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THE DIOPHANTINE PROBLEM Y?— X?*=A IN A
POLYNOMIAL RING

DENNIS L. JOHNSON

Let C[z] be the ring of polynomials in z with complex
coefficients; we consider the equation Y2 — X3 = A, with
A e (C[z] given, and seek solutions of this with X, Y e C[z] i.e.
we treat the equation as a ‘‘polynomial diophantine’’ problem.
We show that when A is of degree 5 or 6 and has no multiple
roots, then there are exactly 240 solutions (X, Y) to the problem
with deg X < 2 and deg Y < 3.

It is possible that, A being of degree 6, solutions (X, Y) exist
with deg X > 2 or deg Y > 3. We “normalize” the problem so as to
remove these from our consideration, and give the following definitions:
if A is any polynomial of degree d, we shall permit its formal degree
to be any integer divisible by 6 and greater or equal to d. Given A
of formal degree 6%, we require the solutions X, Y of the equation
to be of formal degrees 2k, 3k resp., i.e. deg X < 2k, deg Y < 3k.
This problem will be called the problem of order k. The restriction
on the degrees of X, Y causes no loss in generality, for if k£ is chosen
large enough, it will exceed 1/2deg X and 1/3deg Y. Furthermore,
the classification by k& has a natural geometric interpretation. We
confine our attention to the problem of order 1. The order restriction
enables us to projectivize the equation to an equation of degree 6%,
with deg A = 6k, deg X = 2k, deg Y = 3k.

Suppose then that A has formal degree 6, and (X, Y) is a solu-
tion of proper formal degree, deg X <2, deg Y <3. The projec-
tive curve K: w® — 3Xw + 2Y = 0 has the z-discriminant Y? — X°® = 4,
so the function z: K — S* (proj. line) has its branches among the roots
of A, for finite z. At z = « we introduce Z = 1/2, & = w/z = Zw
and get

) 0:

P — 3§3X<

|

)w + 22° Y<

mzl;—a

IfX=0a2+ .-, Y =02+ .-+, then
F='27)3—3(040—}-0«1?4-(1252)@‘{-2(1)0‘*- blg—i_ "'):0

and

gF — 3(ay + +-) .

Now at 2 =0 (i.e. 2 = o) z has a branch point if and only if 6F/6® = 0;
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i.e. we must have
W — 3a,W + 2b, = 0
and
3w — 3a, =0

which is true if and only if 4= —a!+ b =0 i.e. if and only if
deg A < 6. Hence if deg A < 6, we put a “formal root” of 4 at
with multiplicity 6-deg A.

We now assume the roots of A to be distinct. This entails
deg A = 5 or 6, with no multiple (finite) roots. The roots will be called
2, +++,%. Note that if either X or Y were zero at z,, the other would
also be, since A is zero there (for the case z, = < just imagine the pro-
jective form of Y? — X°® = A; the statement then reads that deg A <6
and if deg Y < 3 then deg X < 2 and conversely). Hence A4 would
have at least a double zero at z, (or at «:deg A < 4) contrary to hy-
pothesis. Hence X,Y = 0 at 2z, and deg X =2ordeg Y = 3. Away
from a branch point we may write locally:

wo=F Y+ VA + 3 -Y-VE

wo=0Y Y+ VA + 0¥ - Y -VA
wo= 0~ Y+ VA + 0} - Y- VE

for proper choice of the roots; as we go around z,1 A changes to
—V'A, and we get a root permutation w, — w, w, < w,. Thus the
branching number b, at z, is 1, and the total branching is 6, so the
genus is ¢ = b0/2 —r+ 1 =1, i.e. K is a torus.

We should also prove that K is irreducible; but if K were re-
ducible, factoring as (w — a)(w® + aw + B) (where «a, 8 are polynomials
in z by Gauss’s lemma) i.e., we have 3X =a*— 8 and 2Y = —ag,
and A =Y?— X* =48+ 15’8 + 12a'8 — 4a® = —(a® — 4B)(2® + B)*.
It is easy to see that deg a < 1, deg 8 < 2, and hence deg(a® — 48) < 2.
Since deg A =5 we see that deg (2a* + B8) = 1, whence A has double
roots, contrary to hypothesis.

Thus, any solution X, Y gives us an elliptic curve K represented
as a 3-sheeted branched covering of S? with branch points at z,, where
z: K— S? is an elliptic function of degree 3. Furthermore, w is also
a function on K, and its poles are among those of 2z, and of order <
the order of the z-poles: for expanding w, at z = = we get

W, = 03 =02 4+ eee + V(B — a2’ + -0 + a)”i/etc.
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i.e.
w, = ((o‘\/—b0 +V A+ coz‘\a/—b0 — 1/2—)z + lower powers of z

i.e. the order of w is < order of z at all places z = . (Clearly w
has no other poles). Note also that the sum Jw, of the three values
of w over any z is zero.

Now suppose conversely that we are given a branched covering
of S* with 6 simple branch points at the roots of A; we then have
an elliptic curve K and a meromorphic function z: K — S* with 3 poles
(one of which is double if a branch point is at o) at places k,, k., k..
Now the set of meromorphic functions w on K whose poles are among
the k, form a vector space V of dimension 3. Given any such w, the
sum w, + w, + w, of its 3 values over any z gives us a function which
is:

(1) finite for finite z

(2) of order < the order of z at z = o

(3) symmetric in the sheets, so rational in z.

Hence 3w, must be linear in z: Sw, = a,2z + b,, where a, and b, are
constants depending on w. Note that a, and b, are clearly complex-
linear in w, i.e. a, b: V— C are linear maps. Furthermore, since both
w=1and w=zarein V we have ¢ and b are linearly independent:
for

al) =0 a(z) =3
b(l) =3 bz =0

and so a, = 0, b, = 0 defines a one dimensional subspace of V i.e.
a w = 0, defined up to a constant multiple, of degree <8, with its poles
among those of z, and with Jw, = 0. Hence w satisfies some equation

w* — 3Pw + 2Q = 0, with P & @ rational in z ;
but
—3P = waw, + w,w; + wyw, is finite for z finite ;

hence P is a polynomial; also its degree is <2 since the order of w,
is £ that of z at «. Likewise @ is a polynomial of degree <3 in
2. Finally w is not rational in z since if it were, it would actually
be linear, w = az + b, and then

Sw,=3w=3az+3b=0, i.e. w=0.

Hence w* — 8Pw + 2Q = 0 is irreducible, and thus defines the curve
K. Because of this, we must have the branch points as roots of the
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discriminant @* — P® (%£0); i.e. A|Q* — P% deg@* — P*< 6, and is
<6 if and only if as we have seen previously, - is a branch point
of K; in the latter case we also have deg A =5, and so in every
case we have deg (Q*— P°) = deg A4, i.e. A= k(@ — P? for some
constant k= 0. If now we replace w by w/alaeC), we replace
P by Pla* and Q by Q/a* and Q* — P* by (@ — P?)/a’ Hence we
may choose a scale factor a, determined up to a 6th root of unity,
and a rescaled w such that Q@ — P®*= A4, i.e. (P,Q) is a solution.
Thus we have shown that any 3 sheeted covering of S* with simple
branches at A = 0 gives us exactly 6 solutions to the problem (These
6 solutions are distinet since two could be equal if and only if P or
@ = 0, which is impossible). Furthermore, if we have two different such
branched coverings K, K,, then the corresponding solutions (P,, Q.),
(P, @,) must be distinet, since the data (P, Q) actually define K.

Thus the only remaining problem is to enumerate the different
coverings possible.

We choose a base point ¢qe S? distinet from the roots z, and
loops p, (¢ =1, ---, 6) encircling the roots 2, acting as free generators
of the fundamental group 7,(S* — U, ?,), subject only to the relation
P, ++- P = identity. Choosing a numbering 1, 2, 3 of the sheets over
g, each p, determines a permutation 7z, (in S;) of the sheets, and these
completely determine the surface. Since the branches are all simple,
these permutations must be transpositions: (12), (23) or (31). Also not
all the m, can be equal, for then two sheets over ¢ would remain
unconnected from the third. If we choose 7, --- 7, arbitrarily then
7, is determined by w7, .-+ 7; = ¢. Note however that 7, - .. 7; may
not be chosen all equal, since 7, would also be same by virtue of the
relation. Hence we may choose 7, --- 7; in 3° — 3 ways, obtaining
all possible coverings of the required nature. Two such choices 7,, 7,
give the same covering if and only if they differ by a renumbering
of the sheets over ¢, i.e. if and only if 7, = gm,g™" for some ge S..
Since at least two different transpositions occur among the =x,, con-
jugation by the elements of S, produces exactly 6 different equivalent
choices of x,; hence the total number of different surfacesis (3° — 3)/6 =
(3* — 1)/2 = 40. Remembering that to each such surface there are 6
solutions, we have:

THEOREM. If A is a polynomial of degree 5 or 6 without multiple
roots, then there are exactly 240 distinct solutions of the equation
Y:— X°= A in polynomials X, Y for which deg X < 2, deg Y < 3.

It should be pointed out that, in principle at least, the deter-
mination of the solutions (X, Y) for a given A could be solved by
classical elimination theory. For example, if X = a2* + a,2 + @, and
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Y=1>024 b2+ bz + b, is a solutionto Y?* — X® = A =2+ -+ + a,
then treating the @, and b; as unknowns, formal manipulation and the
equating of coefficients gives us 7 polynomial equations in 7 unknowns
which presumably (assuming independence) gives a finite set of so-
lutions for the unknowns a, b;. This also shows us that the @, and
b, are algebraic over the field of the «,. In practice, however, this
elimination would probably not be computationally feasible.
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