STRONG LIE IDEALS

ALBERT J. KARAM

R is 2-torsion free semiprime with 2R = R. A Lie ideal, U, of R-strong if $aua \in U$ for all $a \in R$, $u \in U$. One shows that U contains a nonzero two-sided ideal of R. If R has an involution, *, (with skew-symmetric elements K) a Lie ideal, U, of K is K-strong if $kuk \in U$ for all $k \in K$, $u \in U$. It is shown that if R is simple with characteristic not 2 and either the center, Z, is zero or the dimension of R over the center is greater than 4, then U = K. If R is a topological annihilator ring with continuous involution and if U is closed K-strong Lie ideal, $U = C \cap K$ where C is a closed two-sided ideal of R. A Lie ideal, U, of K is HK-strong if $u^3 \in U$ for all $u \in U$. A result similar to the above result for K-strong Lie ideals can be shown. Let R be a simple ring with involution such that Z = (0) or the dimension of R over Z is greater than 4. Let ϕ be a nonzero additive map from Rinto a ring A such that the subring of A generated by $\{\phi(x):x\in R\}$ is a noncommutative, 2-torsion free prime ring. Suppose $\phi(xy-y^*x^*)=\phi(x)\phi(y)-\phi(y^*)\phi(x^*)$ for all $x,y\in R$. As an application of the above theory, ϕ is shown to be an associative isomorphism.

1. Introduction. R will denote a semiprime ring such that 2R = R and if 2r = 0, then r = 0. We call the latter property 2-torsion free. Z will denote the center of R. If R has an involution, *, defined on it, S and K will be the set of symmetric and skew-symmetric elements respectively. The Lie and Jordan products are [x, y] = xy - yx and $x \circ y = xy + yx$ for any $x, y \in R$. If $X, Y \subseteq R$, [X, Y] will denate the additive subgroup generated by the set $\{[x, y]: x \in X \text{ and } y \in Y\}$. An additive subgroup, U, of R is a Lie ideal of R if $[U, R] \subseteq U$. If R has an involution, we can similarly define a Lie ideal of K.

This paper is concerned with the study of different classes of Lie ideals of both R and K. A Lie ideal, U, of R is said to be R-strong if $aua \in U$ for all $a \in R$, $u \in U$. If U is a Lie ideal of K, U is K-(HK-) strong if $kuk \in U$ ($u^3 \in U$) for all $k \in K$, $u \in U$.

In the classical theory of the Lie structure of an associative ring, the main theorem [6; Th. 1.3] states: if R is simple and U is a Lie ideal of R, either $U \subseteq Z$ or $[R, R] \subseteq U$. We attempt to develop some criteria for differentiating between Lie ideals of R containing [R, R] and R itself. Similar criteria are developed for Lie ideals of K. We

will have occasion to use the following results of Herstein [6; pp 1, 5, 10, and 28]:

- (i) R has no one-sided ideals which are nil of bounded index;
- (ii) If $a \in R$ is such that [a, [a, x]] = 0 for all $x \in R$, then $a \in Z$;
- (iii) Let R be simple with involution and characteristic not 2. If Z=(0) or the dimension of R over Z is greater than 4, then $R=\bar{S}=\bar{K}$ where \bar{S} and \bar{K} are the subrings of R generated by S and K respectively.
- If $X \subseteq R$, $\mathscr{R}(X) = \{a \in R : Xa = (0)\}$ and $\mathscr{L}(X) = \{a \in R : aX = (0)\}$. The next two lemmas are analogs of a results of Baxter [3; p. 2].
- LEMMA 1.1. If U is a Lie ideal of R such that $u^2 = 0$ for all $u \in U$, then U = (0).
- *Proof.* Let $u \in U$, $a \in R$. As $[u, a] \in U$, $[u, a]^2 = 0$. Therefore, $uauau = u[u, a]^2 = 0$ and uR is nil of bounded index. By the previously mentioned results, uR = (0). But R is semiprime, so $\mathscr{L}(R) = (0)$. Thus u = 0.
- LEMMA 1.2. Let R have an involution, *. If U is a Lie ideal of K such that $u^2 = 0$ for all $u \in U$, then U = (0).
- *Proof.* Let $u, v \in U$, then $0 = (u+v)^2 u^2 v^2 = uv + vu$. As $[u, v] \in U$, $2uv \in U$. Since 2R = R, $[uv, K] \subseteq U$. Thus, for each $k \in K$, $u \circ [uv, k] = 0$, and so, even more $v\{u \circ [uv, k]\} = 0$. Since u and v anticommute, expansion of this expression yields uvkuv = 0. Now $suvs \in K$ for any $s \in S$. So uv(suvs)uv = 0. Therefore, given $a \in R$, a = s + k where $s \in S$ and $k \in K$, then (uv)a(uv)a(uv) = 0. We conclude that uvR is nil of bounded index. This guarantees uv = 0 for all $u, v \in U$. Now, -uku = u[u, k] = 0. Repeating the previous arguments for $s \in S$ and $k \in K$, we conclude that u = 0.
- 2. R-strong Lie ideals. In this section U will denote an R-strong Lie ideal. If $a, b \in R$ and $u, v \in U$, one can easily show that the following are in U: aub + bua, abu + uba, and uau. We associate with U the set $B_U = \{b \in R : a \circ b \in U \text{ for all } a \in R\}$. This set is a Lie ideal of R and $u^2 \in B_U$ for all $u \in U$. The latter can be seen by observing that if we set b = u above, we obtain $au^2 + u^2a \in U$. Thus, via Lemma 1.1, $U \neq (0)$ implies $B_U \neq (0)$.

Lemma 2.1.

(i) $B_{\scriptscriptstyle U}$ is an R-strong Lie ideal

(ii) $u^2xu^2 \in B_U \cap U$ for all $u \in U$, $x \in R$.

Proof.

(i) We know that B_U is a Lie ideal of R. For arbitrary $x, y \in R$ and $b \in B_U$, $[x \circ b, y]$ and $[x, b] \circ y$ are in U. Thus, by adding and subtracting these terms, we have that xby - ybx and bxy - yxb are in U. Now,

$$x(yby) + (yby)x = \{(xy)by - yb(xy)\}$$

 $+ \{yb(yx) - (yx)by\} + \{y(bx + xb)y\}.$

Since each term on the right is in $U, x(yby) + (yby)x \in U$ and B_U is R-strong.

(ii) As $u^2 \in B_U$, $u^2xu^2 \in B_U$. Moreover, $u^2xu^2 = u(uxu)u \in U$. Therefore, $u^2xu^2 \in B_U \cap U$.

Theorem 2.2. $C = B_{U} \cap U$ is a nonzero two-sided ideal.

Proof. Note that C is an R-strong Lie ideal. Also $C \neq (0)$ since if this were so, for each $u \in U$, u^2R would be a nil right ideal of bounded index. Let $b \in C$ and $x, y \in R$; $xb + bx \in U$. Also

$$(xb + bx)y + y(xb + bx) = \{x(by - yb) - (by - yb)x\}$$

 $+ \{(yx)b + b(yx)\}$
 $+ \{b(xy) + (yx)b\}$.

As each term on the right is in U, $(x \circ b) \circ y \in U$. Thus, $x \circ b \in C$. Now $2xb = x \circ b + [x, b] \in C$. Since 2R = R, $Rb \subseteq C$. Similarly, $bR \subseteq C$. Thus C is a nonzero two-sided ideal of R.

We note that C is the same as the set $L_U = \{u \in U : ua \in U \text{ for all } a \in R\}$ which was used by Zuev [10] in his study of the Lie structure of R.

COROLLARY 2.3. If R is simple and $U \neq (0)$, U = R.

This corollary allows us to study the R-strong structure of the ring as it relates to minimal idempotents of R. If e is a minimal idempotent, eUe is an eRe-strong Lie ideal. Since eRe is a division ring either eUe = (0) or eUe = eRe. We use this fact to prove the next theorem.

THEOREM 2.4. Let H be the homogeneous component of the socle which contains e. Then either $H \subseteq U$ or $H \subseteq \mathcal{L}(U) \cap \mathcal{R}(U)$.

Proof. Recall that H is a simple ring. The theorem then follows by considering $H \cap U$.

COROLLARY 2.5. If R is completely reducible, U is the direct sum of the homogeneous components of the socle which it contains.

This result is similar to that of Kaplansky [7].

Assume that R has the additional properties that 3R=R and R is 3-torsion free. Let W be any Lie ideal of R such that $u^3 \in W$ for all $u \in W$. Let $u, v \in W$. We have $\alpha = 2(v^2u + vuv + uv^2) = (u+v)^3 + (u-v)^3 - 2u^3 \in W$, $\beta = [v, [v, u]] \in W$ and $\gamma = [v^2, u] \in W$. From these we have: $3(v^2u + uv^2) = \alpha + \beta \in W$, $6vuv = \alpha - 2\beta \in W$, $6v^2u = \alpha + 3\gamma \in W$, and $6uv^2 = \alpha - 3\gamma \in W$. We now have enough to show a result similar to Theorem 2.2.

THEOREM 2.6. Let W be a Lie ideal of R such that $u^3 \in W$ for all $u \in W$. Then either W contains a nonzero two-sided ideal or $u^2 \in Z$ for all $u \in W$.

Proof. Let $a, b \in R$ and $u \in W$. Since $2a[a, u] = [a, [a, u]] + [a^2, u] \in W$ and 2R = R, $a[a, u] \in W$. Linearization of this expression yields $a[b, u] + b[a, u] \in W$. Upon multiplication by 6 and replacement of b by v^2 , we obtain $6\{a[v^2, u] + v^2[a, u]\} \in W$. As $6v^2[a, u] \in W$, $6a[v^2, u] \in W$ and this implies $a[v^2, u] \in W$. It immediately follows that $R[v^2, u]R \subseteq W$ of $R[v^2, u]R \neq (0)$, we are finished.

Assume $R[v^2, u]R = (0)$ for all $u, v \in W$, then $[v^2, u]R$ is a nilpotent ideal, hence $[v^2, u] = 0$ for all $u, v \in W$. As $[v^2, a] = [v, va + av] \in W$, $[v^2, [v^2, a]] = 0$. Thus, by remarks in §1, $v^2 \in Z$.

The obvious corollary holds in the case where R is simple.

3. K-strong Lie ideals. Let R have an involution, *, and let U be a K-strong Lie ideal. For $u, v \in U$ and $k, l \in K$, the following are in U: kul + luk, klu + ulk, and uku. We associate with U the set $B(U) = \{b \in R: ba - a^*b^* \in U \text{ for all } a \in R\}$. This is the analog for Lie ideals of the set which Baxter [3] uses in his study of the Jordan structure of S. When there is no confusion, we write B(U) = B.

LEMMA 3.1.

- (i) B is a right ideal
- (ii) $KB \subseteq B$
- (iii) $u^2 \in B$ for all $u \in U$

Proof. The proofs of (i) and (ii) are straightforward. We prove (iii). As $u \in U$, $u^2a - a^*(u^2)^* = u^2a - a^*u^2$. Then

$$u^2a - a^*u^2 = \{[u, ua + a^*u]\} + \{u(a - a^*)u\}$$
.

The first $\{ \}$ is in U since $ua + a^*u \in K$. The second $\{ \}$ is in U since $(a - a^*) \in K$ and U is K-strong.

Now from Lemma 1.2, we know that if $U \neq (0)$, $B \neq (0)$.

For $u \in U$, $k \in K$, $a \in R$ and b, $c \in B$, direct computation leads to the following facts: $ac^*b \in B$, $c^*b \in B$, $bkb^* \in B \cap U$, and $uku \in B \cap U$.

THEOREM 3.2. Let R be a simple ring with characteristic not 2. If Z = (0) or the dimension of R over Z is greater than 4, then U = K.

The proof of this essentially the same as the proof of Theorem 7 [3; p. 7]. As a corollary, we include a slight extension of a theorem of Baxter [1; p. 74].

COROLLARY 3.3. Let R be as in the theorem. $S \circ K$, the additive subgroup of R generated by the set $\{s \circ k : s \in S \text{ and } k \in K\}$ is a K-strong Lie ideal and hence $S \circ K = K$.

The following results on $\mathscr{L}(B)$ and $\mathscr{L}(U)$ will be particularly useful in the next section.

THEOREM 3.4. $\mathcal{L}(B)$ is a self-adjoint two-sided ideal.

Proof. The proof is similar to the proof of Theorem 2 [4; p. 563].

Knowing that $\mathcal{L}(B)$ is a two-sided ideal, we can easily show that $\mathcal{L}(B) \cap B = (0)$ and $\mathcal{L}(B) \cap U = (0)$.

Theorem 3.5. $\mathcal{L}(U \cap B) = \mathcal{L}(U)$.

Proof. It suffices to show $\mathscr{L}(U \cap B) \subseteq \mathscr{L}(U)$. Let $b \in U \cap B$, $k \in K$, and $x \in \mathscr{L}(U \cap B)$. As $bk - kb \in U \cap B$, xkb = -x(bk - kb) = 0. Thus, $\mathscr{L}(U \cap B)K \subseteq \mathscr{L}(U \cap B)$.

Let $u \in U$, then $u^3 \in U \cap B$ so $xu^3 = 0$. Since $u^2k + ku^2 \in U \cap B$, $xu^2ku = x(u^2k + ku^2)u = 0$. Let $a \in R$; $ua^* + au \in K$, therefore $0 = xu^2(ua^* + au)u = xu^2au^2$. If we replace a by ax, we have $(xu^2a)^2 = 0$. That is, xu^2R is a nil ideal of bounded index and so $xu^2 = 0$ for any

 $u \in U$. Upon linearization we obtain

$$(3.5.1) xuv = -xvu for u, v \in U.$$

Since $xuvu = -xvu^2 = 0$ and $vkv \in U$, we have

$$(3.5.2) xu(vkv)u = 0.$$

Let $w \in U$ and $s \in S$; xuv(ws + sw)vu = 0. Replacement of x by xw, expansion of the expression, and repeated use of (3.5.1) yields, 0 = -xwvuswvu. By repeated use of (3.5.1) and finally (3.5.2), we have xwvukwvu = 0. Given $a \in R$, since a = s + k for some $s \in S$ and $k \in K$, we can write xwvuawvu = 0. Replace a by ax to obtain

$$xwvu(ax)wvu = 0$$
.

Then xwvuR is a nilpotent ideal so xwvu = 0. As $uk - ku \in U$.

$$(3.5.3) 0 = xwv(uk - ku) = -xwvku.$$

Let $s \in S$; xwv(ws + sw)v = 0. Moreover, since xwvwsv = 0, we have xwvswv = 0. From (3.5.3), xwvkwv = 0. As before, this implies

$$(3.5.4)$$
 $xwv = 0.$

Immediately, 0 = xw(vk - kv) = -xwkv. In particular xwkw = 0. Since $sws \in K$, xw(sws)w = 0. Also, 0 = xw(swk - kws)w = xwswkw. Again, letting a = s + k for $a \in R$, we have xwawaw = 0. Via the same techniques, xw = 0 or $x \in \mathcal{L}(U)$. Hence, $\mathcal{L}(U \cap B) \subseteq \mathcal{L}(U)$.

4. Topological annihilator rings. In this section R will denote a semiprime topological annihilator ring with continuous involution such that 2R = R and if $\{2x_{\alpha}\}$ is a net convergent to $0 \in R$, then $\{x_{\alpha}\}$ is also a net convergent to 0. U will be a closed K-strong Lie ideal.

The definition of an annihilator ring says that $\mathscr{L}(R) = \mathscr{R}(R) = (0)$ and if A(L) is a closed right (left) ideal not equal to R, then $\mathscr{L}(A) \neq (0)$ $\mathscr{R}(L) \neq (0)$. So if B = B(U), $H = \mathscr{L}(B) \oplus B$ is dense in R. It is easy to show that if U is closed, B is closed. If $X \subseteq R$, Cl(X) will denote to topolopical closure of X.

The following results have proofs which are similar to those given by Baxter in [3; p. 4].

THEOREM 4.1.

- (i) B is a two-sided ideal
- (ii) $\{\mathscr{L}(B)\}^* = \mathscr{L}(B^*)$

(iii) $B = B^*$

(iv)
$$U \subseteq B$$
.

For any $x, y \in R$, we adopt the following notation: $(x, y)_L = xy - y^*x^*$ and $(x, y)_J = xy + y^*x^*$. Using the results of the last theorem, we prove

Theorem 4.2. $U = C \cap K$ where C is a closed two-sided ideal.

Proof. Let V be the additive subgroup of S generated by the set $\{(u, a)_J : u \in U \text{ and } a \in R\}$. If we show (U + V) to be a right ideal, since it is self-adjoint, it must be a two-sided ideal.

Since $U \subseteq B$, $(u, a)_L = ua + a^*u \in U$ for all $a \in R$. Let $c \in R$, then

$$auc + c^*ua^* = ((a, u)_L, c)_L + (u, (-a^*c))_L \in V$$

and

$$auc - c^*ua^* = ((a, u)_L, c)_J + (u, (-a^*c))_J \in V$$
.

Since 2R = R, for any $2d \in R$, $u(2d) = (u, d)_L + (u, d)_J \in U + V$. Thus, $UR \subseteq U + V$. Also,

$$(u, a)_{J}(2d) = (u, ad)_{L} + \{a^{*}u(-d) + (-d)^{*}ua\} + (u, ad)_{J} + \{d^{*}ua - a^{*}ud\} \in U + V$$

and $VR \subseteq U + V$. Thus $(U + V)R \subseteq U + V$, or the desired conclusion that (U + V) is a two-sided ideal.

Let C = Cl(U + V). $U \subseteq C \cap K$. Let $x \in C \cap K$. There exists a net $\{u_{\alpha} + v_{\alpha}\}$ such that $u_{\alpha} + v_{\alpha} \to x$ where $u_{\alpha} \in U$ and $v_{\alpha} \in V$. As $x \in K$, $(u_{\alpha} + v_{\alpha})^* = -u_{\alpha} + v_{\alpha} \to x^* = -x$. Thus $u_{\alpha} - v_{\alpha} \to x$. By subtracing these expressions we obtain $2u_{\alpha} \to 2x$. Therefore $u_{\alpha} \to x$. Since $u_{\alpha} \in U$ and U is closed, $x \in U$. Hence, $C \cap K = U$.

5. HK-strong Lie ideals. In this section U is an HK-strong Lie ideal. R will have those properties as described in §1. We further assume that 3R = R and R is 3-torsion free. HK-strong Lie ideals were defined by Herstein [5]. Baxter [2; p. 393] showed that if R is simple with either Z = (0) or the dimension of R over Z greater than 16 with $U \not\subseteq Z$, then U = K. This can be refined by using entirely different techniques.

As before, we associate with U the set B(U). B is a right ideal and $KB \subseteq B$. However, we are no longer guaranteed that $u^2 \in B$ for all $u \in U$. Hence the possibility that B = (0) does arise.

LEMMA 5.1. Let $u, v, w \in U$ and $k \in K$.

- (i) $6vuv \in U$
- (ii) $6(uvw + wvu) \in U$
- (iii) $uv(wk kw) + (wk kw)vu \in U$
- (iv) $u^2v vu^2 \in B$.

Proof. (i) and (ii) follow in a manner similar to the remarks preceding Theorem 2.6. (iii) holds because 2R = R and 3R = R. Finally (iv) can be verified in the same manner as [6; p. 33].

If B = (0), $u^2v - vu^2 = 0$ for all $u, v \in U$. Let $s \in S$. Since $[u^2, s] = [u, us + su] \in U$, $[u^2, [u^2, s]] = 0$. Also, if $k \in K$, $[u^2, [u, k]] = 0$, therefore $[u^2, [u^2, k]] = [u^2, u \circ [u, k]] = 0$. We know that this implies

$$[u^2, [u^2, a]] = 0$$

for all $a \in R$. Thus, from the first section, $u^2 \in Z$.

We now refine Baxter's theorem.

THEOREM 5.2. Let R be simple and of characteristic not 2 or 3. If Z = (0) or the dimension of R over Z is greater than 4, then either U = K or $U^2 \in Z$ for all $u \in U$.

Proof. If $B \neq (0)$, by the remarks preceding Lemmas 1.1 and 5.1 we have the alternative result.

We relate the notations of K- and HK-strong Lie ideals by calling attention to the fact that if U is HK-strong, $B \cap U$ is K-strong. Clearly $B \cap U$ is a Lie ideal. If $k \in K$ and $u \in B \cap U$, then $[k, [k, u]] = k^2u + uk^2 - 2kuk$. Now, $k^2u + uk^2 \in B \cap U$ by the definition of B. Therefore, $kuk \in B \cap U$ since 2R = R.

Herstein [6; p. 28] has shown that K^2 is a Lie ideal of R. It is not difficult to show that if U is an HK-strong Lie ideal such that $B \cap U = (0)$, then any $x \in B \cap S$ commutes with every element in K^2 . We need this fact to prove

THEOREM 5.3. Let R be a topological annihilator ring with properties as described in the previous section. Assume also that 3R = R and if $\{3x_{\alpha}\}$ is a net convergent to $0 \in R$, $\{x_{\alpha}\}$ is a net converging to 0. If U is a closed HK-strong Lie ideal, then either $u^2 \in Z$ for all $u \in U$, U contains the intersection of K with a closed two-sided ideal, or $u^2v - vu^2 \in \mathcal{L}(K)$ for all $u, v \in U$.

Proof. If $B=(0), u^2 \in \mathbb{Z}$. Assume $B \neq (0)$ and $B \cap U \neq (0)$.

Since $B \cap U$ is K-strong, Theorem 4.2 guarantees the existence of C, a closed two-sided ideal, such that $C \cap K = B \cap U \subseteq U$.

Let $B \cap U = (0)$. As K^2 is a Lie ideal of R, $t = u^2v - vu^2 \in K^2 \cap (B \cap S)$. Also, by the remarks preceding the theorem, [t, [t, a]] = 0 for all $a \in R$. Therefore, $t \in Z$. Let $k \in K$; $tk + kt = tk - k^*t^* \in B \cap U = (0)$. Therefore, tk = 0 or $t = u^2v - vu^2 \in \mathscr{L}(K)$.

7. Application. We now parallel some of the results obtained by Small [9] and Riedlinger [8] concerning an additive mapping whose multiplicative property is defined relative to an involution. Let R be a simple ring with involution, *, and characteristic not 2 such that Z=(0) or the dimension of R over Z is greater than 4. Notice that under these conditions R cannot be commutative. Let ϕ be a nozero additive mapping from R into an associative ring A. Assume $R'=\overline{\phi(R)}$, the subring of A generated by $\{\phi(r)\colon r\in R\}$, is a noncommutative prime ring such that 2R'=R' and R' is 2-torsion free. Let ϕ enjoy the further property that $\phi(xy-y^*x^*)=\phi(x)\phi(y)-\phi(y^*)\phi(x^*)$ for all $x,y\in R$. We would like to show that ϕ is an associative isomorphism. We will have occasion to use the following theorem by Baxter [1; p. 73] which was slightly modified by Herstein [6; p. 29]: If R is such that 2R=R and $\overline{K}=R$, then $S=K\circ K$, the additive subgroup of R generated by the set $\{k\circ l\colon k,l\in K\}$.

The next lemma is the key to much of what follows.

LEMMA 6.1. Ker $\phi \cap K = (0)$.

Proof. We show $\operatorname{Ker} \phi \cap K$ to be a K-strong Lie ideal. Let $l \in \operatorname{Ker} \phi \cap K$ and $k \in K$. Since $\phi([k, l]) = [\phi(k), \phi(l)] = 0$, $\operatorname{Ker} \phi \cap K$ is a Lie ideal of K. Thus $[k, [k, l]] \in \operatorname{Ker} \phi \cap K$ or $\phi([k, [k, l]]) = (0)$. We may expand this and obtain

$$\phi([k,[k,l]]) = \phi(k^2l - 2klk + lk^2) = \phi(k^2l + lk^2) - 2\phi(klk) = 0$$
.

Now, $\phi(k^2l + lk^2) = \phi(k^2)\phi(l) + \phi(l)\phi(k^2) = 0$. Therefore $\phi(klk) = 0$ or Ker $\phi \cap K$ is a K-strong Lie ideal.

By Theorem 3.2 either $\operatorname{Ker} \phi \cap K = (0)$ or $\operatorname{Ker} \phi \cap K = K$. Assume the latter. For $s, t \in S$ and $k, l \in K$, $[\phi(k), \phi(l)] = 0$ and $[\phi(k), \phi(s)] = 0$. As $[s, t] \in K$, $0 = \phi([s, t]) = [\phi(s), \phi(t)]$. Because any $x \in R$ can be written as x = s + k, we have $[\phi(x), \phi(y)] = 0$ for all $x, y \in R$. Therefore, R' is commutative, a contradiction. Thus $\operatorname{Ker} \phi \cap K = (0)$.

Let $x, y \in R$, then

$$\phi((xy - y^*x^*)x^* - x(xy - y^*x^*)^*) = \{\phi(x)\phi(y) - \phi(y^*)\phi(x^*)\}\phi(x^*) - \phi(x)\{\phi(y^*)\phi(x^*) - \phi(x)\phi(y)\}.$$

If y = s, we can write,

$$\phi((xy - y^*x^*)x^* - x(y^*x^* - xy)) = \phi(x^2s - sx^{*2}) = \phi(x^2)\phi(s) - \phi(s)\phi(x^{*2})$$

and

$$\{\phi(x)\phi(y) - \phi(y^*)\phi(x^*)\}\phi(x^*) - \phi(x)\{\phi(y^*)\phi(x^*) - \phi(x)\phi(y)\}$$

$$= (\phi(x))^2\phi(s) - \phi(s)(\phi(x^*))^2 .$$

This can be rewritten as

$$\{\phi(x^2) - (\phi(x))^2\}\phi(s) = \phi(s)\{\phi(x^{*2}) - (\phi(x^*))^2\}$$

for all $x \in R$ and $s \in S$.

LEMMA 6.2. For any $s \in S$ and

$$k \in K, \{\phi(s^2) - (\phi(s))^2\}$$
 and $\{\phi(k^2) - (\phi(k))^2\}$

are in Z', the center of R'.

Proof. Set u equal to either $\{\phi(s^2) - (\phi(s))^2\}$ or $\{\phi(k^2) - (\phi(k))^2\}$. From (6.1.1), $\phi(s)u = u\phi(s)$. Consider $2\phi(t_1t_2\cdots t_n)$ where $t_1 \in S$. We write

$$egin{aligned} 2\phi(t_1t_2\cdots t_n) &= \phi(t_1t_2\cdots t_n + \,t_n\cdots t_2t_1) \ &+ \phi(t_1t_2\cdots t_n - \,t_n\cdots t_2t_1) \ &= \phi(t_1t_2\cdots t_n + \,t_n\cdots t_2t_1) \ &+ \{\phi(t_1)\phi(t_2\cdots t_n) - \phi(t_n\cdots t_2)\phi(t_1)\}\,. \end{aligned}$$

By induction, u commutes with $\phi(t_2 \cdots t_n)$ and $\phi(t_n \cdots t_2)$. Since $t_1t_2 \cdots t_n + t_n \cdots t_2t$, $\in S$, u commutes with $\phi(t_1t_2 \cdots t_n + t_n \cdots t_2t_1)$. Thus, $[u, \phi(t_1t_2 \cdots t_n)] = 0$. That is, u commutes with $\phi(\overline{S})$. But under our hypothesis, $\overline{S} = R$. Hence, u commutes with $\phi(R)$ and, indeed, with $\overline{\phi(R)} = R'$. Thus $u \in Z'$.

COROLLARY 6.3.

(6.3.1)
$$\{\phi(x^2) - (\phi(x))^2\} \in Z' \text{ for all } x \in R.$$

Proof. If x = s + k, since $\phi(sk + ks) - \{\phi(s)\phi(k) + \phi(k)\phi(s)\} = 0$, $\{\phi(x^2) - (\phi(x))^2\} = \{\phi(s^2) - (\phi(s))^2\} + \{\phi(k^2) - (\phi(k))^2\} \in \mathbf{Z}'$.

Let $x, y \in R$. If we linearize (6.3.1), we obtain

$$\phi(xy + yx) - \{\phi(x)\phi(y) + \phi(y)\phi(x)\} \in Z'.$$

In particular, for $s, t \in S$, $\phi(st + ts) - \{\phi(s)\phi(t) + \phi(t)\phi(s)\} \in Z'$. Also, $\phi(st - ts) - \{\phi(s)\phi(t) - \phi(t)\phi(s)\} = 0$. Addition of these terms leads us to $\phi(st) - \phi(s)\phi(t) \in Z'$. Similarly, we can show that $\phi(kl) - \phi(k)\phi(l) \in Z'$ for $k, l \in K$.

For notational convenience, let $\phi(xy) - \phi(x)\phi(y) = x^y$ for any $x, y \in R$. Thus the above says that $s^t, k^l \in Z'$. The definition of ϕ tells us that $s^k = -k^s$. Also, we have $k^l = l^k$. Since these terms are in Z', $\phi(s)k^l - l^k\phi(s) = 0$. Upon expansion and rearrangement of terms, we obtain

$$\{\phi(skl - lks)\} - \{\phi(s)\phi(k)\phi(l) - \phi(l)\phi(k)\phi(s)\} = 0.$$

We can write $\phi(sk - ks) = \phi(sk)\phi(l) - \phi(l)\phi(ks)$. Replacement of this in (6.4.1) and rearrangement of terms yields

$$s^k\phi(l) - \phi(l)k^s = 0$$

or

(6.4.2)
$$s^{k}\phi(l) = \phi(l)k^{s} = -\phi(l)s^{k}.$$

Let $m \in K$, by the above, there exists $z' \in Z'$ such that $\phi(ml+lm) = \phi(m)\phi(l) + \phi(l)\phi(m) + z'$. As a result of (6.4.2) and this relation we have that $s^k\phi(ml+lm) = \phi(ml+lm)s^k$ or s^k commutes with $\phi(K \circ K)$. The preliminary remarks guarantee for us that $K \circ K = S$. So, using an argument exactly like that in Lemma 6.2, we can show

$$(6.4.3) s^k \in Z'.$$

LEMMA 6.4. $x^y \in Z'$ for all $x, y \in R$.

The proof follows directly from (6.4.3) and the remarks immediately after Corollary 6.3.

COROLLARY 6.5. If Z'=(0), ϕ is an associative isomorphism.

Proof. As Z'=(0), $\phi(xy)-\phi(x)\phi(y)=0$. Thus ϕ is an associative homomorphism and $\overline{\phi(R)}=\phi(R)$. Moreover, since R is simple, ϕ is an associative isomorphism.

Let $z'(\neq 0) \in Z'$. Since $\mathscr{A}(z') = \{r' \in R' : r'z' = 0\}$ is a two-sided ideal in a prime ring, $\mathscr{A}(z') = \{0\}$.

LEMMA 6.6. $k^s = s^k = 0$ for all $s \in S$, $k \in K$.

Proof. From (6.4.2) $s^k \phi(l) = -\phi(l)s^k$ for $l \in K$. By Lemma 6.4, $s^k \in$

Z', therefore $s^k\phi(l)=0$. Suppose $s^k\neq 0$. By the remarks preceding the lemma, we have $\phi(l)=0$, that is, $K\subseteq \operatorname{Ker} \phi$. Therefore, $\operatorname{Ker} \phi\cap K=K$, a contradiction. We conclude that $0=s^k=-k^s$.

COROLLARY 6.7. $\phi(xy-yx)=\phi(x)\phi(y)-\phi(y)\phi(x)$ for $x,y\in R$.

We have shown that when Z'=(0), then ϕ is an associative isomorphism. Therefore, the following theorem is proved except when $Z'\neq (0)$.

Theorem 6.8. ϕ is an associative isomorphism.

Proof. From Lemma 6.6, $(s^2)^k - \phi(s)s^k = 0$. Expansion and rearrangement of terms leads to $(s^2)^k - \phi(s)s^k = (s)^{sk} - s^s\phi(k) = 0$. From Lemma 6.4, $(s)^{sk} \in Z'$ so $s^s\phi(k) \in Z'$. Let $l \in K$. There exist z'_1 and z'_2 in Z' such that $s^s\phi(k) = z'_1$ and $s^s\phi(l) = z'_2$. As $s^s \in Z'$, we can write $0 = [z'_1, z'_2] = (s^s)^2[\phi(k), \phi(l)]$ for all $s \in S$ and $k, l \in K$.

If $(s^s)^2 \neq 0$ for some $s \in S$, then by the remarks preceding Lemma 6.6, $[\phi(k), \phi(l)] = 0$ for all $k, l \in K$. As $\phi([k, l]) = [\phi(k), \phi(l)] = 0$, we conclude that $[K, K] \subseteq \text{Ker } \phi \cap K = (0)$. This implies $\overline{K} = R$ is commutative, a contradiction. So $(s^s)^2 = 0$ for all $s \in S$. Since the center of a prime ring is an integral domain, $s^s = 0$. Upon linearization of this expression, we obtain $\phi(st + ts) - \{\phi(s)\phi(t) + \phi(t)\phi(s)\} = 0$ for all $t, s \in S$.

For $k, l \in K$, $k^l \in Z'$. Thus there exists $z_3' \in Z'$ such that $k^l - z_3' = 0$. Since $k^2 \in S$, $(k^2)^l = 0$ and so $(k^2)^l - \phi(k)\{k^l - z_3'\} = 0$. Expansion and rearrangement of terms leads to $k^{kl} - k^k \phi(l) + z_3' \phi(k) = 0$. In view of Lemma 6.4, there is an element $z_4' \in Z'$ such that $k^{kl} = z_4'$. Therefore we can always find z_3' , z_4' , $\in Z'$ such that $k^k \phi(l) = z_3' \phi(k) + z_4'$ where k is an arbitrary fixed element in K and l is allowed to vary in K. Note that $k^k \in Z'$. For $m \in K$, there are z_5' and z_6' in Z' such that $k^k \phi(m) = z_5' \phi(k) + z_6'$. Thus $0 = (k^k)^2 [\phi(l), \phi(m)] = [k^k \phi(l), k^k \phi(m)]$. Via the same argument as above, we can show $k^k = 0$. Linearization of this expression leads to $\phi(kl + lk) - \{\phi(k)\phi(l) + \phi(l)\phi(k)\} = 0$. Now, using this fact and the fact that both $\phi(sk) - \phi(s)\phi(k) = 0$ and $\phi(st + ts) - \{\phi(s)\phi(t) + \phi(t)\phi(s)\} = 0$, we have that

$$\phi(xy + yx) = \phi(x)\phi(y) + \phi(y)\phi(x)$$

for all $x, y \in R$. From Corollary 6.7, we know

$$\phi(xy - yx) = \phi(x)\phi(y) - \phi(y)\phi(x) .$$

Addition of these two expressions yields $\phi(xy) = \phi(x)\phi(y)$ or that ϕ is an associative homomorphism. Therefore, $\overline{\phi(R)} = \phi(R)$ and $\operatorname{Ker} \phi = (0)$

since R is simple. Hence ϕ is an associative isomorphism.

REFERENCES

- 1. W. E. Baxter, Lie simplicity of a special class of associative rings II, Trans. Amer. Math. Soc., 87 (1958), 63-75.
- 2. ——, Concerning strong Lie ideal, Proc. Amer. Math. Soc., 11 (1960), 393-395.
- 3. ——, On rings with proper involution, Pacific J. Math., 27 (1968), 1-12.
- 4. ——, Topological rings with property (Y), Pacific J. Math., 30 (1969), 563-571.
- 5. I. N. Herstein, Lie and Jordan systems in simple rings with involution, Amer. J. Math., 78 (1956), 629-649.
- 6. I. N. Herstein, *Topics in Ring Theory*, Univ. of Chicago, Chicago, III. 1965: rev. ed. 1969.
- 7. I. Kaplansky, Semi-automorphisms of rings, Duke Math. J., 14 (1947), 521-527.
- 8. R. F. Riedlinger, *Mappings on Rings with Involution*, Ph. D. Dissertation, University of Delaware, Newark, Delaware 1971.
- 9. L. B. Small, *Mappings on Simple Rings with Involution*, Ph. D. Dissertation, Yale University, New Haven, Conn., 1968.
- 10. I. Zuev, Lie ideal of an associative ring, Uspehi Mat. Nauk, 18 (1963), no. 1 (109), 155-158.

Received July 26, 1971. The author wishes to thank Professor Willard E. Baxter for his invaluable help. This research was supported in part by NSF Grant GP-9611. This work presented here comprises part of the author's Ph. D. dissertation.

Universidad De Los Andes, Mérida, Venezuela and

UNIVERSITY OF DELAWARE