDEALS

ALBERT J. KARAM

R is 2-torsion free semiprime with 2R = R. A Lie ideal,
U, of ϋί-strong if ana e U for all α e R,ue U. One shows
that U contains a nonzero two-sided ideal of R. If R has an
involution, *, (with skew-symmetric elements K) a Lie ideal,
U, of K is ϋΓ-strong if kuk e U for all k e K, ue U. It is
shown that if R is simple with characteristic not 2 and
either the center, Z, is zero or the dimension of R over the
center is greater than 4, then U ~ K. If R is a topological
annihilator ring with continuous involution and if U is closed
iΓ-strong Lie ideal, U = C Π K where C is a closed two-sided
ideal of R. A Lie ideal, U, of K is HK-strong if %3eί/ for
all ue U. A result similar to the above result for iΓ-strong
Lie ideals can be shown. Let R be a simple ring with in-
volution such that Z — (0) or the dimension of R over Z is
greater than 4. Let φ be a nonzero additive map from R
into a ring A such that the subring of A generated by
{φ(x): x e R) is a noncommutative, 2-torsion free prime ring.
Suppose φ(xy — y*x*) = φ{x)ψ{y) — φ(y*)Φ(%*) for all x, y e R.
As an application of the above theory, φ is shown to be an
associative isomorphism.

1* Introduction* R will denote a semiprime ring such that
2R = R and if 2r = 0, then r = 0. We call the latter property 2-
torsion free. Z will denote the center of R. If J? has an involution,
*, defined on it, S and K will be the set of symmetric and skew-
symmetric elements respectively. The Lie and Jordan products are
[x, y] — xy — yx and χoy = xy + yx for any x, y e R. If J , 7 g R,
[X, Y] will denate the additive subgroup generated by the set
{[x,y]:xeX and ye Y}. An additive subgroup, U, of R is a Lie
ideal of iϋ if [U, R] £ Ϊ7. If iϋ has an involution, we can similarly
define a Lie ideal of K.

This paper is concerned with the study of different classes of Lie
ideals of both R and K. A Lie ideal, U, of R is said to be iϋ-strong
if aua e U for all a e R, u e U. If U is a Lie ideal of K, U is K-(HK-)
strong if kuk e U (u* e U) for all ke K,ue U.

In the classical theory of the Lie structure of an associative ring,
the main theorem [6; Th. 1.3] states: if R is simple and U is a Lie
ideal of R, either U £ Z or [iϋ, ϋ?] g Ϊ7. We attempt to develop some
criteria for differentiating between Lie ideals of R containing [R, R]
and R itself. Similar criteria are developed for Lie ideals of K. We
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will have occasion to use the following results of Herstein [6; pp
1,5,10, and 28]:

( i ) R has no one-sided ideals which are nil of bounded index;
(ii) If aeR is such that [a, [a, x]\ = 0 for all x e R, then aeZ;
(iii) Let R be simple with involution and characteristic not 2.

If Z = (0) or the dimension of R over Z is greater than 4, then R =
S = K where S and K are the subrings of R generated by S and K
respectively.

If I S R, &{X) = {aeR:Xa = (0)} and J^(X) - {a e R: aX =
(0)}. The next two lemmas are analogs of a results of Baxter [3;
p. 2].

LEMMA 1.1. If U is a Lie ideal of R such that u2 = 0 for all
u e U, then U = (0).

Proof. Let u e U, a e R. As [u, a] e U, [u, a]2 = 0, Therefore,
uauau = u[u, a]2 = 0 and uR is nil of bounded index. By the previously
mentioned results, uR — (0). But R is semiprime, so £?{R) — (0).
Thus u = 0.

LEMMA 1.2. Lei i? tow cm involution, *. If U is a Lie ideal
of K such that u2 — 0 /or αW ue U, then U = (0).

Proof. Let u, ve U, then 0 = (u + T;)2 — u2 — v2 = ut? + vu. As
[̂ , v] G U, 2uv e U. Since 2R = R, [uv, K] g C/. Thus, for each keK,
uo[uv, k] = 0, and so, even more v{uo[uv, k]} = 0. Since u and v anti-
commute, expansion of this expression yields uvkuv = 0. Now suvs e if
for any s e S . So uv(suvs)uv = 0. Therefore, given ae R, a = s + k
where se S and keK, then (uv)a(uv)a(uv) = 0. We conclude that i^i?
is nil of bounded index. This guarantees uv = 0 /or all u,ve U.
Now, — uku = ^[^, &] = 0. Repeating the previous arguments for s e
S and keK, we conclude that % = 0.

2* iϋ-strong Lie ideals* In this section U will denote an it-
strong Lie ideal. If a, be R and u, ve U, one can easily show that
the following are in U: aub + bua, abu + uba, and uau. We associate
with U the set Bυ = {be R: aobe U for all αeiϋ}. This set is a Lie
ideal of R and ^ 2 e Bv for all ue U. The latter can be seen by
observing that if we set b = u above, we obtain au2 + u2a e U. Thus,
via Lemma 1.1, U Φ (0) implies BLT Φ (0).

LEMMA 2.1.

(i) Bn is an R-strong Lie ideal
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(ii) u2xu2 e Bσ f]U for all u e U, x e R.

Proof.
(i) We know t h a t BΌ is a Lie ideal of R. For arb i t rary x,ye

R and beBσ, [x°b,y] and [x, b]°y are in U. Thus, by adding and
subtract ing these terms, we have t h a t xby — ybx and bxy — yxb are in
U. Now,

%(yby) + (yby)x = {{xy)by — yb(xy)}

+ {yb(yx) - {yx)by} + {y(bx + xb)y) .

Since each term on the right is in U, x{yby) + (yby)x e U and Bσ

is ϋί-strong.
(ii) As u2 G BUf u2xu2 e Bυ. Moreover, u2xu2 = u(uxu)u e U. There-

fore, u2xu2 e Bσ ΠU.

THEOREM 2.2. C = Bσ Π U is a nonzero two-sided ideal.

Proof. Note that C is an iϋ-strong Lie ideal. Also C Φ (0) since
if this were so, for each u e U, u2R would be a nil right ideal of
bounded index. Let beC and x, y e R; xb + bxe U. Also

(xb + bx)y + y(xb + bx) — {x(by — yb) — (by — yb)x)

+ {{yx)b + b{yx)}

+ [b{xy) + (yx)b) .

As each term on the right is in U, (χob)oye U. Thus, xobeC. Now
2xb = xob + [x, b] e C. Since 2R = R,Rb^ C. Similarly, bR S C.
Thus C is a nonzero two-sided ideal of R.

We note that C is the same as the set Lσ = {ue U:uae U for
all ae R) which was used by Zuev [10] in his study of the Lie struc-
ture of R.

COROLLARY 2.3. If R is simple and UΦ (0), U = R.

This corollary allows us to study the jβ-strong structure of the
ring as it relates to minimal idempotents of R. If e is a minimal
idempotent, eUe is an eJSe-strong Lie ideal. Since eRe is a division
ring either eUe = (0) or eUe = eRe. We use this fact to prove the
next theorem.

THEOREM 2.4. Let H be the homogeneous component of the socle
which contains e. Then either HSU or i ϊ £ ^f(U) ΓΊ
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Proof. Recall that H is a simple ring. The theorem then follows
by considering H Π U.

COROLLARY 2.5. If R is completely reducible, U is the direct sum
of the homogeneous components of the socle which it contains.

This result is similar to that of Kaplansky [7].

Assume that R has the additional properties that 3R = R and R
is 3-torsion free. Let W be any Lie ideal of R such that u*e W for
all ue W. Let u,veW. We have a — 2(v2u+vuvJ

ruv2) — (u+v)3 +
(u — v)z — 2uz e W, β = [v, [v, u]] e W and 7 = [v\ u] e W. From these
we have: 3(v2u + uv2) = a + βe W, 6vuv = a — 2/3 e W, 6v2u — a + 3τ € W,
and 6uv2 = a — 37 e W. We now have enough to show a result similar
to Theorem 2.2.

THEOREM 2.6. Let W hz a Lie ideal of R such that uzeW for
all ue W. Then either W contains a nonzero two-sided ideal or u2 e Z
for all ue W.

Proof. Let a,beR and ue W. Since 2α[α, u] — [α, [α, u]] + [α2, u] e
W and 2iϋ = R, a[a, u] e W. Linearization of this expression yields
a[b, u] + b[a, u] e W. Upon multiplication by 6 and replacement of b
by v\ we obtain 6{α[^2, u] + v2[a, u]} e W. As 6v2[a, u] e W, 6α[V, u] e W
and this implies a[v2, u] e W. It immediately follows that R[v2, u]RQ
W of R[v2, u]R Φ (0), we are finished.

Assume R[v2, u]R = (0) for all u, ve W, then [v2, u]R is a nilpotent
ideal, hence [̂  2, w] = 0 for all u,veW. As [̂  2, α] = [v, va + αv] e Wy

[v2, [v2, a]] — 0. Thus, by remarks in §1, v2eZ.

The obvious corollary holds in the case where R is simple.

3* ^-strong Lie ideals* Let R have an involution, *, and let
U be a if-strong Lie ideal. For u,veU and k,le K, the following
are in U: kul + luk, klu + ulk, and u&u. We associate with U the
set B(U) = {beRiba - α*6* e £7 for all α e JB} This is the analog for
Lie ideals of the set which Baxter [3] uses in his study of the Jordan
structure of S. When there is no confusion, we write B{U) — B.

LEMMA 3.1

( i ) B is a right ideal
(ii) KBSB
(iii) u2eB for all ue U
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Proof. The proofs of ( i ) and (ii) are straightforward. We prove
(iii). As ue U, u2a — α*(V)* = u2a — a*u2. Then

u2a — a*u2 = {[u, ua + a*u]} + {u(a — a*)u} .

The first { } is in U since ua + a*u e K. The second { } is in U
since (α — α*) e K and £7 is iΓ-strong.

Now from Lemma 1.2, we know that if U Φ {Q),BΦ (0).
For we U, ke K, ae R and b,ceB, direct computation leads to the

following facts: αc*δ e B, c*δ e 5, bkb* e B Π E7, and tG&w e J5 Π U.

THEOREM 3.2. Lei R be a simple ring with characteristic not 2.
If Z = (0) or £/&e dimension of R over Z is greater than 4, then U =
K.

The proof of this essentially the same as the proof of Theorem 7
[3; p. 7]. As a corollary, we include a slight extension of a theorem
of Baxter [1; p. 74].

COROLLARY 3.3. Let R be as in the theorem. SoK, the additive
subgroup of R generated by the set {sok: seS and ke K} is a K-strong
Lie ideal and hence SoK — K.

The following results on ^f(β) and ^f(U) will be particularly
useful in the next section.

THEOREM 3.4. J*f{B) is a self-adjoint two-sided ideal.

Proof. The proof is similar to the proof of Theorem 2 [4; p. 563].

Knowing that Sf{B) is a two-sided ideal, we can easily show that
ΠB=(0) and £f(B) Π Z7 = (0).

THEOREM 3.5.

Proof. It suffices to show ^(UΓ) B) £ £?{U). Let beUnB,
keK, and xe £?(UΓi B). As bk-kbeUf] B,xkb = -x(bk-kb) = O.
Thus, £f(UΓίB)KS£f(UΓiB).

Let u e U, then w3 e U Π B so xuz = 0. Since u2k + ku2 e U Π B,
xu2ku = ίc(w2A: + A;i62)̂  = 0. Let ae R; ua* -f aue K, therefore 0 =
xu2(ua* + au)u = xu2au2. If we replace α by αa;, we have (#M2α)2 = 0.
That is, xu2R is a nil ideal of bounded index and so xu2 = 0 for any
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u e U. Upon linearization we obtain

(3.5.1) xuv — — xvu for u, v e U .

Since xuvu = — xvu2 = 0 and vkv e U, we have

(3.5.2) xu{vkv)u = 0 .

Let w e U and s 6 <S; xuv(ws + sw)vu = 0. Replacement of a; by
aw, expansion of the expression, and repeated use of (3.5.1) yields,
0 = —xwvuswvu. By repeated use of (3.5.1) and finally (3.5.2), we
have xwvukwvu — 0. Given a e R, since a = s + k for some s e S and
& e iΓ, we can write xwvuawvu = 0. Replace α by α# to obtain

xwvu(ax)wvu = 0 .

Then xwvuR is a nilpotent ideal so xwvu — 0. As uk — kue U.

(3.5.3) 0 = xwv(uk — to) = —xwvku

Let s G S; xwv(ws + sw)^ = 0. Moreover, since xwvwsv — 0, we have
xwvswv — 0. From (3.5.3), xwvkwv = 0. As before, this implies

(3.5.4) xwv = 0 .

Immediately, 0 = xw(vk — kv) — —xwkv. In particular α w&w = 0.
Since sws e K, xw(sws)w = 0. Also, 0 = xw(swk — kws)w = xwswkw.
Again, letting α — a + k for α e i?, we have xwawaw = 0. Via the
same techniques, xw = 0 or xe £?(U). Hence, <2f(Uf) B) g

4* Topological annihilator rings* In this section R will denote
a semiprime topological annihilator ring with continuous involution
such that 2R = R and if {2xa} is a net convergent to 0 e R, then {&„}
is also a net convergent to 0. U will be a closed ϋΓ-strong Lie ideal.

The definition of an annihilator ring says that ^f(R) =
(0) and if A(L) is a closed right (left) ideal not equal to R, then
J5f (A) ^ (0) ^ ( L ) ^ (0). So if B = B(U), H = Sfiβ) 0 B is dense
in J?. It is easy to show that if U is closed, B is closed. If J g
R, Cl(X) will denote to topolopical closure of X.

The following results have proofs which are similar to those given
by Baxter in [3; p. 4].

THEOREM 4.1.

1i) B is a two-sided ideal
(ii)
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(iii) B= B*
(iv) USB.

For any x,yeR, we adopt the following notation: (x, y)L =
xy — 2/*#* and (x, y)j — xy + y*x*. Using the results of the last
theorem, we prove

THEOREM 4.2. U — C Π K where C is a closed two-sided ideal.

Proof. Let V be the additive subgroup of S generated by the
set {(u, a)/, ue U and ae R}. If we show (U + V) to be a right ideal,
since it is self-ad joint, it must be a two-sided ideal.

Since U § B, (u, a)L — ua + a*u e U for all a e R. Let ceR, then

auc + c*ua* = ((α, u)L, c)L + (w, ( — α*c))L G F

and

c*^α* = ((α, u)L, c)j + (^, (-α^c))^ e V.

Since 2i2 = R, for any 2d e R, u(2d) = (w, d)χ, + (w, d)j e U + F. Thus,
S U + V. Also,

(u, a)j(2d) = (u, αd)L + {α*^(—d) + (—d)*ua} + (w, αd)^

+ {d*ua - α*^d} e C7 + V

and FJSS ί7+ F. Thus (U + F) i?S Z7+ F, or the desired conclu-
sion that (17+ F) is a two-sided ideal.

Let C = Cl(U + F). Z7£ C n JBΓ. Let α? e C Π K. There exists
a net {ua + vβ} such that ua + va--+x where uae U and va e F. As
x e K, {ua + va)* = -ua + ^α -+ a?* = —a?. Thus ^α — ̂ α -> α?. By sub-
tracing these expressions we obtain 2ua—>2x. Therefore ua-+x. Since
uae U and U is closed, x e U. Hence, C Π K = Z7.

5* iίiΓ-strong Lie ideals* In this section Z7 is an iMC-strong
Lie ideal. Jδ will have those properties as described in §1. We
further assume that 3R = R and R is 3-torsion free. iJif-strong Lie
ideals were defined by Herstein [5]. Baxter [2; p. 393] showed that
if R is simple with either Z = (0) or the dimension of R over Z
greater than 16 with Uξ£Z, then U = K. This can be refined by
using entirely different techniques.

As before, we associate with U the set B(U). B is a right ideal
and KB £ B. However, we are no longer guaranteed that u2e B for
all ueU. Hence the possibility that B = (0) does arise.

LEMMA 5.1. Let u,v,we U and ke K.
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( i ) βvuv e U
(ii) 6(uvw + wvu) 6 U
(iii) uv(wk — kw) + (wk — kw)vue U
(iv) u2v — vu2 e B.

Proof, ( i ) and (ii) follow in a manner similar to the remarks
preceding Theorem 2.6. (iii) holds because 2R = R and 3R = R.
Finally (iv) can be verified in the same manner as [6; p. 33].

If B = (0), u2v- vu2 = 0 for all u,veU. Let seS. Since [u2, s] =
[u, us + su] e U, [u\ [u2, s]] = 0. Also, if ke K, [u2, [u, k]] = 0, there-
fore [u\ [u2, k]] = [u2, uo[u, k]] = 0. We know that this implies

[u\ [u2, a]] = 0

for all a e R. Thus, from the first section, u2 e Z.

We now refine Baxter's theorem.

THEOREM 5.2. Let R be simple and of characteristic not 2 or 3.
If Z = (0) or the dimension of R over Z is greater than 4, then either
U= K or U2eZ for all ueU.

Proof. If BΦ(G), by the remarks preceding Lemmas 1.1 and 5.1
we have the alternative result.

We relate the notations of K- and ίfif-strong Lie ideals by calling
attention to the fact that if U is iίi£-strong, B Π U is If-strong.
Clearly B f] U is a Lie ideal. If ke Kand ueB f] U, then [k, [k, u]] =
k2u + uk2 — 2kuk. Now, k2u + uk2 e B Π U by the definition of B.
Therefore, kuk e B Π U since 2R = R.

Herstein [6; p. 28] has shown that K2 is a Lie ideal of R. It is
not difficult to show that if U is an ϋΈΓ-strong Lie ideal such that
B Π U = (0), then any x e B Π S commutes with every element in K2.
We need this fact to prove

THEOREM 5.3. Let R he a topologίcal anninilator ring with pro-
perties as described in the previous section. Assume also that SR — R
and if {3xa} is a net convergent to 0 e R, {xa} is a net converging to
0. If U is a closed UK-strong Lie ideal, then either u2 e Z for all
ue U, U contains the intersection of K with a closed two-sided ideal,
or u2v — vu2 e £f(K) for all u, ve U.

Proof. If B = (0), u2 € Z. Assume B Φ (0) and B Π U Φ (0).
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Since B Π U is if-strong, Theorem 4.2 guarantees the existence of C,
a closed two-sided ideal, such that CΠK=BnU^U.

Let B Π U = (0). As K2 is a Lie ideal of R, t = u2v - vu2 eK2Π
(Bf)S). Also, by the remarks preceding the theorem, [t, [t, a]] = 0
for all a e R. Therefore, teZ. Let k e K; tk + kt = tk-k*t* e BΓ\U =
(0). Therefore, tk = 0 or t = u2v - vu2 e ^

7* Application* We now parallel some of the results obtained
by Small [9] and Riedlinger [8] concerning an additive mapping whose
multiplicative property is defined relative to an involution. Let R be
a simple ring with involution, *, and characteristic not 2 such that
Z = (0) or the dimension of R over Z is greater than 4. Notice that
under these conditions R cannot be commutative. Let φ be a nozero
additive mapping from R into an associative ring A. Assume Rr —
Φ(R), the subring of A generated by {φ(r): r e R], is a noncommutative
prime ring such that 2Rr = R' and Rf is 2-torsion free. Let φ enjoy
the further property that φ(xy — y*x*) = Φ{x)Φ(y) — φ(y*)φ(x*) for all
x, y G R. We would like to show that φ is an associative isomorphism.
We will have occasion to use the following theorem by Baxter [1; p.
73] which was slightly modified by Herstein [6; p. 29]: If R is such
that 2R = R and K = R, then S = KoK, the additive subgroup of R
generated by the set {kol: k, I e K).

The next lemma is the key to much of what follows.

LEMMA 6.1. Ker φ n K = (0) .

Proof. We show Ker φ Π K to be a iΓ-strong Lie ideal. Let I e
Ker φ Π K and k e K. Since φ([k, I]) = [φ(k)9 Φ(l)] = 0, Ker φ Π K is a
Lie ideal of iΓ. Thus [k, [k, I]] e Ker φ Π iΓ or ^([ft, [A;, ί]]) = (0). We
may expand this and obtain

φ([k, [k, I]]) = φ(k2l - 2klk + Ik2) = φ(k2l + Ik2) - 2φ(klk) = 0 .

Now, φ(k2l + Ik2) = φ(k2)φ(l).+ Φ(l)Φ(k2) = 0. Therefore φ{klk) = 0 or
Ker φ Π if is a Z-strong Lie ideal.

By Theorem 3.2 either Ker^ Π K = (0) or Ker φ Γ) K = K. Assume
the latter. For s,teS and k,leK, [φ(k), φ(l)] = 0 and [φ(k), φ(s)] = 0.
As [s, ί] G JBΓ, 0 = φ([s, t]) = [φ(s), Φ(t)]. Because any xe R can be written
as x = s + fc, we have [0(sc), ^(i/)] = 0 for all x,y e R. Therefore, R'
is commutative, a contradiction. Thus Ker^ Π K — (0).

Let x, y e R, then
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Φ((xy - y*x*)χ* - x(xy - y*xψ) = {Φ(χ)Φ(y) - Φ{y*)Φ{χ*))Φ{x*)

-Φ{x){Φ{y*)Φ{χ*) - Φ(χ)Φ(y)}.

If y = s, we can write,

Φ((xy - y*x*)x* - x(y*x* - xy)) = φ(x2s - so;*2) = Φ(x2)Φ(s) - Φ{s)φ{x*2)

and

{Φ(χ)Φ(y) - Φ(y*)Φ(χ*)}Φ(χ*) - Φ(χ){Φ(y*)Φ(χ*) - Φ{χ)Φ{y)}

= (Φ(x))2Φ(s) - Φ(s)(Φ(x*))2 .

This can be rewritten as

for all xeR and seS.

LEMMA 6 2. .For any s e S and

keKt{Φ(s2)-(Φ(s)y} and

are in Z', the center of R\

Proof. Set u equal to either {φ(s2) - (Φ(s))2} or {φ(k2) - (Φ(k))2}.
From (6.1.1), Φ(s)u = ̂ (s) Consider 2^(ί^2 ίn) where ίx e S. We
write

2φ(t1t2 . . . « . ) = ^(ίA ί» + tn

+ Φ(tltz ίn — *n # # * <£*l)

= ^(iA ί» + i» ίâ i)

ί ) ~ Φ(K t2)φ(tl)}

By induction, u commutes with φ(t2 tn) and φ(tn ί2) Since
iA in + in <2*, eS, u commutes with ($(ίA ί» + ίΛ i»ίi)
Thus, [u9 ΦitJz tn)\ = 0. That is, t6 commutes with ^(S) But
under our hypothesis, S = R. Hence, u commutes with φ{R) and,
indeed, with 'φ(R) = R'. Thus u 6 Z'.

COROLLARY 6.3.

(6.3.1) {φ(x2) - (Φ(x))2}e Z ' / o r αZZ x e R .

Proof. If a? = s + ft, since (̂sft + ks) - {̂ (s)̂ (ft) + Φ{k)φ{s)} = 0,
2) - (^))2} - {̂ (β2) - (̂ (s))2} + {φ(k2) -

Let x,yeR. If we linearize (6.3.1), we obtain



STRONG LIE IDEALS 167

Φ(χy + yx) - {Φ(χ)Φ(v) + Φ(y)Φ(χ)} e Z'.

In particular, for 8,teS, Φ(st + ts) - {Φ(s)φ(t) + Φ(t)Φ(s)} e Z'. Also,
φ(st — ts) — {Φ(s)φ(t) — φ(t)φ(s)} — 0. Addition of these terms leads us
to φ(st) — Φ(s)φ(t) e Z'. Similarly, we can show that φ(kl) — Φ(k)φ(l) e
Z' for k,leK.

For notational convenience, let Φ(xy) — φ(x)φ(y) — xy for any x, y e
R. Thus the above says that s\kιe Z'. The definition of φ tells us
that sk — —k*. Also, we have kι = lk. Since these terms are in Z',
φ(s)kι — lkφ(s) = 0. Upon expansion and rearrangement of terms, we
obtain

(6.4.1) {φ(skl - Iks)} - {φ(s)φ(k)φ(l) - Φ(l)Φ(k)φ(s)} = 0 .

We can write φ(sk — ks) = φ(sk)φ(l) — φ(l)φ(ks). Replacement of this
in (6.4.1) and rearrangement of terms yields

skφ(l) - φ(l)ks = 0

or

(6.4.2) skφ(l) = φ(l)ks = ~Φ(l)sk .

Let m e K, by the above, there exists z' 6 Zf such that φ(ml + lm) =
φ(m)φ(l) + Φ(l)φ(m) + z\ As a result of (6.4.2) and this relation we
have that skφ(ml + Im) = φ(ml + lm)sk or sk commutes with φ(KoK).
The preliminary remarks guarantee for us that KoK=S. So, using an
argument exactly like that in Lemma 6.2, we can show

(6.4.3) skeZ' .

LEMMA 6.4. xy e Z' for all x,yeR.

The proof follows directly from (6.4.3) and the remarks immedi-
ately after Corollary 6.3.

COROLLARY 6.5. If Z' — (0), φ is an associative isomorphism.

Proof. As Z' = (0), φ(xy) - Φ(x)Φ(y) = 0. Thus φ is an associa-
tive homomorphism and φ(R) = Φ(R). Moreover, since R is simple, φ
is an associative isomorphism.

Let z\Φ 0) 6 Z'. Since j^(z') = {r' e R': r'zf - 0} is a two-sided
ideal in a prime ring, sf(z') — (0).

LEMMA 6.6. k8 = sk = 0 /or αϊϊ seS,ke K.

Proof. From (6.4.2) s^(0 = - Φ(l)sk for Z e K. By Lemma 6.4, s* e
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Zf, therefore skφ{l) — 0. Suppose sk Φ 0. By the remarks preceding
the lemma, we have φ(l) — 0, that is, KQ Ker φ. Therefore, Ker φ n
K = K, a contradiction. We conclude that 0 = sk = — ks.

COROLLARY 6.7. φ(xy - yx) = Φ(x)Φ(y) - Φ(y)Φ(x) for x,yeR.

We have shown that when Z' = (0), then φ is an associative iso-
morphism. Therefore, the following theorem is proved except when
Z' Φ (0).

THEOREM 6.8. φ is an associative isomorphism.

Proof. From Lemma 6.6y (s2)k — φ(s)sk = 0. Expansion and rear-
rangement of terms leads to (sψ — φ(s)sk = (s)sk — ssφ(k) = 0. From
Lemma 6.4, (s)sk e Zr so ssφ(k) e Zf. Let I e K. There exist z[ and z'2
in Z' such that ssφ(k) — z[ and ssφ(l) = z[. As ss e Z', we can write
0 = [Z[, zf

2] = (ssf[φ(k), φ{l)\ f o r a l l s e S a n d J c , l e K .

If (ss)2 ^ 0 for some s e S, then by the remarks preceding Lemma
6.6, [φ(k)9 φ(l)] = 0 for all Jc,leK. As φ([k, I]) = [^(Λ)L^(i)] = 0, we
conclude that [K, K] <Ξ Ker ^ Π -SΓ = (0). This implies K = R is com-
mutative, a contradiction. So (ss)2 = 0 for all se S. Since the center
of a prime ring is an integral domain, ss = 0. Upon linearization of
this expression, we obtain φ(st + ts) — {Φ(s)φ(t) + Φ{t)φ{s)} — 0 for all
ί , s e S .

For k,leK,kι eZ\ Thus there exists ^ 6 Z* such that kι - z[ =
0. Since ^ 2 G S , (A:2)Z - 0 and so (k2)1 - φ(k){kι ~ z',} = 0. Expansion
and rearrangement of terms leads to kkl — kkφ(l) + z[φ{k) = 0. In view
of Lemma 6.4, there is an element z\ e Zf such that kkl = z[. There-
fore we can always find z'd, z[, e Z' such that kkφ(l) = z'zφ(k) + z\ where
k is an arbitrary fixed element in K and I is allowed to vary in K.
Note that kkeZ'. For me K, there are z[ and z[ in Zf such that
kkφ{m) = z[φ{k) + z\. Thus 0 = (kk)2[φ(l), φ(m)] = [kkφ(l), kkφ(m)]. Via
the same argument as above, we can show kk = 0. Linearization of
this expression leads to φ(kl + Ik) — {Φ(k)φ(ΐ) + Φ(ΐ)Φ(k)} = 0. Now,
using this fact and the fact that both φ(sk) — φ(s)φ(k) ~ 0 and

+ ts) - {φ(s)φ(t) + Φ(t)φ(s)} = 0, we have that

Φ(xy + yx) = Φ(χ)Φ(y) + Φ(y)Φ(χ)

for all x,y e R. From Corollary 6.7, we know

Φ(xy - yx) = Φ(x)Φ(y) - Φ(y)Φ(x) .

Addition of these two expressions yields φ(xy) = (̂α )̂ (̂ /) or that $5 is
an associative homomorphism- Therefore, φ(R) = φ(R) and Ker φ = (0)
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since R is simple. Hence ψ is an associative isomorphism.
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